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Fig. 1. Our method calculates a basis for reduced-space simulations that can represent shapes with a family of discontinuities. This basis is represented by
neural fields. Unlike neural fields implemented by vanilla MLPs [Modi et al. 2024], which have built-in continuity, we represent discontinuities by construction
using the winding number field. The basis can then be used for reduced-space simulation for progressive cutting.

Cutting thin-walled deformable structures is common in daily life, but poses
significant challenges for simulation due to the introduced spatial discontinu-
ities. Traditional methods rely onmesh-based domain representations, which
require frequent remeshing and refinement to accurately capture evolving
discontinuities. These challenges are further compounded in reduced-space
simulations, where the basis functions are inherently geometry- and mesh-
dependent, making it difficult or even impossible for the basis to represent
the diverse family of discontinuities introduced by cuts.

Recent advances in representing basis functions with neural fields offer
a promising alternative, leveraging their discretization-agnostic nature to
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represent deformations across varying geometries. However, the inherent
continuity of neural fields is an obstruction to generalization, particularly if
discontinuities are encoded in neural network weights.

We present Wind Lifter, a novel neural representation designed to ac-
curately model complex cuts in thin-walled deformable structures. Our
approach constructs neural fields that reproduce discontinuities precisely
at specified locations, without “baking in” the position of the cut line. To
achieve this, we augment the input coordinates of the neural field with the
generalized winding number of any given cut line, effectively lifting the
input from two to three dimensions. Lifting allows the network to focus on
the easier problem of learning a 3D everywhere-continuous volumetric field,
while a corresponding restriction operator enables the final output field
to precisely resolve strict discontinuities. Crucially, our approach does not
embed the discontinuity in the neural network’s weights, opening avenues
to generalization of cut placement.

Our method achieves real-time simulation speeds and supports dynamic
updates to cut line geometry during the simulation. Moreover, the explicit
representation of discontinuities makes our neural field intuitive to control
and edit, offering a significant advantage over traditional neural fields, where
discontinuities are embedded within the network’s weights, and enabling
new applications that rely on general cut placement.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Cutting, Discontinuity, Reduced-order
modeling, Implicit neural representation, Computational design
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1 INTRODUCTION
From laser-cut panels to handcrafting shapes with scissors, cuts
pervade daily life. Simulating cuts in thin-walled structures such
as leaves, paper, or fabric requires a kinematic representation that
precisely resolves time-evolving spatial discontinuities. This is a
requirement that is not met by current reduced order modeling
(ROM) approaches [Barbič and James 2005].

ROM is an acceleration technique for physical simulations that is
applicable for scenarios where the deformation complexity is low
relative to the geometric complexity. In ROM, an offline precom-
putation identifies a truncated set of kinematic modes, which are
leveraged in fast “reduced” simulation. By computing the dynam-
ics of only a small number of modes, in lieu of a large number of
geometric (e.g., mesh) degrees of freedom, ROMs offer speedups by
orders of magnitude [Benner et al. 2015].

However, ROM’s benefits come at the cost of precision and gener-
alization. ROMs are currently unable to treat cutting of thin-walled
materials, particularly when cut placement may vary, cutting is
progressive, or the cut boundary is complex. And yet, since detailed
cuts introduce considerable geometric complexity (see Fig. 1), much
could be gained if ROM could separate kinematics from geometry.
To effectively model cuts, ROM simulations would need a novel

kinematic basis that spans the deformations induced by cutting
and loading the deformable object. ROMs struggle with this, be-
cause cutting induces strict discontinuities in otherwise continuous
displacement fields.
Current ROMs either lack representation or “bake in” the place-

ment of discontinuities, therefore, they do not generalize over cut
placement. For instance, mesh-based ROM mode precomputation
ties the basis to the underlying discretization [Fulton et al. 2019;
Shen et al. 2021; Sifakis and Barbic 2012]. Since progressing or al-
tering a cut changes mesh connectivity, these ROMs cannot reuse
the learned basis and must again precompute offline.

Recent work has leveraged continuous neural fields as kinematic
basis representations [Chen et al. 2023b; Pan et al. 2022; Puri et al.
2024; Tao et al. 2024]. The advantage of these methods is that
their precomputation is agnostic to the specific discretization of
the domain geometry. However, current neural field techniques
have shown limited capacity for representing high-frequency or
discontinuous data [Belhe et al. 2023].
Indeed, efforts to represent discontinuous displacements in neu-

ral reduced simulations are nascent. Recently, Chang et al. [2023]
trained on simulation snapshots of a small, manually-selected set
of partial cuts, producing a displacement basis that encodes the
discontinuities of partial cuts in the neural network’s weights. This
limits their online reduced simulations to only the cut position seen
during training, and limits the precision of the cut boundary due

to the neural network’s limited capacity to precisely represent a
discontinuity along a curve.

