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Figure 1: VOCAL is a vowel-consonant layered approach to expressive singing animation: Input audio and lyrics (a) are processed
to produce a phonetic alignment (b). We define Melodic accentMa and Pitch sensitivity Ps parameters, that can be configured to
capture a range of singing styles (c). We detect andmodify vowels that are sung differently to their transcription (d) and generate
vowel animation curves that carry the melody, layered with consonant curves for lyrical clarity and rhythmic emphasis (e).
Our output is an audio-driven, lower face animation (f).

ABSTRACT
Singing and speaking are two fundamental forms of human com-
munication. From a modeling perspective however, speaking can
be seen as a subset of singing. We present VOCAL, a system that
automatically generates expressive, animator-centric lower face an-
imation from singing audio input. Articulatory phonetics and voice
instruction ascribe additional roles to vowels (projecting melody
and volume) and consonants (lyrical clarity and rhythmic emphasis)
in song. Our approach directly uses these insights to define axes for
Melodic-accent and Pitch-sensitivity (Ma-Ps), which together pro-
vide an abstract space to visually represent various singing styles.
In our system. vowels are processed first. A lyrical vowel is often
sung tonally as one or more different vowels. We perform any such
vowel modifications using a neural network trained on input audio.
These vowels are then dilated from their spoken behaviour to bleed
into each other based onMelodic-accent (Ma), with Pitch-sensitivity
(Ps) modeling visual vibrato. Consonant animation curves are then
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layered in, with viseme intensity modeling rhythmic emphasis (in-
verse to Ma). Our evaluation is fourfold: we show the impact of
our design parameters; we compare our results to ground truth
and prior art; we present compelling results on a variety of voices
and singing styles; and we validate these results with professional
singers and animators.
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1 INTRODUCTION
The recent explosion of interest in digital avatars and 3D facial ani-
mation has redoubled the need for research on representations and
synthesis of all forms of expressive facial communication. Singing,
as much as speaking, is a primeval and essential form of human com-
munication. Singing characters appear in most animated films, from
early Disney content, to blockbuster films like Shrek, Frozen, and
Coco. Recent work on audio-driven 3D facial animation [Edwards
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et al. 2016, 2020] has shown the disruptive potential of transforming
vocal performances into visual performances. However, lip-sync
timing and mouth shapes, or visemes, designed for speech visu-
alization are usually ill-suited to singing, particularly when the
performance moves from spoken lyrics to dramatic singing styles.

An inherent reason for this failing is that all phonemes play
largely the same role in speech audio: phonemes all contribute to the
listener’s comprehension of the language spoken. Fundamentally, in
addition to any lyrical content, singing must communicate melody
and rhythm. Bio-acoustically, the sustained open-mouthed sound of
vowels are much better suited than consonants to carry the volume
and pitch variation of a melody [Bozeman 2017]. Sung vowels are
also often modified aggiustamento for tonal quality or sustained
resonance. The craft of voice instruction explicitly teaches the
principal importance of vowels in singing [Bozeman 2013].

The role of consonants in contrast is to preserve lyrical compre-
hension, and punctuate the melody, emphasizing beat and rhythm.
We note, of course that singing can span a stylistic spectrum from
spoken lyric sprechgesang and rap, to legato bel canto, vocalese, and
ultimately to the consonant-free drone of an Indian classical raga
(Figure 1). We represent this dominance of vowels in accentuating
melody, using a dynamically varying Ma (Melodic-accent) parame-
ter ∈ [0, 1] that captures the continuum from regular speech (Ma=0)
to a consonant-free transition of vowels into each other (Ma=1).

We also note that the communicative efficiency of speech lends
itself to viseme animation curves that are monotonically repre-
sented using an attack, sustain and decay behavior. Beyond melodic
pitch variations of sustained vowels, singing is often enriched with
musical ornaments, the best known of which are vibrato and trills,
which introduce small periodic variations of pitch around notes.
Such ornaments, although often appearing as minute, transient
facial motions, are important perceptually in co-relating the vocal
and visual performance. We capture this aspect of singing using a
Ps (Pitch-sensitivity) parameter ∈ [0, 1] that varies from the mono-
tonic rise and fall in intensity of vowels in regular speech, to the
quivering vowel mouth animation of a strong and deep vibrato.
Together with the established Jaw and Lip speech style parameters
[Edwards et al. 2016], we thus induce a Ma-Ps-Ja-Li 4D space that
encompasses a wide range of stylistic spoken and sung behaviors.

