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Abstract

We consider the problem of imaging a dynamic scene over
an extreme range of timescales simultaneously—seconds to
picoseconds—and doing so passively, without much light,
and without any timing signals from the light source(s)
emitting it. Because existing flux estimation techniques for
single-photon cameras break down in this regime, we de-
velop a flux probing theory that draws insights from stochas-
tic calculus to enable reconstruction of a pixel’s time-
varying flux from a stream of monotonically-increasing
photon detection timestamps. We use this theory to (1)
show that passive free-running SPAD cameras have an at-
tainable frequency bandwidth that spans the entire DC-to-
31 GHz range in low-flux conditions, (2) derive a novel
Fourier-domain flux reconstruction algorithm that scans this
range for frequencies with statistically-significant support
in the timestamp data, and (3) ensure the algorithm’s noise
model remains valid even for very low photon counts or
non-negligible dead times. We show the potential of this
asynchronous imaging regime by experimentally demon-
strating several never-seen-before abilities: (1) imaging a
scene illuminated simultaneously by sources operating at
vastly different speeds without synchronization (bulbs, pro-
jectors, multiple pulsed lasers), (2) passive non-line-of-
sight video acquisition, and (3) recording ultra-wideband

video, which can be played back later at 30 Hz to show
everyday motions—but can also be played a billion times
slower to show the propagation of light itself.

1. Introduction

A basic rule of thumb in high-speed imaging is that speed

needs light: the faster a scene changes, the more light we
need to image it accurately without excessive noise or mo-
tion blur. Over the decades, high-speed light sources [1],
fast cameras [2–4], and depth sensors [5, 6] have made it
possible to image dynamic phenomena occurring in ever-
smaller time intervals with the help of actively-controlled
light sources and synchronization: to collect enough light,
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the same picosecond- or nanosecond-scale event may be im-
aged millions of times by operating a camera and a source
in lockstep, at MHz repetition rates or more.

Acquiring videos of ultrafast phenomena this way—from
imaging light in flight [7] to fast biological processes [8]—
is now quite common. Unfortunately, while these tech-
niques do capture ultrafast events, they cannot simultane-
ously capture slower ones too: time wraps at the sync pe-
riod, blurring out anything occurring over longer timespans.

But how do we image highly dynamic scenes—both slow
and ultrafast—passively, without any light sources under
our control, no synchronization, and not much light? Very
little is known about this problem because existing mod-
els for passive low-light imaging [9–13] break down at
timescales much shorter than the timespan between photon
arrivals. As a result, ultrafast imaging in low light has re-
mained beyond the reach of passive methods.

In this work we seek to bridge these two regimes, active and
passive, by revisiting the need for synchronization when
imaging ultrafast scenes in low light. Working from first
principles, we develop a novel theory of passive single-
photon imaging that is specifically designed to eliminate
synchronization between a camera and the light sources in
a scene. The only requirements are that (1) the camera’s
pixels can detect and time-stamp individual photons and (2)
their dead-time period does not impair detection of photons
from one source significantly more than any other. In this
imaging regime, each camera pixel time-stamps the photons
it detects using an internal clock that follows the arrow of
time, obviating the need for any external timing signals.

Our work is based on the observation that passive (sync-
free) imaging is fundamentally more powerful than active
imaging in such settings. Specifically, without the peri-
odic timing signal from a light source, time never wraps
at a sync period; ultrafast scenes can be imaged for arbitrar-
ily long timespans; and flux variations that occur concur-
rently across 12 orders of magnitude in time (picoseconds
to seconds)—and that involve many unknown sources—can
be recorded with just one camera.

Because photon timestamps due to all light sources and all
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Figure 1: Passive ultra-wideband imaging with a single free-running SPAD pixel. Left bottom & Center: In a real, captured experi-
ment, an unsynchronized single-photon avalanche diode (SPAD) passively records indirect light coming from multiple sources operating
asynchronously from each other (unsynchronized picosecond lasers, projectors, etc.). See Figure 5 (row 2, middle) for actual scene. The
incident flux exhibits simultaneous intensity variations with a bandwidth that spans roughly 9 orders of magnitude in frequency. Bottom

right: Multiple concurrently-occurring phenomena in the flux function can be identified after acquisition: video flicker (58 Hz), the pulse-
width modulation of an LED light bulb (900 Hz), a movie projected onto a nearby wall by a raster-scanning laser projector (up to 5 MHz),
and two unsynchronized picosecond lasers (40 MHz–10 GHz). Top right: By reconstructing the time-varying flux function of the laser
projector, video frames are reconstructed at 1280x720 resolution using roughly 450-4500 photons collected during each 1/58 s frame.