Contributions. We propose a novel neural field construction and
ROM approach specifically designed to precisely capture strict dis-
placement discontinuities for a family of progressively-cut shapes
over 2D domains. Our method enables reduced simulations of pro-
gressive cutting, for cut placements not seen during training. It
embraces both training on existing deformation data, or training
data-free by identifying natural vibration modes. The resulting re-
duced simulation maintains an explicit representation of cut po-
sitions as polylines that may be freely modified as the simulation
proceeds, without remeshing or similar data structure updates.
Our mathematical approach is to transform the learning of a

discontinuous field—a known challenge case for neural fields—into
the learning of an everywhere continuous function—a fundamentally
easier learning task. In a nutshell, we augment the input coordinates
of the neural field with the generalized winding number of any
given cut line [Jacobson et al. 2013], effectively lifting the input
from two to three dimensions. Lifting creates 3D distance between
corresponding sides of the cut, allowing the network to focus on
the easy learning of a continuous volumetric field. A corresponding
restriction operator enables final output precisely resolving strict
discontinuities, even for cuts unseen during training.
Highlighting the key ingredients of winding and lifting, we call

this Wind Lifter. After training a volumetric continuous neural field
once, we can (re)compute the winding number at runtime, without
any training, as a cut line is lengthened, moved, or reshaped. By
combining the continuous neural field and the winding graph, we
generate a field with precise, strict discontinuities, while maintain-
ing the speed of ROM.

With Wind Lifter, the discontinuity placement is decoupled from
the neural network’s weights, and editing the cut geometry is
straightforward. Such editing is not possible with traditional neural
fields, where the discontinuities are embedded within the network’s
weights. As a result, our method enables novel applications, such as
user-interactive design of cut shapes.

In summary, we:

• introduce Wind Lifter, a generalizable, precise, and easily
editable representation of discontinuities in 2D neural fields;

• integrate this new capability with a discretization-agnostic
ROM method to enable reduced simulation of cutting;

• demonstrate simulation results with complex cuts and cut
shape generalization unparalleled by prior reduced modeling
methods, including an interactive design prototype and a
real-world comparison.

2 RELATED WORK

2.1 Simulating Cutting of Deformable Bodies
A common approach towards simulating cutting is refining and
adapting the mesh to capture discontinuities. This approach needs
to balance various considerations, such as the number of newly
generated elements [Bielser and Gross 2000; Mor and Kanade 2000],
the quality of the cut details [Busaryev et al. 2013], and material
information [Chen et al. 2014]. While this approach is intuitive to
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Fig. 2. We augment the input to our neural field with a generalized winding number, lifting the domain from 2D into 3D. As the cut progresses, the generalized
winding number changes accordingly throughout the domain, capturing the family of discontinuities. The neural network takes the lifted input and outputs
the basis function. This allows the neural network to learn a continuous function. The discontinuity is captured by the restriction of a continuous function
over a 3D domain.

model, practical implementation is challenging. Remeshing can be
challenging to implement [Zhang et al. 2019] and computationally
expensive [Obiols-Sales et al. 2023]. By contrast, our approach takes
a mesh-free approach through neural fields and completely bypasses
the need to remesh.
Hybrid Lagrangian-Eulerian methods like the material point

method [Jiang et al. 2016] handle cutting without remeshing by
employing a combination of grid and particle representations. How-
ever, the particle-based representation lacks precise surface defini-
tion, resulting in artifacts such as numerical fractures and imprecise
cutting [Fan et al. 2025; Su et al. 2022].

Extended finite element methods (XFEM) [Kaufmann et al. 2009;
Koschier et al. 2017; Moës et al. 1999; Ton-That et al. 2024] maintain
a fixed mesh and resolve discontinuities using discontinuous “en-
richment functions.” Our method also resolves discontinuities using
a discontinuous basis. However, unlike XFEM, our approach does
not depend on a background mesh, separating the kinematic and
geometric representations. This separation enables the simulation
of shapes with intricate thin details (see Figure 1) and multiple cuts
intersecting localized region corresponding to one mesh triangle or
grid cell, situations that can challenge XFEM. Moreover, our separa-
tion allows for fast, reduced-order modeling, whereas XFEM solves
partial differential equations (PDEs) in maximal degrees of freedom.

2.2 Neural Methods for Simulation
Neural networks have demonstrated efficiency in various areas of
physics-based simulation, including deformable simulation [Chen
et al. 2023a; Feng et al. 2024; Lyu et al. 2024], fluid simulation [Deng
et al. 2023; Jain et al. 2024; Kim et al. 2019; Tao et al. 2024], and
collision modeling and handling [Cai et al. 2022; Romero et al. 2021;
Yang et al. 2020], among others.

Among all neural methods for physics-based simulation, our
approach aligns most closely with reduced-space simulation tech-
niques, which accelerate simulations by finding a reduced basis.
These bases can either be mesh-dependent [Fulton et al. 2019; Shen
et al. 2021] or mesh-independent [Chang et al. 2023], and can be
data-based (derived from simulation sequences) [Chen et al. 2023b;

Zong et al. 2023] or data-free (derived from domain geometry) [Modi
et al. 2024; Sharp et al. 2023].