After a review of related work on audio-driven speech and com-
putational singing (Section 2), we describe ourMa-Ps singing model
to define an overall Ma-Ps-Ja-Li 4D representation of visual song.
The viseme animation curves are then computed based on aligned
lyrics and the 4D vocal space (Section 3). Vowels are processed first,
modified as necessary from the lyric to the sung vowel using a
neural model acting on input audio. The sung vowels are dilated in
time to bleed into each other based on Ma, with periodic intensity
variation based on Ps. Consonant curves are then layered in, with
intensity weighted inversely to Ma (Section 4). We evaluate the
impact of our algorithmic parameters, compare against prior art
and ground truth on sung performance, and provide professional
singer/animator critique for a gallery of VOCAL generated singing
animations (accompanying Video and Section 5).

Our principal contribution is what we believe to be the first
computational method to the visual representation of a wide range
of singing styles in an animator-centric fashion. While we show
compelling results of our approach on an animated lower face, we

observe that paralingual expressive behavior of the upper face, head
and neck, is more important for singing than it is for speech, in
terms of its correlation to beat/rhythm and emotion in the song. We
conclude with a discussion of exciting directions for future work
in animating a singing face (Section 6).

2 RELATEDWORK
Visual singing pertains to lip-sync animation, broadly divided into
3 categories: performance-capture, data-driven, and procedural.

Performance-capture. Performance-capture methods map cap-
tured facial motion data of human actors to a digital facial model
[Williams 1990], yielding natural and high-quality visual speech.
Though earlier works employing this approach often required the
use of physical markers [Blanz et al. 2003; Guenter et al. 1998], with
advances in camera technology, motion-capture equipment, and
3D reconstruction algorithms, performance-capture approaches
have become much more accessible. Through the use of stereo and
depth cameras, high-fidelity motion capture can be done without
markers [Bradley et al. 2010; Weise et al. 2009]. Using deep learning
to learn a shape-prior also gave rise to approaches that made use
of mono-cameras [Hu 2017; Olszewski et al. 2016]. Due to demand
for high-quality performance in the entertainment industry, this
approach has been applied widely. Products such as Faceware are
often used in film production, and interactive character animation
systems such as the Adobe Character Animator and Vroid Studio
enable anyone to create a speaking avatar in real-time. However,
the disadvantage of this approach is that the quality of performance
depends on the ability of the actor, and the rigidity of captured mo-
tion data often removes creative control from an animator who
may wish to edit or tune the animation.

Data Driven. Data-driven methods make use of large motion
datasets to generate animation based on input speech audio. Prior
to deep learning, most data-driven methods produced animation by
performing a search within a corpus of visual speech clips, often
minimizing a cost function that traded off similarity between can-
didate clips and phonemic context and smoothness [Bregler et al.
1997; Cao et al. 2005; Cosatto and Graf 2000]. Active Appearance
models (AAM) [Anderson et al. 2013] and Hidden Markov Models
(HMM) [Wang et al. 2012] can be employed to model speech dy-
namics and improve effectiveness of search.
The advance of deep learning propelled the development of high-
quality generative models. By viewing visual speech generation as
a sequence-to-sequence mapping problem, neural networks have
been used to generate visual speech in both 2D [Suwajanakorn et al.
2017; Thies et al. 2020; Vougioukas et al. 2018; Zakharov et al. 2019;
Zhou et al. 2019, 2020] and 3D [Cudeiro et al. 2019; Fan et al. 2022;
Karras et al. 2017; Liu et al. 2015; Richard et al. 2021; Taylor et al.
2017] media. While these data-driven methods can produce plau-
sible human speech animation, a fundamental difference between
them and systems like ours (or JALI [2016]), is that we produce
compact, animator-centric, animation curves, with meaningful pa-
rameters to edit animations in space, time and style (see Video
3:16).

Procedural. Procedural systems segment speech audio into a se-
ries of phonemes, then use look-up-tables, rules, models, or simula-
tion to determine visemes (mouth configurations) for each phoneme,
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which are then keyframed and interpolated into animation[Fisher
1968]. However, visemes alone do not produce realistic visual speech,
as sequences of visemes are often co-articulated by human speakers.
Various procedural methods can be classified by how they model co-
articulation. Dominance models determine viseme activation based
on dominance functions of adjacent phonemes [Cosi et al. 2002;
King and Parent 2005; Massaro et al. 2001]. Bigram and trigram
models use hand-crafted transitions to model short sequences of
visemes together at run-time [Neumann et al. 2006; Xu et al. 2013].
Rule-based systems use explicit, often extensible co-articulation
rules to determine how adjacent viseme are activated together [Be-
vacqua and Pelachaud 2004; Edwards et al. 2016; Wang et al. 2007].
Although procedural systems had lost favor due to advances in deep
learning algorithms, they are lightweight, explainable, extendable,
configurable using deep learning [Zhou et al. 2018], and gener-
ate compact motion curves that animators can easily refine. We
thus develop a procedural representation for visual singing as a
physiological manifestation of the acoustic signal.