timescales are recorded concurrently, the choice of which
timescale to show and which light source(s) to use for vi-
sual processing can be done after acquisition (Figure 1).
Thus, just like light field cameras [14] enable post-capture
refocusing in space, this new imaging regime enables post-
capture refocusing in time—from transient to everyday
timescales. We demonstrate this one-of-a-kind capability
experimentally in Figure 5, where we use photon timestamp
data captured by a free-running SPAD camera to play back
video of a rapidly-spinning fan at both 1,000 and 250 bil-
lion frames per second. We call this novel regime passive

ultra-wideband imaging.

The key challenge in this regime is how to reconstruct flux
functions with a ultra-wide spectrum (DC to over 10 GHz)
from a stream of photon timestamps that increase mono-
tonically. To tackle it, we develop a flux probing theory

that draws on results from stochastic calculus [15, 16] to
relate the Fourier series decomposition of a time-varying
flux function to the timestamp realizations of an underly-
ing stochastic process [17, 18]. The mathematical under-
pinnings of our approach are grounded in statistics [19–
21] and time series analysis [22–27], and similar methods
have explored flux function estimation in optical communi-
cations [28–30].

Our work ties together several lines of prior research on “ex-
treme” imaging, both passive and active. In passive settings,
several techniques have recently been proposed for estimat-
ing flux from photon data [13, 31–33]. These rely on a va-
riety of flux constancy assumptions and, as a result, are not
applicable to the ultra-wideband regime we consider. In ac-

tive settings, single-photon imaging techniques have relied
exclusively on sync-relative timestamps [34–38], where in-
formation about sub-MHz flux variations has already been
lost. Aside from single-photon imaging, active ultrafast
imaging techniques have also used heterodyning to measure
flux at one specific modulation frequency [39–43]. These
techniques have neither the light efficiency nor the ultra-
wide bandwidth we demonstrate in this paper.

2. Passive Ultra-Wideband Imaging

Passive, sync-less imaging. We assume that the imag-
ing system exerts no control over a scene’s appearance: the
scene’s light source(s) can be natural, artificial, or both, and
their number, operating principle, and time-varying prop-
erties are unknown and unconstrained (Figure 1). Impor-
tantly, we assume that no electronic timing signals, such as
triggers or sync pulses, are received from any of them.

The time-varying flux function. Following standard ra-
diometric conventions [44], we express incident light at a
pixel as an unknown time-varying function ϕ(t) that repre-
sents the pixel’s instantaneous flux at time t ≥ 0. Our goal is
to acquire a continuous representation of the flux function
over a possibly unbounded acquisition interval [0, t] (mil-
liseconds, seconds or much longer). In the following we
assume that ϕ(t) is expressed in units of photons per sec-
ond, is continuous, and has finite spectral support bounded
by frequencies fmin and fmax.

Ultra-wideband flux. We seek to reconstruct flux func-
tions that have ultra-wide bandwidth, i.e., whose fre-



quency content spans the entire range from constant flux
( fmin = 0 Hz) to extreme time-of-flight timescales ( fmax ≥
10 GHz) [43, 45]. Moreover, we assume that no prior infor-
mation is available about the spectrum of ϕ(t).

Photon arrival model. Our work applies to the single-
photon imaging regime, where the timespan between con-
secutive photon arrivals is not negligible. In this setting,
ϕ(t) is the rate function of an inhomogeneous Poisson pro-

cess governing photon arrivals [29, 46]. The mean value
of ϕ(t) represents the average flux received over the obser-
vation interval [0, t] in units of photons per second and its
inverse, denoted by Tavg, is the average timespan between
consecutive photon arrivals [33].

Low-flux photon detection model. Modern SPADs can
detect and time-stamp the arrival of individual photons with
extremely high temporal precision (typically tens of pi-
coseconds [3, 47]). SPADs are not perfect detectors, how-
ever, as they exhibit four main non-idealities: quantum effi-
ciency, dead time, timestamp quantization and jitter. Quan-

tum efficiency refers to the pixel’s probability of actually
detecting a photon when it is in its active state. This proba-
bility can be well below 1 depending on wavelength; since
it can be thought of as scaling the flux function, we assume
it is absorbed in ϕ(t). After a photon detection, SPADs are
blind to subsequent photon arrivals for an interval known as
the dead time. Dead time can skew photon detection statis-
tics quite significantly when photons arrive closely enough
in time to fall within a SPAD’s dead-time window with high
probability [32, 48, 49]. For simplicity, we focus on low-
flux imaging in the main paper, where consecutive arrivals
are spaced much farther apart than the SPAD’s dead time.1

In this case, detections are governed by the same stochastic
process that describes photon arrivals [50], with rate func-
tion ϕ(t) and average timespan Tavg between detections.