However, none of the data-free methods accommodate cutting dur-
ing simulation. Of the data-based methods, Chang et al. [2023] is
able to reproduce only the cut seen during training, that cut being
encoded in the neural network weights. By contrast, our method
supports procedural cuts without requiring simulation snapshots
for training.

For instance, when the reduced basis is computed without simu-
lation data [Modi et al. 2024], the training process depends solely on
sampling the domain. This approach fails to distinguish between an
undamaged shape and one with a zero-volume cut, rendering it inca-
pable of representing discontinuities in data-free training scenarios.
To address these limitations, our method expressly represents lines
of discontinuity and introduces a function representation capable
of capturing evolving cut geometries even for zero-volume cuts.
In the context of discontinuity modeling with neural fields [Liu

et al. 2024], Belhe et al. [2023] align feature fields from a trian-
gle mesh to discontinuities, which is effective for compressing 2D
physics simulation data. However, their approach learns a feature
field defined on a mesh, requiring (re)meshing of the domain if
discontinuities are placed, extended, or moved. This dependency
makes their method unsuitable for modeling a family of discontinu-
ities necessary for progressive cutting, or allowing cut placement
and geometry to be edited interactively. Our approach allows for
this broader functionality by separating the representation of the
continuous field and the discontinuity.

2.3 Inside/Outside Descriptors
Modelling discontinuities inherently requires querying whether a
point is on one side or the other. Signed distance fields (SDFs) and
occupancy functions [Mescheder et al. 2019] both come to mind.
Both rely on a level set to represent a boundary. However, these
approaches represent insideness only for closed domains , whereas
a cut may be partial or incomplete, i.e., a curve of discontinuity
need not be a closed curve. Indeed, an open curve of discontinu-
ity may evolve in time to close up, further begging for a richer
representation.
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The winding number is a fundamental concept in mathematics,
particularly in complex analysis, geometry, and topology. It mea-
sures how many times a closed curve winds around a given point
in the plane, by integrating the “angle of projection” along the
curve with relation to the query point. As a field over all points on
the plane it is piecewise constant with jump conditions across the
curve [Reinhart 1960; Shimrat 1962], making it a natural candidate
for “strict” insideness tests. Jacobson et al. [2013] proposed its gen-
eralization (GWN) to open curves, where it is harmonic with jump
conditions across the curve, thereby serving as a “soft” insideness
test. The GWN has been implemented for point clouds [Barill et al.
2018] and curved surfaces [Feng et al. 2023], and applied to garment
modeling [Chi and Song 2021; Hu et al. 2018], geometry processing
[Xu et al. 2023; Zhou et al. 2016], and computer vision [Müller et al.
2021]. Our work leverages the GWN to represent discontinuities.

3 HOW TO REPRESENT A DISCONTINUOUS FIELD
USING A CONTINUOUS NEURAL NETWORK

We aim to accurately represent 2D fields with lines of discontinuity.
The field value differs depending on the side from which the discon-
tinuity is approached. Let 𝑓 : Ω → R be a real-valued function over
Ω ⊂ R2 discontinuous across a curve Γ,

lim
x→𝒙+

0

𝑓 (x) ≠ lim
x→𝒙−

0
𝑓 (x) , 𝒙0 ∈ Γ , 𝒙 ∈ Ω , (1)

where 𝒙+0 and 𝒙−0 indicate approaching
𝒙0 from opposing sides Γ+ and Γ− , re-
spectively (see incident figure). With a
discontinuity, arbitrarily small changes to
the evaluation point may produce a finite
jump in the field value. We would like to
leverage available tools for training neural fields to learn such a
function. Unfortunately, typical neural field architectures are poorly
suited for this representation task.

Challenges. Neural fields are typically continuous and differen-
tiable because they are represented by neural networks, such as
fully connected feedforward networks, which use smooth activation
functions (e.g., sigmoid, or sine). Rahaman et al. [2019] study the
spectral bias of such networks, observing that smooth activation
functions naturally favor smoother outputs, and common architec-
tures have a natural tendency to learn low-frequency components of
a target function first. These properties pose a challenge to precisely
representing sharp changes or discontinuities.
Some techniques may ameliorate, but do not inherently resolve

this challenge. For instance, input encodingmethods, such as Fourier
feature mappings or sinusoidal positional embeddings [Tancik et al.
2020], and improved activation functions, such as SIREN [Sitzmann
et al. 2020], improve the ability to approximate high-frequency
details, but they do not inherently and explicitly model strict dis-
continuities.

Proposed architecture. We do not seek to improve what appears to
be a fundamental inability of neural fields to represent strict discon-
tinuities. We avoid this limitation and embrace the low-frequency
bias of neural fields. We will use feature augmentation to make

the learning task easier, simplifying our task to learning only a
continuous field.