Visual Singing. Comparing to visual speech synthesis, there is a
much smaller corpus of work on the topic of visual singing. King
and Parent applied their procedural speech model to generate visual
singing [King and Parent 2004], but they found that the viseme
model that worked well for speech vowels fell short when animat-
ing the much longer and more expressive singing vowels. More
recently, [Kim and Park 2020] uses a two blendshape system (mouth
open/closed), and uses the total spectrum energy of the audio to con-
trol the mouth opening/closing to generate low fidelity animation,
and [Iwase et al. 2020; Yu et al. 2019] use deep learning to gener-
ate animation. Of relevance to singing is also simulation research
on the modeling of breath [Zordan et al. 2004] and audio-driven
simulation of laughter [DiLorenzo et al. 2008].

Our work instead, is based on visual singing insights from artic-
ulatory phonetics [Gick et al. 2012], singing pedagogy [Bozeman
2013], and physiological research on the relation between mouth
configuration and acoustic qualities [Austin 2007; Lindblom and
Sundberg 1971; Sundberg 1970; Titze 2011]. These insights form
the basis of an animator-friendly visual singing system VOCAL,
that significantly outperforms prior art on visual speech [Edwards
et al. 2016; Fan et al. 2022], and singing [Iwase et al. 2020] (we only
compare against animator-centric or singing-focused systems).

3 MAPS MODEL DESIGN
Based on empirical observation, literature review, and insights from
singing coaches, we conclude that the credible visual depiction of
singing requires considering both the physiology of phonation, and
style of performance. Physiologically, our framework introduces
vowel modification and larynx movements to reflect timbre and
pitch changes. Stylistically, we build on the Jaw and Lip JaLi param-
eterization proposed for speech [Edwards et al. 2016]. We propose
an additional MaPs field: two independent axes that embed various
singing styles, and provide animators with stylistically meaningful
control. Lastly, we propose a layering of Ma modulated consonants
over the vowel dominant animation curves.

Note that while traditional visemes have a fixed spatio-temporal
mouth shape [Taylor et al. 2012], JALI [2016] visemes have a Jaw
and Lip parameterized, and contextually varying mouth shape. We

further decouple and layer the spatio-temporal contribution of
vowels and consonants withMa and Ps parameters, to better handle
the complex co-articulations and vibrato of singing.

3.1 Physiological Considerations
The acoustic quality of a voice is affected by the configuration of
the larynx and upper vocal tract. The larynx affects the vibration
frequency of the vocal folds, perceived as pitch; the jaw, tongue,
pharynx (throat), and lips affects sound resonance, perceived as
timbre [Bozeman 2013]. Animated realism declines if these visi-
ble physiological structures remain static during changes in voice
acoustics. We thus introduce larynx movement and vowel modifi-
cation to reflect pitch and timbre change, respectively.

Larynx Movement. The larynx is an internal structure on most
rigs, visible only as a protrusion that moves up and down (superior-
anterior) on the neck. Raising the larynx decreases the length of
the upper vocal tract, increasing the frequency of formants and
perceived vocal brightness [Bozeman 2013]. In practice, singers
often use the larynx to sing at a higher melodic pitch. We thus
raise the larynx when vowels are phonated, with the amplitude of
movement determined by pitch.

Vowel Modification. When phonating vowels, singers often ad-
just the timbre of vowels for melody, resonance or artistic effect,
known as "aggiustamento" or vowel modification [Bozeman 2013].
For example, Whitney Houston sings an iconic “I” from the chorus
of “I will always love you” as a triphthong: she starts singing the
“I” with /ai/, transitions to /i/ then back to /a/ (see accompanying
Video). Since resonance is largely determined by mouth shape, if
the vowel modification were not reflected by the lip-sync, the ani-
mation would lose realism. We build our vowel modification based
on the five pure Italian vowels (A, E, I, O, and U) commonly used in
vocal exercises. Each vowel has a distinct timbre and can only be
produced by certain jaw and lip configurations. In our framework,
we propose using a neural network to identify these vowels from
the audio signal and modify the lyrical vowel with the one(s) sung.

Figure 2: Table mapping phonemes (CMU notation) to visemes used
in VoCAL.

3.2 MaPs Field
Traditional frameworks for procedural lip-sync animation are based
on mapping phonemes to visemes. For example, the phoneme /æ/
would be mapped to the viseme /Eh/, which looks like opened jaw
with stretched lips (see Figure 2 for a full list of mappings). With a
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suite of hand-crafted blendshapes that resembles the visemes, ani-
mations can be created by key-framing and interpolating between
the blendshapes over time.