Non-negligible dead time. When dead-time intervals be-
come comparable to Tavg (or longer), photon detections are
not Poisson because the detection of a photon may impact
the detection of subsequent ones. We show in supplemen-
tary Section C that our stochastic calculus framework cov-
ers this case as well, enabling acquisition of ϕ(t) by slightly
amending the equations and algorithm in the main paper.

Timestamp model. Photon timestamps are subject to
quantization from the time-to-digital conversion process
and jitter, i.e., instabilities in timing electronics. Both can
be as low as a few picoseconds for SPADs in the visible
range [51]. To simplify our analysis, we assume without
loss of generality that timestamp resolution and timestamp
accuracy are identical, so that the timestamps’ bin size Q

accounts for jitter as well.2

1For example, Tavg was nearly six times our SPAD’s dead time in the
experiment of Figure 1 (1.3 microseconds versus 231 nanoseconds).

2When timestamp accuracy is worse than timestamp resolution, the

The stream of absolute detection timestamps. Since no
external timing signal is available to serve as a reference,
we assume that photon detection timestamps follow the
arrow of time, increasing monotonically according to
the SPAD’s internal clock. This results in a stream of
timestamps T = (τ1, . . . ,τN(t)), where τi is the elapsed
time from the beginning of acquisition until the i-th photon
detection, and N(t) counts the total photons detected up to
time t. We refer to timestamps τi as absolute timestamps.
Absolute timestamps can be acquired by operating SPAD
pixels in their “passive free-running” mode [32].

Paper roadmap. The remainder of the main paper is aimed
at readers with no background in stochastic calculus, as im-
plementation of our flux acquisition algorithms is straight-
forward and can be done without it. Readers may skip the
formal definition of a martingale (supplement Section A)
and focus on the comparisons in Section 2.1, the high-level
description of our theoretical results in Section 3, and the al-
gorithms in Section 4 (for low-flux settings) and Section C.1
(for non-negligible dead time). For readers familiar with
statistical estimation, Section D includes simpler proofs of
Section 3’s results, graciously provided by anonymous re-
viewer R1, which do not invoke stochastic calculus but ap-
ply only to low-flux settings where dead time is negligible.

2.1. Imaging with Photon Timestamps

The particular imaging regime outlined above generalizes
two broad classes of single-photon imaging research, both
of which use photon timestamps as their main input. We
distinguish between the two by considering the relation
between (a) the rate of photon detections and (b) the
maximum reconstructible frequency in each case (Table 1).

Passive inter-photon imaging. Recent work in passive
single-photon imaging has proposed treating the timespan
between consecutive detections as a noisy sample of the
scene’s flux [32, 33]. This implicitly assumes that flux does
not vary in that timespan, which makes the rate of photon
detections a (loose) upper bound on fmax. As a result, pas-
sive low-flux imaging with SPADs has so far been restricted
to slow speeds, with fmax on the order of tens of kHz [13].

Active histogram-based imaging. Approaches that
employ synchronized light sources [50, 56] occupy the
other extreme of the frequency range. Their basic principle
is to time-stamp detections relative to a sync signal of
a known frequency fsync, so that all timestamps wrap to
the same brief interval [0,1/ fsync] regardless of the actual
timespan between them. This forces photons to accumulate
in a relatively small number of time bins—typically a few

timestamps’ effective number of bits is reduced [52]. Our system’s times-
tamps, for example, are quantized to 4 picoseconds but the standard de-
viation of jitter is 16 picoseconds, so we conservatively use Q = 16 for
performance modeling purposes. Explicit treatment of jitter is beyond this
paper’s scope (e.g., jitter can actually improve timing resolution [53–55]).



imaging regime passive inter-photon imaging active histogram-based imaging passive ultra-wideband imaging

(interdetection-limited) (sync- and quantization-limited) (quantization-limited only)

fmax < 1/Tavg fmin ≥ fsync, fmax ≤ 1/(2Q) fmax ≤ 1/(2Q)

light source(s) one or more sources, no sync one source only, periodic with period 1/ fsync, sync required one or more sources, no sync

typical freq. range low Hz to tens of kHz (plus DC) low MHz to well above 10 GHz (plus DC) DC to well above 10 GHz

valid frequencies all frequencies in range all frequencies in ϕ(t) must be integer multiples of fsync all frequencies in range

corrupting flux any flux with frequencies > 1/Tavg any flux with frequencies that are not integer multiples of fsync frequencies > 31 GHz

input data stream of absolute timestamps stream of sync-relative timestamps stream of absolute timestamps
# distinct time bins not applicable thousands (typical) billions to trillions (increases with t)