Let 𝑓𝜃 : Ω × R → R : (𝑥,𝑦, 𝑧) ↦→ 𝑓𝜃 (𝑥,𝑦, 𝑧) be a neural field over
a volumetric domain Ω × R ⊂ R3 parameterized by neural network
weights 𝜃 . Our learning task will seek a smooth neural field 𝑓𝜃 ,
without discontinuities, by appropriately choosing and leveraging
the augmented feature 𝑧.
Let 𝑧 = 𝐻 (𝒙), where 𝒙 = (𝑥,𝑦). Here, 𝐻 : Ω → R is a function

that is discontinuous over Γ. We require that 𝐻 have an analytical
representation, that is,𝐻 need not be trained using a neural network.

Lifting. Our augmentation has a simple
geometric interpretation. As depicted in
the incident figure, our approach lifts the
domain into a graph of 𝐻 (𝒙) over Ω:

L(𝒙) = (𝒙, 𝐻 (𝒙)) = (𝑥,𝑦, 𝐻 (𝑥,𝑦)) , 𝒙 ∈ Ω . (2)

Since 𝐻 is discontinuous over Γ, the graph L has separated bound-
aries Γ+ and Γ− .

Central idea: Discontinuity by restriction. Our central idea is to
define the 2D field 𝑓 as the restriction of the volumetric neural field
𝑓𝜃 to the graph L:

𝑓 = 𝑓𝜃 ◦ L , or 𝑓 (𝒙) = 𝑓𝜃 (L(𝒙)) , 𝒙 ∈ Ω . (3)

Why it works. The benefit of lifting is that it decouples spatial
discontinuity from the trainable continuous function 𝑓𝜃 . Without lift-
ing, the jumps across Γ must be captured by the weight of the neural
field, which complicates training. However, our method alleviates
this problem. By lifting, two positions 𝒙−0 → Γ− and 𝒙+0 → Γ+,
which are close in Ω, are mapped to distinct coordinates in 3D, en-
abling 𝑓𝜃 to represent a smooth function, while the discontinuity
emerges from its restriction to the discontinuous graph.
As a result, optimizing network weights becomes easier, as no

sharp jumps need to be fit, as shown in the very right part in Figure 2.
Another advantage of this construction is that it simplifies editing
of the field 𝑓 , as the output can be directly controlled by modifying
the height function 𝐻 (x), as depicted in Figure 5.

Winding graph. While any function discontinuous over Γ may
serve as the height 𝐻 , we choose the generalized winding number
field [Jacobson et al. 2013], a harmonic function with jump boundary
condition across Γ amenable to fast evaluation [Barill et al. 2018]

𝐻 (x) =
∫ 1

0

Γ′ (𝑠) · (Γ(𝑠) − x)⊥
|Γ(𝑠) − x|2

𝑑𝑠 , (4)

where Γ : (0, 1) → Ω : 𝑠 ↦→ Γ(𝑠), and (·)⊥ rotates a vector by 𝜋/2.
We refer to the graph of 𝐻 (x) as the winding graph.

Progressive cutting. Compared to a permanent discontinuity, pro-
gressive cutting involves the notion that the curve of discontinuity
lengthens over time. We introduce the parameter 𝛼 ∈ [0, 1] to mark
the fraction of Γ that has been cut thus far. We use Γ𝛼 to denote the
portion of Γ corresponding to the first 𝛼-fraction of its length, and
we account for 𝛼 by modifying the integration bounds:

𝐻𝛼 (x) =
∫ 𝛼

0

Γ′ (𝑠) · (Γ(𝑠) − x)⊥
|Γ(𝑠) − x|2

𝑑𝑠 . (5)
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Similarly, since the cut progression generally affects the optimal
kinematic basis, we also condition the volumetric neural field on 𝛼 :

𝑓 𝛼
𝜃

: [0, 1] × Ω × R → R : (𝛼, 𝑥,𝑦, 𝑧) inference↦−−−−−−→ 𝑓 𝛼
𝜃
(𝑥,𝑦, 𝑧) . (6)

The lifting and restriction operators are unaffected, but for com-
pleteness we indicate their dependency on 𝛼 :

L𝛼 (𝒙) = (𝒙, 𝐻𝛼 (𝒙)) and 𝑓 𝛼 (𝒙) = 𝑓 𝛼
𝜃
(L𝛼 (𝒙)) . (7)

Outlook. Equations 5–7 summarize the construction of a function
𝑓 𝛼 : Ω → R discontinuous across part of the curve Γ depending
on the cutting extent 𝛼 . As we have seen, 𝑓 𝛼 is constructed by
restricting a learned volumetric neural field (𝑓𝜃 ) to the winding
graph 𝐻 (x) using the lifting operator L.
We are ready to construct ROMs that precisely resolve disconti-

nuities, applying the same constructions and notation to kinematics-
specific fields.