However, the traditional methods cannot account for the various
styles of phonation present in singing, where sung vowels and
consonants play different roles: consonants emphasize rhythm,
and vowels carry the melody. In our study, we discovered that a
considerable proportion of singing-style variation can be mapped
to a spectrum of different contribution of vowels and consonants.
For example, rap songs that are rhythm-heavy would have clearly
articulated consonants and speech-like vowels, while operatic bel-
canto and Indian classical singers barely articulate consonants,
focusing on melodic vowel transitions. We model the spectrum of
singing styles using Melodic accent (Ma), and Pitch sensitivity(Ps).
A rough Ma-Ps illustration of singing styles is shown in Figure 1(c).

Melodic-Accent. denotes the importance of melody relative to the
phonetic parity of spoken lyrics, and the continuum between sepa-
rately sung notes (staccato) and notes tied together (legato). Since
vowels predominantly convey melody in song, increasing melodic
accent shifts the visual performance from speech-like to one with
diminished consonants and greater co-articulation between adja-
cent vowel visemes, where the mouth remains somewhat open in
continuous phonation.

Pitch Sensitivity. Sung vowels can be phonated as either syllabic
or melismatic. In syllabic singing (also known as speech singing),
each vowel carries only one note, while in melismatic singing, rapid
or considerable pitch changes can occur during the phonation of the
same vowel. Though pitch change is largely an internal process, it
may manifest externally in different ways. Amateur and pop singers
habitually open their jaws wider to reach higher notes, and tremble
their jaws to sing a vibrato [Bozeman 2013]. On the other hand,
trained opera singers can perform pitch change and vibrato with
minimal mouth movement. Our model parameterizes this using the
notion of pitch sensitivity.

3.3 Vowel and Consonant Animation Layering
(VOCAL)

In speech, the ratio of vowel-to-consonant duration is roughly 5:1.
For singing, this ratio can rise to 200:1 [Nix 2015]. This can be attrib-
uted to the biomechanics of consonant phonation. While vowels are
produced by vocal cord vibration actuated by constant airflow, con-
sonants are produced by narrowing parts of the upper vocal tract
and disrupting the airflow [Bozeman 2013]. To establish a more
stable melody, singers may sacrifice the intelligibility of consonants.
This layering of consonants over vowels in song closely parallels
the instruction methodology of many vocal coaches [Tamplin 2016].

Rather than treating vowels and consonants as being in the same
class of visemes, we consider vowel visemes as having both jaw
and lip contributions, while most consonants only contribute to lip
motion, with the exception of sibilants and labial dental consonants.
In this formulation, since consonants occur at the boundary of
vowels, the corresponding jaw movement is completely determined
by the co-articulation of vowels. As a result, the Ma parameter also
determines the apparent degree of consonant contribution. With a
low value of Ma, consonants at a boundary would have a higher
contribution, as they temporally overlap with narrowing the jaw

between vowel visemes. Conversely, a high value for Ma would
reduce the perceived contribution of the consonant.

3.4 Control Rig
For our prototype, we use the commercially available JALI Vil-
lage facial rig from JALI Research [Edwards et al. 2016]. The rig is
equipped with a suite of JALI visemes shown in Figure 2, as well
as a set of action units (AU) from the Facial Action Coding System
(FACS) [Ekman and Rosenberg 1997], each with a blend weight
𝛼 ∈ [0, 1]. The JALI visemes are parameterized with Ja and Li pa-
rameters, which we use to control viseme enunciation. For vowel
modification, we additionally use the Action Units for lip-rounding
and lip-stretching.

In VOCAL, Ja-Li parameters manipulate the spatial appearance
of visemes (tongue-jaw configurations and lip shape) and Ma-Ps
modulate the temporal behavior of the visemes (the extent and
shape of the viseme animation curves). While Ja-Li parameters
typically suffice for speech, Ma-Ps are essential to represent the
different roles of vowels and consonants and temporal dynam-
ics in singing. The Ja-Li-Ma-Ps parameters can be independently
controlled by an animator to edit singing style, with Ma=0,Ps=0
producing JALI speech animation.

4 VOCAL ALGORITHM
Our system creates lip-sync animation from audio in a two-phase
process: tagging, and animation curve generation. In phase one, we
perform forced alignment to temporally align phonemes to audio,
and then tag the audio to identify intervals of constant pitch and
vibrato to be used in subsequent phases. In phase two, we use
the phoneme timing to generate four sets of viseme curves with
different singing styles, as well as the animation curves for vowel
modification and larynx movements. The animation curves are then
blended into a final output using the MaPs Field, and visualized
using Autodesk Maya.

4.1 Audio Tagging
Our tagging system requires a roughly acapella audio as input,
which can be obtained by using a free vocal isolation tool such as
vocalremover.org.

Phoneme Alignment. The first step of tagging is to generate tim-
ings for all phonemes present in the song, which we automate
using forced alignment. This process employs a trained language
model that maps input audio and a phonetic transcript, to phoneme
timings [Schulze-Forster et al. 2021]. Phonetic transcripts can be
automatically generated from song lyrics, using a pronunciation
dictionary. We use the CMU LOGIOS Lexicon Tool [Boersma and
Weenink 2001].