# photons per bin not applicable a non-negative integer; Poisson-distributed, mean proportional to ⌊t fsync⌋ 0 or 1, vast majority of bins have 0

ϕ1(t) = 5+5sin(2πt) ϕ2(t) = 5+5sin(7×6×2πt) ϕ3(t) = 5+5sin(5×8×2πt) ϕ4(t) = ϕ1(t)+ϕ2(t)+ϕ3(t)
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Table 1: Low-flux imaging with photon timestamps. Left column: Passive imaging has so far assumed that photons can be detected at a
rate (much) greater than the highest flux frequency. Middle column: Active techniques are designed to handle the opposite case, where
photon detections occur at a rate (much) lower than the flux function’s frequencies. If a light source’s frequency is not a multiple of fsync
(e.g., 5 Hz for ϕ2 photons and 7 Hz for ϕ3 photons in third row above), its photons will land in the wrong time bin. This contributes to
noise instead of signal, i.e., the histogram will be “flattened”’ (compare the two red and two green histograms, respectively, in third row).
Moreover, even when fsync is well-matched to one light source, other sources emitting at non-multiples of fsync will corrupt the histogram
(third row, gray histograms). Please refer to the supplementary video for another illustration of these effects. Right column: Our approach
inherits the most important features of both regimes, without their limitations.

thousand—and yields a photon-count histogram [57] that
is a noisy sampling of the scaled and time-wrapped flux
function, ⌊t fsync⌋ϕ(t −⌊t fsync⌋/ fsync). The maximum
reconstructible frequency in this case is governed by the
Nyquist theorem, not the photon interdetection time: a bin
size of 16 picoseconds, for example, theoretically enables
flux acquisition with fmax equal to 31.25 GHz.3

Although this general approach achieves extremely high
imaging speeds [12], its reliance on relative timestamps
comes with a major constraint: the incident flux must also
be a periodic function with a period equal to 1/ fsync, to en-
sure that ϕ(t) and its time-wrapped counterpart are identi-
cal. This can be trivially satisfied when the only light in
the scene comes from a precisely-synchronized source (a
pulsed laser, light-emitting diode, etc.), but flux variations
due to other causes cannot be reconstructed. This includes
variations caused by scene motion; light sources that emit at
frequencies lower than fsync; and sources that emit at higher
frequencies that are not integer multiples of fsync. Photons
from such sources result in histogram artifacts in the form

3As a reference, 31.25 GHz is the −3 dB cut-off frequency of a Gaus-
sian pulse with a full-width-at-half-max of 36 picoseconds.

of additional photon noise [58], beat signals [45], or both.

Role of the sync frequency fsync. Sync frequencies are
typically in the low-MHz range in single-photon imag-
ing applications that involve pulsed sources [35, 50, 59,
60]. This choice balances improved signal-to-noise ratio (a
faster sync means more laser pulses, more photons detected
in each histogram bin, and fewer time bins for them to ac-
cumulate in) against the likelihood of photons being missed
due to dead time [48, 49, 58], or photons arriving “too late”
because time has wrapped already [12, 61]. At such MHz
sync frequencies, the memory and compute cost of recon-
structing histograms from timestamps can be significant,
prompting several recent schemes for just-in-time process-
ing of (sync-relative) photon timestamps [37, 38, 62].

The passive ultra-wideband imaging regime. Intuitively,
the regime we tackle in this paper can be understood as
the limit case of photon histogramming, where the sync
frequency is reduced all the way to zero. Specifically, as
fsync decreases, the interval [0,1/ fsync] increases; more his-
togram bins are needed to span it; fewer photons land into
each bin; the time-wrapped flux function is able to represent
variations that take place over longer timespans; and the
space of reconstructible frequencies (i.e., the integer mul-
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Figure 2: Relation between the stream of absolute timestamps,
the counting process, the flux function and its integral. Times-
tamps are from a computational simulation of the inhomogeneous
Poisson process with the flux function ϕ(t) indicated above.

tiples of fsync) expands. In the limit when fsync is exactly
zero, there is no sync at all, timestamps become absolute
and every photon lands into its own unique time bin. Cru-
cially, all frequencies from DC up to the Nyquist limit—and

from any light source—become potentially reconstructible.