4 REDUCED ORDER MODELING
Kinematics. Consider a thin-walled elastic body parameterized

by the domain Ω ⊂ R2. The deformed position of the body in
three-space is given by the displacement field 𝒖 (𝒙) : Ω → R3.
Reduced order modeling (ROM) seeks to represent this displacement
field using a small number 𝑘 of coordinates, that is, via a reduced
configuration 𝒛 ∈ R𝑘 [An et al. 2008; Barbič and James 2005; Kim
and James 2009]. In particular, linear ROM, which we will consider
here, requires that 𝒖 be linear in 𝒛, that is, 𝒖 = 𝒛𝑇𝚽, where 𝚽𝑻 =

[𝝓1, . . . , 𝝓𝑘 ], and 𝝓𝑖 : Ω → R3 is a displacement basis.
In our setting, the displacement basis must represent a discon-

tinuity over Γ depending on the cutting extent 𝛼 . Therefore, 𝚽 is
dependent on 𝛼 . We will be reminded of this dependency with the
notation𝚽𝛼 , and omit the decorations where it is clear from context.

4.1 Precomputation: Training
Training overview. Recalling Equation 3, we construct a displace-

ment basis field 𝝓𝛼 discontinuous across Γ by training a volumetric
neural field �̃�𝛼

𝜃
continuous over Ω ×R. While �̃�𝛼

𝜃
and 𝝓𝛼 are vector-

valued, nothing changes in the lifting construction, which remains
simply 𝝓𝛼 = �̃�𝛼

𝜃
◦ L𝛼 .

Our main contribution (Section 3) is orthogonal to the choice of
training scheme. In fact, our neural discontinuity representation is
compatible with both data-driven and data-free approaches. Below,
we will develop how to incorporate the proposed winding-number-
lifting approach in either of the training setups. Regardless of the
approach taken, the goal is to train the weights 𝜃 .

Data-driven basis learning. In the data-driven setting, we begin
by collecting training snapshots, recording each displacement field
𝒖 𝑗 and cut progression 𝛼 𝑗 at time increment 𝑗 . The neural field �̃�

𝛼
𝜃

is then trained by minimizing the reconstruction loss over all the
simulation snapshots:

Ldata-driven =
∑︁
𝑗




𝒛𝑇𝑗 �̃�𝜃 ◦ L − 𝒖 𝑗



2
2
, (8)

where 𝒛 𝑗 ∈ R𝑘 is the reduced coordinate corresponding to the opti-
mal reconstruction at time increment 𝑗 . Note that ∥ 𝑓 ∥22 =

∫
Ω 𝑓 (𝒙)2 d𝒙

is the 𝐿2 norm on Ω, which is estimated via uniform stochastic cuba-
tures [An et al. 2008; Carlberg 2011]. For more details on the training
process, please refer to [Chang et al. 2023]. The key distinction in our
approach is the incorporation of cutting, achieved by restricting the
neural field to the lifting function. Furthermore, we ensure that both
Φ and L explicitly depend on 𝛼 𝑗 , the cut progression parameter.

Data-free basis learning. In addition to the previous data-driven
training setting, our neural field can also be trained in a data-free
fashion. Following Modi et al. [2024], we trained the neural network
by minimizing the elastic energy

Ldata-free = 𝐸elas =

∫
Ω
Ψ(𝒖 (𝒙)) d𝒙 (9)

, where Ψ is the elastic energy density, e.g., St. Venant-Kirchhoff
(StVK) material [Barbič and James 2005]. For more details on the
data-free training, please refer to the supplementary material and
[Modi et al. 2024]. We emphasize that the loss function only involves
an analytically defined elastic energy and does not involve any
training data (e.g., from full-order simulations).

4.2 Dynamic Subspace Simulation
Following Chang et al. [2023], the reduced configuration 𝒛 is updated
at each time step via the optimization

𝒛 𝑗+1 = argmin𝒛
1
2
∥𝒛 − 𝒛

pred
𝑗+1 ∥2 + ℎ2

∫
Ω
Ψ (𝒖 (𝛼, 𝒙, 𝒛)) 𝑑𝒙 , (10)

where ℎ is the time step size, and 𝒛
pred
𝑗+1 = 2𝒛 𝑗 − 𝒛 𝑗−1. Evaluating

the elastic energy Ψ involves computing the deformation gradient
F = 𝜕𝒖 (𝛼,𝒙,𝒛 )/𝜕𝒙. This gradient can be directly obtained from the
reduced-space coordinate 𝒛 and the spatial gradient of the neural
field, 𝜕𝝓𝛼

𝒙/𝜕𝒙, which is efficiently calculated via automatic differenti-
ation of the neural network. We evaluate the domain integral using
uniform stochastic cubature. Our examples optimize (10) using gra-
dient descent; we also implemented Newton’s method and observed
similar performance.