We also detect other acoustic events apart from phonemes, in-
cluding intervals of vibrato and constant pitch. To detect these
events, we make use of pitch estimation 𝑓0 (𝑡), which we obtain
using Praat [Boersma and Weenink 2001]. To prevent the high
frequency consonants from skewing the pitch estimate, we only
perform this computation during the phonation of vowels.

Vibrato. With proper technique, the periodic pitch variations
of a vibrato need not be visibly manifest on the face. However, in
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accordance with the principle of exaggeration for animation, we
found it necessary to include some physical movement in the jaw
and neck to avoid the character looking static when holding a long
vibrato. To detect vibrato, we find intervals with periodic oscillation
in the pitch signal 𝑓0 (𝑡). We use finite differences to compute 𝑓 ′0 (𝑡),
from which we obtain a list of zero-crossing points representing
peaks in 𝑓0 (𝑡). We then iterate over the zero-crossing points to
determine intervals at which the points are a similar distance apart.
To filter out noise we uses the following constraints.

(1) The vibrato interval must have more than one period.
(2) The standard deviation must be less than 1 semi-tone.
(3) The vibrato period ∈ [1/5, 1/8] seconds [Pecoraro et al. 2013].

Constant pitch intervals. To model melismatic singing, for each
vowel phoneme, we also consider the pitch signal 𝑓0 (𝑡), where
𝑡 ∈ [𝑡0, 𝑡𝑁 ]. Since raw pitch is too noisy to be used directly, we fit a
series of linear segments to approximate the pitch signal. We view
the relatively flat segments as notes, and steeper segments as note
transitions. We perform piecewise-linear fitting for an interval of
𝑓0 (𝑡) with 𝑁 points, using a dynamic programming approach to
jointly minimize the number of linear segments and overall fitting
error [McCrae and Singh 2009]. We populate a matrix𝑀 ∈ ℜ𝑁×𝑁

(𝑁 =# pitch samples at 100fps in a vowel), as follows:
𝑀 (𝑎, 𝑏) = min

𝑎<𝑥<𝑏
{𝑀 (𝑎, 𝑘) + 𝑀 (𝑘,𝑏), 𝐸fit (𝑎, 𝑏) + 𝐸cost }. (1)

Here𝑀 (𝑎, 𝑏) denotes the minimal cost of connecting 𝑎 to 𝑏 using a
series of linear segments. Since 𝑎 < 𝑏,𝑀 is strictly upper triangular.
𝐸cost is a constant penalty of adding additional line segments, which
we empirically set as 𝐸cost =

(𝑓𝑚𝑖𝑛+𝑓𝑚𝑎𝑥 )
2 , where 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 are

minimum and maximum pitch within the interval. 𝐸fit (·, ·) denotes
the fitting error, which can be computed as follows:

𝐸fit (𝑎, 𝑏) =

𝑏∑︁
𝑡=𝑎

|𝑓0 (𝑡) − (𝑠𝑙𝑜𝑝𝑒𝑡 × 𝑡 + 𝑦𝑖𝑛𝑡𝑡 ) |, (2)

where 𝑠𝑙𝑜𝑝𝑒𝑡 and 𝑦𝑖𝑛𝑡𝑡 are slope and 𝑦-intercept of the 𝑡 th interval,
respectively. A bottom-up computation, yields a series of connected
linear segments approximating the pitch signal, denoted as 𝑓lin (𝑡).
The segments in 𝑓lin (𝑡) with a slope less than a threshold (empiri-
cally set as 50Hz) are considered as constant notes.

4.2 Animation Curve Generation
After obtaining the transcript with phonetic and acoustic features,
the next step is to generate curves to drive the visemes and other
FACS action units. The viseme curves and larynx motion curves are
generated first, as the timing for vibrato and vowel modification
are contingent on the timing of the viseme activation.

Viseme curves. We use sparse keyframes to sequentially activate
visemes based on phonemic timing, acoustic information, and co-
articulation rules [Edwards et al. 2016]. The profile of each viseme
is specified by two types of keyframes: boundary keys and internal
keys. The boundary keys demarcate lip movement before and after
the phonation of the viseme, and internal keys control the lip move-
ment during phonation (Figure 3). Ma and Ps values further control
boundary and internal keyframes, as shown in Figure 3. Our viseme
animation curves are a bilinear interpolation of four viseme curves
generated with extreme values {0, 1} for Ma and Ps. Note that no
melodic accent and no pitch sensitivity (Ma=Ps=0), produces JALI

lip-sync speech animation. We thus refer to the Ma-Ps extremes as
speech and singing curves, respectively.