Mathematical modeling of this limit case, however, is non-
trivial because the concept of a histogram breaks down:
photons never accumulate, and the contents—0 or 1—of
any given bin provide almost no information about the flux
function.4 On the computational side, the entire acquisition
interval [0, t] is effectively partitioned into time bins at the
SPAD’s timing resolution, so acquisitions of a second or
more can potentially involve trillions of time bins (most of
which are empty). Fortunately, as we show in the next sec-
tion, both these challenges can be overcome by formulating
flux reconstruction in terms of the photon counting process,
which is not degenerate even when fsync = 0.

3. Probing Flux Functions

Our approach establishes a direct mathematical link be-
tween (1) the stream of absolute timestamps detected at a
pixel—however few or far apart they may be—and (2) the
flux function that produced them. This link allows us to
“probe” the Fourier spectrum of an unknown flux function
across the entire DC-to-GHz range for frequencies that have
statistically-significant support in the timestamp data. We
introduce our flux probing theory below and address flux
reconstruction in Section 4. For the sake of generality, we
consider timestamps to be continuous-valued random vari-
ables and model quantization as part of our theory.

4More formally, the Poisson-distributed random variable associated
with any given time bin has a mean that goes to zero as t → ∞ [63].

The photon counting process. Even though a single abso-
lute timestamp provides (almost) no information about the
underlying flux function, the stream of absolute timestamps
as a whole contains considerable information about it. The
specific relation between the two comes from stochastic cal-
culus [15]. Specifically, in the continuous-time domain,
a stream T of real-valued absolute timestamps provides a
noisy “reconstruction” of the integral of ϕ(t) (Figure 2):

N(t)
︸ ︷︷ ︸

counting process

=

∫ t

0
ϕ(u)du

︸ ︷︷ ︸

flux integral up to time t

+ M(t)
︸ ︷︷ ︸

martingale noise

. (1)

The function N(t) in Eq. (1) counts the photons received up
to time t and is completely determined by T ; formally, it is
a counting process [15, 19]. Viewed from the perspective
of histogram-based single-photon imaging (Table 1, mid-
dle), N(t) is the continuous-time analog of the cumulative

photon-count histogram over the interval [0, t], for fsync = 0.
The function M(t) in Eq. (1) is a continuous-time random
process called a martingale [64] that can be thought of as a
form of additive zero-mean noise.5

As can be seen from the example of Figure 2, a single ran-
dom realization of the counting process (cyan curve) is a
highly discontinuous function that, on first inspection, bears
no resemblance to the flux integral it is supposed to approxi-
mate in Eq. (1). These discontinuities introduce dense, spu-
rious frequencies in the Fourier-domain representation of
N(t) that do not exist in the actual flux integral.

3.1. Theory of Flux Probing

Our theoretical results use tools from stochastic calculus
to address two basic questions. First, what is the highest
possible frequency fmax that can be recovered by a passive
single-photon imaging system that outputs quantized abso-
lute timestamps? Second, for frequencies within the attain-
able bandwidth, how can we derive a noise model that al-
lows spurious frequencies to be efficiently detected and dis-
carded, and the accuracy of real frequencies to be quantified
as a function of the acquired timestamp stream? We sum-
marize these results below and defer proofs to Section B.

The probing operation. Proposition 1 tells us that we
can always probe the flux function to recover a (noisy)
measurement of its inner product with practically any
other function. Moreover, probing is efficient to compute
from the timestamp stream and can be thought of as a
continuous-time and sync-free generalization of compres-
sive acquisition schemes for conventional photon-counting
histograms [37, 38, 62]. In particular, let T be the stream of
real-valued absolute timestamps up to time t and let p(t) be

5One example of a martingale is an unbiased random walk. Like N(t)
in Eq. (1), many other increasing stochastic processes can be expressed as
the sum of a deterministic increasing function and a martingale [15]. See
supplement Section A for the formal definition of a martingale.



an arbitrary known and square-integrable function:

Proposition 1 (Flux Probing Equation). The inner product
of the probing function p(t) and the unknown flux function
ϕ(t) over the time interval [0, t] satisfies the relation

p(T ) = 〈p,ϕ〉 + Mp(t) (2)

where p(T ) are “probing measurements” which sum the
values of the probing function at the absolute timestamps

p(T )
def
= ∑

τ∈T

p(τ) , (3)

Mp(t) is a martingale, and the inner product is defined as
∫ t

0 p(u)ϕ(u)du.