4.3 Implementation
Progressive cutting and cut placement editing. Our progressive

cutting simulations increase the cutting extent 𝛼 over time. Our
interactive design application modifies Γ during simulation. Chang-
ing either 𝛼 or Γ immediately affects the winding graph, which
is computed as-needed analytically; crucially, it does not require
retraining the volumetric neural field.
Our implementation represents Γ as a collection of polylines

(allowing for more than one cut). The evaluation of the generalized
winding number locates the appropriate bounds of integration by
walking along the polyline until the fractional length 𝛼 has been
walked (refer to supplemental material).

Strain singularity at crack tip. The elastic energy Ψ involves the
spatial gradient of displacements ∇𝒙𝒖, and in turn ∇𝒙𝐻 . While
the winding number itself is bounded, its gradient diverges ap-
proaching the endpoints of Γ. In mechanics this is known as the
crack tip strain singularity, a recognized challenge to force calcula-
tions [Mousavi et al. 2011]. Following typical treatments, we smooth
the 𝜖-neighborhood around the endpoints of Γ𝛼 by multiplying the
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generalized winding number by a cubic spline kernel function (refer
to supplemental material).

Joint training. Since 𝚽 is a 𝑘-dimensional basis, we must repeat
the lifting construction 𝑘 times. Conceptually, the simplest approach
is to train 𝑘 volumetric networks, however, this is not strictly neces-
sary, since a volumetric neural field is not limited to a 1-dimensional
(real-valued) output. In our implementation, we parameterize all
𝑘 displacement bases using the same neural network weights 𝜃 by
making �̃�𝛼

𝜃
a 𝑘-valued field, i.e., 𝝓𝛼

𝑖
= �̃�𝛼

𝜃,𝑖
◦ L𝛼 .

5 RESULTS
Table 1 summarizes the timing statistics for the examples in our
paper. Time per step increases with cut changes due to the need to
re-evaluate the neural network and update the basis for the new
cut shape. Without cut changes, our method matches traditional
reduced space simulations. Our method runs at 28.5 ∼ 42.4 fps with
cut changes and 62 ∼ 166 fps without. For reference, full-space
simulation takes around 1.1s per frame without cut changes during
simulation. This gives our method a 30× ∼ 183× speedup over full-
space simulations while enabling cut changes during simulation. All
results are reported using an NVIDIA RTX 4090 GPU and an AMD
7950X CPU. Unless otherwise noted, we use a 5-layer, 128-channel
SIREN MLP with positional encoding up to maximum frequency of
23. Winding numbers are scaled by a factor of 32 to ensure sufficient
separation of lifted and 2D coordinates.

Discretization-agnostic domain representation. Our method does
not assume a specific type of domain discretization, instead relying
only on the ability to sample the domain. All examples below use
stochastic cubature drawn from a uniform distribution over the
domain [Chang et al. 2023; Modi et al. 2024]. Figures 10 and 14 are
rendered with a mesh bound to the shape, while other figures are
visualized as point clouds with colors sampled from a texture.

5.1 Evaluation on Data-Free Settings
Comparison to prior work. To the best of our knowledge, our

method is the first data-free model reduction method to support
displacement field discontinuities, progressive cutting, or general-
ization of cut placement. As depicted by the butterfly in Figure 3
and the small ginkgo leaves in Figure 1, our method enables a ROM
with highly detailed cut structures. All of our data-free examples
use the 18-dimensional basis presented above.

Generalization. We explore generalization to external loads and
cut geometry unseen during training. Since data-free ROMS do not
explicitly consider external loads during training, any external force
may demonstrate generalization. We applied a sequence of exter-
nal forces at different stages of a progressive helical cut, inducing
varying deformations responsive to the changing geometry of the
evolving discontinuity (see Figure 9 and accompanying video). We
cut a helix from real paper and observed that its final sagged state
agrees with the simulated result (see Figure 6).
To evaluate generalization over cut geometry, we trained the

network weights 𝜃 on three “training” cuts, then froze the weights
and simulated three significantly different ’test’ cuts, observing
plausible results (see Figure 7 and accompanying video).

Reduced-space progressive cut

Side view Front view

[Modi et al. 2024]

Fig. 3. Our method is able to capture the complex cut of this butterfly shape,
this is not achievable by previous data-free method [Modi et al. 2024] that
uses traditional MLP due to the built-in continuity.

Interactive design. We prototyped an interactive cut editor (see
Figure 5). The designer draws and edits the cut geometry, applies
external forces, while observing the corresponding deformation
in real time. The cut position and shape may be edited without
restarting the simulation, with the deformation updating in real
time (refer to accompanying video). To the best of our knowledge,
real-time physical preview as a cut geometry is altered has not
been reported in the literature. Implementing interactive cut editing
with a pure neural field representation [Chang et al. 2023] is not
possible since the discontinuity is “baked in” to the network weights;
on the other hand, if a mesh-based discontinuity representation is
introduced [Belhe et al. 2023], interactive editing would necessitate
ongoing remeshing to align mesh edges with Γ, which has not been
demonstrated, and has the potential to be costly or to exhibit basis-
projection artifacts.