Figure 3: Viseme animation curves combine four curves based Ma-
Ps values.

Generating a speech curve. We generate a speech curve in three
passes. The first generates a four-key viseme curve for each phoneme,
the second enforces vowel-consonant co-articulation rules, and the
final pass corrects conflicting keyframes.

Pass 1 For each phoneme in the transcript, the viseme is selected as
per the look-up table in Figure 2. The boundary frames for
each viseme are timed 120ms before and after the phonation
interval to reflect general speech physiology [Bailly 1997][Ito
et al. 2004], and the internal frames are selected to reflect how
the viseme would apex at the beginning at phonation and
sustain until 75% of the sound is completed. The amplitude
for the frame at the apex is chosen depends on the length
and visemes types.
(1) Jaw and Lip closer consonants (B, P, M, F, V, S, SH) are fully

articulated (𝛼 = 1).
(2) Other consonants and short vowels (duration < 200ms) are artic-

ulated less prominently (𝛼 = 0.6).
(3) Longer vowels (duration > 200ms) are more articulated (𝛼 = 0.8).

Pass 2 Activating visemes in sequence is robotic and unrealistic.
Indeed, it is important to consider co-articulation between
neighboring phonemes. We use JALI’s vowel-consonant co-
articulation rules [Edwards et al. 2016].

Pass 3 Co-articulated, repeating vowels can minimally overlap at
phonation boundaries, resulting in keyframes that are unde-
sirably interpolated (Figure 4(left)). We resolve the conflict
by combining (co-articulating) the two visemes as shown
in Figure 4(right), replacing the overlapping keyframes by
a single keyframe, inserted 120ms ahead of second viseme
onset if possible, and mid-way between the two visemes
otherwise. The amplitude of the new keyframe is chosen
to reflect both the decay of the first viseme and the onset
of the second viseme, controlled by a user-defined vowel
co-articulation (𝑉𝐶) parameter (default 𝑉𝐶 = 0.5 for speech
curves).

Generating a singing curve. The first of three passes, generates
viseme curves with additional internal keys defined for different
notes. The second pass first enforces consonant co-articulation,
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Figure 4: Co-articulated, repeating visemes can overlap (left). The
conflicting keyframes are resolved by combining the viseme curves
(right).

and subsequently modifies vowel boundary keys to reflect vowel-
vowel co-articulation. The final pass resolves conflicting keyframes.

Pass 1 For singing, consonant and vowel motion curves are gen-
erated separately. For each consonant, the four-key speech
curve is re-used. For vowels, we utilize the notes detected
from audio tagging (Section 4.1). If a vowel is syllabic (con-
taining only one note), the viseme would apex when the
note is reached, and decay as a speech vowel. For a melis-
matic vowel (containing multiple notes), we found that the
viseme would often apex multiple times during phonation,
with the apex coinciding with the start of each note and
mildly decaying as the note finishes. To reflect these, we set
internal keyframes at the start and end of each note, where
the amplitude of the starting key depends on the pitch of the
note: 𝛼𝑠 = 0.4× (𝑓0 (𝑡start) − 𝑓0,𝑚𝑖𝑛)/(𝑓0,𝑚𝑎𝑥 − 𝑓0,𝑚𝑖𝑛) + 0.6
and the amplitude of the end keyframe decays from the start-
ing frame 𝛼𝑒 = 0.95𝛼𝑠 . Last, to emphasize the transition
between each note, we set an internal keyframe between
each note at time 𝑡 = 0.5 ∗ (𝑡prevend + 𝑡nextstart), with amplitude
𝛼 = 0.9 ∗min(𝛼prevend , 𝛼

next
start). Vibrato is animated over the de-

tected interval (Section 4.1) by setting keys to oscillate the
given Ja setting at 7Hz, with increasing amplitude upto ±0.6,
as per an average vibrato [Pecoraro et al. 2013]

Pass 2 Similar to the speech curve, pass 2 enforces co-articulation.
First, we use the JALI rules to ensure proper vowel-consonant
co-articulation. Then, to model a strong melodic accent for
vowels, we make closely spaced vowel visemes (phonation
intervals < 300ms apart) blend into each other by extending
the boundary keys of both visemes. Note that any conso-
nants between such vowel visemes, would have little visual
contribution.

Pass 3 Vowel-vowel and vowel-consonant co-articulation can intro-
duce conflicting keyframes in the viseme and larynx motion
curves. These are resolved as shown in the previous section,
with 𝑉𝐶 = 0.95 to reflect greater melodic accent.
Given the speech curve (𝑀𝑎 = 0, 𝑃𝑠 = 0) and singing curve
(𝑀𝑎 = 1, 𝑃𝑠 = 1), extreme curves (𝑀𝑎 = 1, 𝑃𝑠 = 0) and
(𝑀𝑎 = 0, 𝑃𝑠 = 1) are generated by a mix-and-match of inter-
nal and boundary keyframes.