Fundamental limit on bandwidth. In the special case of
probing with the Fourier basis functions p f (t)= e− j2π f t , we
prove in supplement Section B that probing with f > 1/2Q

yields aliased measurements that “wrap around” the fre-
quency spectrum and are identical to—and indistinguish-
able from—lower-frequency measurements:

Proposition 2. Given timing resolution Q, the maximum
recoverable frequency is fmax =

1
2Q

.

Intuitively, Proposition 2 says that flux frequencies above
1/2Q are unrecoverable regardless of whether we detect a
few photons or a million.

Noise model. Our model accounts for the inhomogeneous
Poisson nature of photon detections and treats the general
case of real-valued timestamps. The model is valid for arbi-
trary flux levels within the low-flux regime and, as we show
in supplement Section G.4, it remains valid for low-count
acquisitions (e.g., as few as ten photons). More specifi-
cally, Proposition 3 tells us that the noise in probing mea-
surements has a distribution that can be estimated from the
timestamp stream through another probing operation. Thus,
probing gives the means both to observe a flux function and
to quantify the uncertainty of that observation:

Proposition 3 (Distribution of Probing Measurements).
The probing measurements p(T ) are approximately nor-
mally distributed with mean 〈p,ϕ〉 and variance 〈p2,ϕ〉.

Fourier probing noise. Finally, Corollaries 1 and 2 allow
us to quantify the accuracy by which specific flux frequen-
cies can be estimated from a given timestamp stream:

Corollary 1 (Distribution of Fourier Probing). The Fourier
probing measurements p f (T ) approximately follow a com-
plex normal distribution with mean and covariance matrix

µ =
[

〈 cos(2π f t), ϕ(t) 〉 〈 − sin(2π f t), ϕ(t) 〉
]

(4)

Σ =

[
〈cos2(2π f t),ϕ(t)〉 0

0 〈sin2(2π f t),ϕ(t)〉

]

. (5)

Corollary 2 (Distribution of Fourier Probing Energy). The
normalized energy of the Fourier basis probing measure-
ments

pE
f (T )

def
= Re

[
p f (T )
√

Σ1,1

]2

+ Im

[
p f (T )
√

Σ2,2

]2

(6)

follows a non-central χ2 distribution with 2 degrees of free-
dom and non-centrality parameter µ2

1/Σ1,1 + µ2
2/Σ2,2.

In supplement Section B we show that unbiased estimators
of the parameters of the above distributions can be obtained
via probing.

Frequency detection. Given the estimated distribution of
the Fourier Probing Energy, we derive the constant false
alarm rate (CFAR) detector [65] (see supplement Section B)
to identify and remove noisy frequencies based on a desired
probability of false alarm α . False alarms occur when we
keep f and E[|p f (T )|] = 0; we remove f if pE

f (T ) is lower

than CDF−1
χ2 (1−α), derived from Corollary 2. Specifically,

we detect frequencies for which

|p f (T )|2 ≥ CDF−1
χ2 (1−α)

N(t)

2t2 . (7)

Note that (1) for a fixed α , the probability of detecting a
frequency is proportional to the total number of photons de-
tected, and (2) for flux functions dominated by a particular
frequency such that |p fi(T )|2 is large, N(t) also tends to
become proportionally larger, reducing the probability of
detecting other frequencies.

Implications for passive single-photon imaging. Propo-
sition 2 implies that rather than being a hindrance, sync-
less imaging with absolute timestamps confers an extreme
bandwidth advantage to SPAD cameras: systems with 16-
picosecond resolution, such as our own, can simultane-

ously acquire flux variations that span the entire DC-to-
31 GHz range of frequencies, and that are due to any num-

ber of unknown light sources operating independently. This
bandwidth is orders of magnitude broader than intensity
cameras—SPADs or otherwise—were thought capable of
acquiring directly [41–43, 45], i.e., without resorting to ho-
modyne [43] or heterodyne [41, 42, 45] detection schemes.
While Proposition 2 describes reconstructability (i.e., fre-
quencies above the limit are unreconstructible), Proposi-
tion 3 and Eq. (7) provide insights about the accuracy

and detectability of flux variations at different frequencies.
Lastly, although we have not verified the theorized DC-
to-31 GHz bandwidth experimentally due to unavailability
of lasers that are fast enough, we show several real-world
demonstrations of simultaneous DC-to-16.9 GHz imaging
under very challenging low-flux conditions (see Figure 1,
Section 5, and Section E). These validate our noise models
in Eqs. (4)-(6) and (partially) confirm our theoretical bound.



procedure FLUXREC(T , t, fmax, α)
// Frequency scanning.