5.2 Evaluation on Data-Driven Settings
We also evaluate our method in data-driven settings. The training
data and ground-truth full-space simulations for all examples in
this section are generated using the data generation code publicly
released by Chang et al. [2023], which implements a FEM solver
for stable Neo-Hookean energy [Smith et al. 2018]. We train 𝑘 = 20
displacement modes for all examples in this section.

Interactive deformation editing. We trained a ROM on simulations
of tugging on square sheet with various etched angular cuts (see
Figures 10 and 4). By connecting many instances of this ROM end
to end, we obtain a reduced simulation of a “kirigami tower.”
We demonstrate generalizability with an interactive interface

that enables users to edit the cut geometry while the simulation is
active (see Figures 11 and 4). Starting from a straight cut, users can

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Lifting the Winding Number:
Precise Discontinuities in Neural Fields for Physics Simulation • 7

Number of Vertices (k) Training Time (s) Time per Step
With Cut (ms)

Time per Step
Without Cut (ms)

hand (Figure 2) 50 53 23.56 8.57
leaf (Figure 1) 50 78 25.40 9.96
butterfly (Figure 3) 90 73 34.86 14.89
helical (Figure 9) 100 161 35.32 14.77
generalization (Figure 7) 100 81 35.11 15.15
kirigami (Figure 10) 137 2760 30.95 16.01
slit (Figure 14) 20 1740 25.33 6.02

Table 1. We provide the number of vertices and timing details for all examples. Thanks to the compact neural representation, our approach significantly
reduces training time compared to many neural methods that require hours or even days. Our training time ranges from just under a minute to slightly less
than an hour. During inference, the time cost is higher when cut changes are involved, as these require both neural network inference and basis updates.

Cut shape 1

Cut Triangulation


Cut shape 2

Cut Triangulation

Fig. 4. The cut change can lead to a big difference in discretization using
the mesh-based method. We applied constrained Delaunay triangulation
with the same setting for these two cut shapes, and the resulting number of
vertices is significantly different.

drag and adjust the control points of the kirigami cuts. After editing,
the resulting zig-zag cut shape significantly differs from the initial
straight cut, which was not included in the training data (Figure 4).
This type of editing is particularly challenging for prior mesh-

based methods, including neural fields that rely on meshes [Belhe
et al. 2023]. As shown in Figure 4, we applied constrained Delaunay
triangulation [Shewchuk 2005] to two different cut shapes. The
resulting number of vertices and triangle arrangement for the two
cut patterns differs significantly, highlighting that remeshing is a
global operation and that alignment of edges and points to revised
cut lines would be a non-trivial (unexplored) alternative.

One-shot generalization. To evaluate quantitatively the general-
izability of our method, we compare it with previous approaches
that also use neural fields to construct the basis for reduced-space
simulation, including LiCROM [Chang et al. 2023] and Simplicits
[Modi et al. 2024]. As a third baseline, the DANN network proposed
by Belhe et al. [2023], which is designed to better capture discontinu-
ities, replaces the standard MLP in LiCROM, keeping the remainder
of LiCROM intact.
We first run full-space simulations on cuts at different positions

and train all methods using simulation snapshots from one cut
position. For Simplicits, which does not require simulation trajec-
tories and only samples the rest shape, we trained solely on the
undeformed shape samples found in the same training set.

As shown in the top row of Figure 14, when evaluated on the train-
ing set, the reconstruction errors for all data-driven methods are

below 0.14%. Our approach achieves the most accurate reconstruc-
tion of deformation details and exhibits the lowest reconstruction
error among them.
To further highlight our method’s advantage in modeling dis-

continuities, we compare the reconstruction error of our method
against LiCROM [Chang et al. 2023] across various network scales
and activation functions. As shown in Figure 13, our method reduces
the mean squared error by an order of magnitude under the same
settings. Furthermore, our method demonstrates faster convergence
compared to LiCROM.

Since Simplicits [Modi et al. 2024] does not require training data, it
is expected to have a larger reconstruction error. Simplicits does not
consider cuts or discontinuities in its vibration mode analysis, and it
also cannot leverage training data that exemplifies the displacements
induced by discontinuities. For these reasons, a Simplicits model
does not “know” that a cut exists. Since the neural field used in
Simplicits has built-in continuity, the reduced simulations keep the
two sides of the cut glued together. This result reflects the state of
the art in geometry-agnostic data-free model reduction until now.
By contrast, our approach is explicitly discontinuity-aware, and
therefore accurately captures cutting.
When tested on cut shapes not included in training data, our

method demonstrates greater generalizability. We have shown the
one-shot generalizability of our approach. As shown in the bot-
tom line of Figure 14, when tested on cut shapes with altered cut
positions, all previous methods exhibit limitations in reconstruct-
ing visually reasonable results. In contrast, our method is flexible
enough to adapt to new cut positions by simply updating the Γ to the
new cut positionwithout retraining the neural basis. This adaptation
is nontrivial for previous methods because their basis functions are
either fully coupled to the neural network weights [Chang et al.
2023] or require remeshing and retraining of the entire domain
to handle new cuts [Belhe et al. 2023]. We plot the reconstruction
error as a function of the normalized gap difference between the
test shapes and those used during training. As shown in Figure 12,
the error increases with the percentage difference between training
and test cuts. No significant visual artifacts are observed when the
difference is below 15%.
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6 DISCUSSIONS AND FUTURE WORK
In this work, we proposed a novel neural representation technique
for capturing precise displacement discontinuities in reduced-order
models, with a focus on cuts in thin-walled deformable structures.
Our method leverages a generalized winding number field to encode
discontinuities, offering significant improvements over traditional
mesh-based approaches and other neural field techniques.