Computing Ma-Ps values from audio. While Ma-Ps values can be
user-controlled for song-style, or learnt from a corpus of captured
songs, we propose a psycho-acoustic heuristic to computeMa and Ps
from input audio. Strongly articulated fricative (S/Z/F/V/S/Sh/D/T)
or plosive (P/B/D/T/G/K) consonants, produce turbulent airflow
with localized high frequency (HF=8-20kHz) energy [Edwards et al.
2016]. We use the consonant’s spectral HF energy 𝜖 , relative to the
HF energy of consonants for the entire song, to determine Ma.
Ma= 0.2 if 𝜖 ≤mean-stdev;Ma= 0.8 if 𝜖 ≥mean+stdev; elseMa= 0.5.

Pitch variation is common, during sustained vowels, where static
lips seem unnatural. We use the duration of a vowel 𝜈 , relative to
the avg. length of a spoken vowel (𝜏 = 0.2s [Kuwabara 1996]) to
determine Ps. We set Ps= 0.1 for 𝜈 ≤ 𝜏 , else Ps= min(1, 0.1 + 𝜈 − 𝜏).

While singing style can vary as frequently as every phoneme,
simple neighboring averaging can produce a smootherMa-Ps signal.

4.3 Vowel Modification
We detect timbre changes with a neural network to make viseme
modifications for differently transcribed and sung vowels.

Vowel Modification Detection Network. The neural network maps
an input audio feature vector, to a probability distribution for each
of the five Italian vowels (and silence) at each timestamp. Our
architecture, inspired by Visemenet [2018], consists of three LSTM
layers, a ReLu activation layer, a single fully connected layer, and
uses a softmax function to produce prediction probabilities.

Audio feature vector. Our feature vector is constructed in the
same way as Visemenet, comprising 13 Mel Frequency Cepstral
Coefficients (MFCCs), 26 raw Mel Filter Bank (MFB), and 26 Spec-
tral Subband Centroid features, extracted every 10ms, with window
size 25ms. We increase the network’s receptive field by concatenat-
captured iog sme with 12 prabsequent frames.

Figure 5: Vowel modification predicts vowel probabilities from
input audio.

Training Data: Our network is trained on the VocalSet corpus
[2018], comprising 10.1 hours of singing performed by 20 profes-
sional singers in a variety of styles for each of the five Italian vowels.
Each audio file is labeled by the vowel and singing style used for
that clip. For training, the audio tracks are split into 4-second clips,
with each timestamp labeled by either the corresponding vowel of
that clip or silence. The clips of 4 singers are reserved as the test
set.
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Network Training: The network is trained to minimize cross-
entropy loss at each timestamp with the Adam optimizer [2017],
with an initial learning rate of 0.0001 and a batch size of 512. Since
the training data does not include transitions between vowels, we
augmented training data by concatenated multiple clips. The model
is trained on a Titan RTX 24GB GPU Card for five hours before
being terminated by the early stop mechanism. Our model achieves
a test accuracy of 70%. The error arises from confusion between
lip-spreaders “E”, “I” and between lip-rounders “O”, “U”. For this
reason, we merge easily confused vowel predictions as shown in
Figure 5, to achieve a test accuracy of 91%.

Vowel Modification Curve Generation. For each vowel, the neural
network is used to detect the likely sung vowel(s) from the audio.
We avoid excessive modification by only modifying vowels with a
prediction probability > 60% threshold. lipSpread and lipRound AUs
are modulated (+/-) to modify these vowels as follows:

NN Predicted vowel
Transcript vowel A E or I O or U

A Nothing +lipSpread +lipRound

E or I -lipSpread Nothing -lipSpread
+lipRound

O or U -lipRound -lipRound
+lipSpread Nothing

We generate four-key motion curves (like JALI visemes), to mod-
ulate the desired (+/-) expression change. The apex amplitude is
based on the prediction probability and the maximum amplitude of
the AU (𝛼 = 𝑃 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)·𝛼𝑚𝑎𝑥 ). Lastly, the AU motion curves
are co-articulated, and start and/or end just before the transcribed
vowel.

5 EVALUATION
The results of our four-fold evaluation of VOCAL are best viewed
in the accompanying Video. Note that VOCAL automatically gen-
erates lower face animation. Any head and upper face motion was
keyframed or performance capture mimed using Faceware [2017].

(1) We show the impact of different design aspects of VOCAL on the
output animation on an example song (Video 0:55-4:03).

(2) We compare VOCAL qualitatively, to prior art in visual singing and
speech (Video 4:43-5:51; 13:41-16:43).

(3) We provide a quantitative comparison of both JALI and VOCAL to
a performance captured ground truth (Video 5:59-6:43; 10:41-13:41).