∆ f = 0.6/t (see supp. Section B)
F = freqs from 0 to fmax with step ∆ f

loop f ∈F

p f (T ) = (1/t)∑τ∈T e− j2π f τ

// Frequency detection.

Fused = /0
loop f ∈F

A f = |p f (T )|, φ f = ∠p f (T )
reject f using CFAR (Eq.(7))
Fused =Fused ∪{ f} if not rejected

// Flux reconstruction.

ϕ̂(t) = ∑ f∈Fused
A f cos(2π f t +φ f )
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Figure 3: Overview of imaging by flux probing. Left: Flux reconstruction algorithm used in our experiments. Right: Visual illustration
of the algorithm. Flux function: A flux function of finite spectral support can be expressed as a sum of sinusoids and produces a stream of
absolute timestamps. Frequency scanning: We probe the flux function using a Fourier basis and measure the response at each frequency.
Frequency detection: For each of the probed frequencies, we detect whether it contributes to the flux function if its corresponding amplitude
is greater than a threshold (top) which is selected to achieve the desired probability of false alarm. (bottom). Flux reconstruction: Finally,
we reconstruct a continuous-time flux function from the amplitudes and phases of detected frequencies.

4. Imaging by Flux Probing

Our probing theory leads directly to an algorithm that re-
constructs the Fourier transform of the flux function by
frequency-scanning the entire DC-to-GHz bandwidth (Fig-
ure 3). This algorithm is similar to the Fourier-domain
histogramming technique used in conventional active set-
tings [62], but also differs in two key respects: (1) it pro-
vides a principled way to estimate frequency uncertainty in
an acquired timestamp stream, and (2) it enables tractable
operation in a regime involving potentially billions of can-
didate frequencies—e.g., a 1 Hz-resolution scan of DC-to-
20 GHz—by rejecting spurious frequencies and reducing
storage requirements. The frequency detection step uses
the CFAR detector of Section 3, where we set α so that
the expected number of false alarms is less than 1. Figure 3
includes a visual depiction of the flux reconstruction algo-
rithm, along with a complete description in pseudocode.

5. Experiments

We validate our theory experimentally with (1) passive
ultra-wideband sensing of both 1D intensity signals and 2D
video signals ranging from DC to 16.9 GHz, (2) passive
non-line-of-sight (NLOS) video via MHz-rate flux func-
tion reconstruction, (3) generalization to 2D SPAD arrays
for high speed video, and (4) simulation-based quantitative
evaluation of flux probing. We refer readers to the supple-
mental video and to supplement Sections E, F, and G for
more experiments and implementation details.

Passive ultra-wideband sensing. We demonstrate recov-
ering signals with frequencies spanning roughly 9 orders
of magnitude from DC to 10 GHz (Figure 1). We place
a single-pixel SPAD in the scene to capture flux variations
from (1) pulse-width modulation of a light bulb (900 Hz),

(2) backscattered light from a raster-scanning laser projec-
tor (60 Hz–10 MHz), and (3) two unsynchronized picosec-
ond lasers (40 MHz–10 GHz). Remarkably, the flux func-
tion is reconstructed from only 77,000 photon timestamps.6

We recover time-varying flux across billions of frequencies
from this minuscule set of photons. Moreover, by employ-
ing a brighter and faster laser, we achieve passive DC-to-
16.9 GHz sensing over room-size distances (Section E.2.2).

We also demonstrate ultra-wideband video (Figure 5, top)
by raster scanning a scene in which a pulsed laser, with
20 MHz repetition and 80 ps FWHM, is diffused to illu-
minate a fan spinning at 54 Hz. We detect frequencies
from DC to 10 GHz and render flux functions at 1 kfps
and 250 Gfps, showing both the fan blades rotating and
the propagation of the laser pulse. In contrast, conven-
tional approaches reconstruct the scene at only one of the
aforementioned frame rates, temporally blurring either slow
or fast events. Furthermore, our method can render the
flux at whatever timescale, essentially freezing time at all

timescales. Note that because we only had access to a sin-
gle pixel SPAD, the timestamps were collected by scanning
across the field of view of the SPAD. To temporally align
the flux functions between pixels, we use synchronization
signals from both the laser and the fan. We emphasize that
no synchronization signals were used to reconstruct the flux
functions themselves—we are demonstrating a new capa-
bility of reconstructing the appearance of the scene as it ap-

peared during each laser pulse—this is distinct from the use
of synchronization and histogramming to estimate the aver-

age appearance of the flux function over time [7, 12, 66].
We also emphasize that the images are rendered by integrat-
ing the flux function over the exposure of each frame. As

6Conventional camera pixels collect a few thousand photons to return
a single estimate of light intensity.