Collision. One critical area for improvement is collision handling.
While our method successfully represents displacement discontinu-
ities, real-world applications often involve interacting objects where
(self-)collision detection and response are critical [Zesch et al. 2023].

Complex cuts. The cut representation in this paper is limited to
piecewise linear curves. Future work could explore extending this
approach to incorporate higher-order parametric representations,
such as Bézier curves [Spainhour et al. 2024].

Out-of-Distribution Challenges. Thanks to the discretization-agnostic
approach, our method demonstrates robust generalization capabil-
ities not seen before in subspace physics simulations. However,
generalization remains a challenging aspect, particularly for sig-
nificant, out-of-distribution scenarios. As shown in Figure 8, our
method’s performance decreases when tested on winding number
distributions significantly different from the training data. Future
research could explore adaptive training strategies or augmentation
techniques that ensure the winding number distribution covers a
broader range of scenarios [Grangier et al. 2023]. Another avenue
would be to exploit the volumetric nature of the neural field: it
would be interesting to explore whether the field may be trained on
multiple alternative cut positions, i.e., supervised by its restriction
onto more than one winding graph.
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A User-drawn cut shape B Interactive force C Interactive cut editing

Fig. 5. Our method enables interactive drawing and editing of cut shapes
with real-time previews. Users can drag polyline vertices to modify the cut
shape during an ongoing simulation, in real-time. This is highly challenging
for mesh-based methods due to the frequent need to constantly re-mesh
the entire domain and has not been demonstrated.

Real-world 

physical experiment

Simulation

Fig. 6. Real-world Physical Experiment.We performed a qualitative compari-
son with a real-world experiment. A helical shape was cut and photographed
as it sagged under gravity under the same boundary conditions. The simu-
lated deformation qualitatively matches the real-world data.

Training shapes

Testing shapes, not in training data

Fig. 7. We train our method with the three blue cut shapes (top), and test it
on three significantly different cut shapes not included in training (bottom).
We can still get reasonable deformation for the testing set.

Fig. 8. When we train our method on a clockwise helical cut and test with
a counter-clockwise helical cut, the final deformation is different from the
deformation tested on the training set. This is because the winding number
distribution is significantly different from the training set.

Poke Poke Poke Poke

Cut

Cut

Fig. 9. Our method generalizes to loadings (forces) unseen during training.
To demonstrate this, we applied a previously unseen force at various stages
of the progressive cut, resulting in deformations that reflect the evolving
geometry at each stage.

Fig. 10. We trained the basis on simulations of tugging on a single kirigami
sheet. By connecting many instances of this kirigami sheet end to end, we
obtain a reduced simulation of this “kirigami tower.”

Before Editing After Editing

Fig. 11. We can interactively edit the cut shape for the kirigami. The cut
lines of the kirigami change from a straight line to a ’z’ shaped curve.

0 5 10 15 20 25 30
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Fig. 12. We compute the percentage mean squared error on cut shapes that
deviate progressively from the training set by scaling the cut gap. As the
deviation increases, the reconstruction error also rises. When the differ-
ence is below 15%, no significant visual artifacts are observed. Beyond this
threshold, while the discontinuity remains accurately captured, deforma-
tions begin to appear near the cut edges.
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Fig. 13. We compared the percentage mean squared error (MSE) of our method with LiCROM [Chang et al. 2023] using different MLP scales and activation
functions. Our method achieves significantly lower error across all settings, as shown on the left. Additionally, it demonstrates faster convergence during
training, as shown on the right.

Train Test

Different cuts!

Train Test

Different cuts!

Ground truth (FEM) Ours
MSE = 0.02%

LiCROM [2023]
MSE = 0.13%

DANN [2023]
MSE = 0.14%

Simplicits [2024]
MSE = 3.07%

Ground truth (FEM) Ours
MSE = 0.20%

LiCROM [2023]
MSE = 2.32%

DANN [2023]
MSE = 2.10%

Simplicits [2024]
MSE = 2.74%

Shape in training set

Shape not in training set

Fig. 14. We have compared our percentage reconstruction error with other methods. Our method has the lowest reconstruction error for both shapes in and
not in the training set. Moreover, our method is the only one that can generate a visually reasonable result when tested on a cut that is different from the
training set.
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