(4) We present a variety of singing style clips, automatically generated
with VOCAL (Video 7:21-9:20), along with professional critique.

5.1 Prior Art Comparison
We used the audio, from the Song2Face [2020] results on "Hey
Jude", to generate singing animation using VOCAL, and two speech
solutions, Faceformer [2022] and JALI [2016]. Figure 6 summa-
rizes our comparison (Video 4:43-5:51). Song2face is consistently
unable to produce plausible animation, a common weakness of
deep-learning approaches that lack understanding of acoustics and
human anatomy. Speech models Faceformer and JALI enunciate

consonants well, but fail on vowels. Shorter vowels tend to over-
articulate, robotically opening/closing the jaw completely for each
vowel. Sustained vowels seem inexpressively monotonic, failing to
show pitch change and vibrato. VOCAL’s weakness in this clip is
the inability to animate utterances, like heavy breathing, not tagged
in the transcript.

Figure 6: Failure cases for song2face, FaceFormer, JALI and our
system.

5.2 Ground Truth Comparison
Physiologically, the mapping between sound production and facial
appearance is not unique, especially when singing vowels (it is easy
to sustain an “Ee” vowel while changing expression). Quantitative
error of an animated face relative to a ground truth vocal perfor-
mance alone, can thus be misleading. We do however, show that
VOCAL has a lower cumulative error in both vertex position and
velocity than JALI, in a quantitative comparison to ground truth
Faceware captured vocal performances (see clip in Video 5:59-6:43
and 10:41-13:41).

5.3 Results and Animation Critique
We present the automated results of VOCAL on a range of singing
clips (Video 7:21-9:20). We solicited feedback on these 6 clips from
4 professionals (2 voice instructors, 2 animators). We specifically
asked them to focus on the lower face. The overall feedback on the
visual performances were overwhelmingly positive with highlights
being: "...the vibrato is very effective to my eyes" (ella); "...vowel
adjustments on ’I’ look good" (whitney); "...tonal variation during
d’ee’p is very convincing" (adele); "...consonants are well done and
not over-articulated" (james). On the critical front: "...cheeks are too
relaxed especially during the ’A-I-A’" (whitney); "...’could’ lips move
improbably fast. ’O’ of rolling seems natural but underemphasized"
(adele); "...general feel of being slightly out of sync, unlike the other
examples" (james);"...’no river’ seems to lack effort" (rush).

We also ran a 31 lay-person, forced choice preference study
between JALI and VOCAL animated output (presented randomly),
for 10 clips (Video 13:41-16:43). Viewers strongly preferred VOCAL
(> 70% votes) for 6/10 clips (Figure 8). The remaining 4 clips were
speech-like (low Ma-Ps values), visually very similar, and received
a mixed preference (3/4 in favour of VOCAL).
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Like JALI, VOCAL generates a sparse set of keyframes, and
user friendly parameters, designed for animators to expressively
manipulate (Video 9:25-10:40).

Figure 7: Faceware captured ground truth compared to JALI a nd
VOCAL.

Figure 8: Recorded user preference of 10 clips (Video 13:41-16:43)

6 LIMITATIONS, FUTUREWORK AND
CONCLUSION

Phonetic alignment between transcript and audio, is significantly
more challenging for singing than for speech, and even our singing-
trained aligner [Schulze-Forster et al. 2021], can show errors over
long or musically distorted clips (Video 17:01-19:51). While align-
ment in VOCAL can be manually fixed if needed, it highlights the
need for better phonetic alignment models for singing.

Vowel modifications in VOCAL are determined by a threshold
value on predicted vowel probability (empirically set to 0.6), which
in some cases could produce incorrect vowel predictions (Video
19:51-20:50).

Our biggest limitation relates to the visual expression of effort
and breath in singing (Figure 6). Conspicuously missing for example
on (james) are sinews and skin tension that evidence muscle effort.

Singing clearly involves more than the motion of the lower face.
A complete singing face is rich in emotional and rhythmic paralin-
gual motion of the upper face (eye and brows), head, and neck.
While we have demonstrated an audio-driven model for animating
the lower face (relying on performance capture/keyframing for the
rest), an exciting avenue for future work is the prediction of eye-
brows, gaze, blink, and head and neck movements to emotionally
and rhythmically accompany the lower face in song.

In summary, VOCAL is a novel visual-singing animation ap-
proach that models different singing styles by modifying the con-
tribution of vowel and consonants with a Ma-Ps field. To ensure
physiological plausibility of sung performance, we also present the
use pitch-dependent vowel profiles and vowel modification. Our
model captures singing style and produces animator-editable output
that is bio-acoustically plausible. We hope our insights on singing
will positively impact other modalities of vocal communication,
and inspire new directions in expressive facial animation.
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