Figure 4: Simulation-based comparisons. Left to right: Laser pulse reconstructed by three methods from 2000 timestamps produced by
a 20 MHz pulse train. Reconstruction from a 20 MHz train of much shorter pulses, using just 50 timestamps. Pulse reconstruction error as
a function of the number of timestamps given as input. Reconstructed pulses from 100 realizations of a fifty-photon timestamp stream.

such, these images exhibit not only high dynamic range but
their intensities are also expressed in physical units of pho-
tons, thereby ensuring radiometric calibration by nature.

We show another video example in Figure 5 (row 2), where
the same picosecond laser illuminates a Coca-Cola bottle
filled with water and a small amount of milk to scatter the
light. Within the same scene, a compact fluorescent light-
bulb (CFL) flickers at 120 Hz. We render videos at 10 kfps
and 200 Gfps to visualize the CFL flicker and light pulses
propagating through the bottle (Figure 5, rows 3–4). For
the same reasons outlined in the previous paragraph, we use
synchronization signals from the laser and the bulb.

Recovering passive NLOS videos. We demonstrate pas-
sive NLOS video reconstruction using light measured indi-
rectly from a raster-scanning laser projector (see illustration
in Figure 1 and photo in Figure 5, row 2). The SPAD ob-
serves a single point on a diffuse box during the projector
beam’s raster scan, collecting light that bounced twice (i.e.,
diffuser→diffuse box→SPAD). This configuration is anal-
ogous to dual photography [67]. By reconstructing the 1D
flux function over a one-second span, we recover the video
being played. We show results for the multi-illumination
setting of Figure 1 and for a projector-only setting. In the
latter case, we recover fine details of each video frame (Fig-
ure 5, rows 5–6) even though only 3000 photons were col-
lected on average during a frame’s 1/58 s raster scan.

Probing with SPAD arrays. Our method can be applied
off the shelf to data from 2D SPAD sensors. To demon-
strate this, we compare to Seets et al. [13] who recover high-
speed video with a 32×32 SPAD array. They assume flux
is piecewise constant and identify contiguous sets of times-
tamps with the same flux. Photon inter-arrivals are then av-
eraged to obtain a single flux estimate per set (Figure 5,
bottom right). In contrast, we recover a time-varying flux
function by probing (Figure 5, bottom left). Because the
sensor outputs just one timestamp per 20 microseconds for
each pixel—a dead time too long to ignore even at relatively
low flux levels—we probe using the generalized algorithm
of Section C.1. This yields a periodic flux function truer
to the rotating fan’s motion, whereas periodicity and high-
frequency variations are lost by the method in [13].

Simulations. Lastly, we consider reconstruction of a
flux function corresponding to 20 MHz pulse trains from
an ultrafast laser with frequency support of 12.5 GHz and
125 GHz, respectively, i.e., up to the theoretically-attainable
limit of a jitter-less SPAD with 4 ps timestamp quantization
(Proposition 2). Figure 4 compares the result of three meth-
ods: (1) conventional photon-count histogramming which
requires synchronization, (2) our sync-less reconstruction
algorithm in Figure 3, and (3) “oracle-based” flux probing,
which probes the ground-truth set of frequencies instead of
relying on frequency scanning. As can be seen, probing can
recover pulses up to the theoretical limit from just 50 times-
tamps and, despite being passive, outperforms histogram-
ming considerably as photon counts increase. Please see
Section G for a more detailed quantitative evaluation.

6. Concluding Remarks

The sheer amount of data involved in probing timestamp
streams cannot be ignored: even a single pixel can output
tens of thousands of timestamps per second in low light, and
our ultrawide-bandwidth results require probing billions of
frequencies. Sketching [38] and Non-Uniform FFT [68]
may offer ways forward but major challenges remain. That
said, we believe that passive acquisition and processing of
timestamp streams from free-running SPADs opens new di-
rections in dynamic imaging: completely unsynchronized,
single-shot observations of ultrafast phenomena with multi-
ple light sources across different timescales; passive depth
imaging using uncooperative, environmental light sources;
compressive ultrafast video recording from sparse times-
tamps; temporal “microscopes” that allow monitoring in-
tensity fluctuations across timescales spanning the nine-plus
orders of magnitude (i.e., DC to 31 GHz) theoretically cap-
tured by SPADs; and more. We are thus looking forward to
more advances on these remarkable sensors.
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