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Figure 1:We propose a reduced spacemixed finite elementmethod (MFEM) built on a Skinning Eigenmode subspace andmaterial-
aware cubature scheme. Our solver is well-suited for simulating scenes with large material and geometric heterogeneities in
real-time. This mammoth geometry is composed of 98,175 vertices and 531,565 tetrahedral elements and with a heterogenous
composition of widely varying materials of muscles (𝐸 = 5 × 105 Pa), joints (𝐸 = 1 × 105 Pa), and bone (𝐸 = 1 × 1010 Pa). The
resulting simulation runs at 120 frames per second (FPS).

ABSTRACT
Real-time elastodynamic solvers are well-suited for the rapid simu-
lation of homogeneous elastic materials, with high-rates generally
enabled by aggressive early termination of timestep solves. Unfortu-
nately, the introduction of strong domain heterogeneities can make
these solvers slow to converge. Stopping the solve short creates visible
damping artifacts and rotational errors. To address these challenges
we develop a reduced mixed finite element solver that preserves rich
rotational motion, even at low-iteration regimes. Specifically, this
solver augments time-step solve optimizations with auxillary stretch
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degrees of freedom at mesh elements, and maintains consistency
with the primary positional degrees of freedoms at mesh nodes via
explicit constraints. We make use of a Skinning Eigenmode subspace
for our positional degrees of freedom. We accelerate integration of
non-linear elastic energies with a cubature approximation, placing
stretch degrees of freedom at cubature points. Across a wide range
of examples we demonstrate that this subspace is particularly well
suited for heterogeneous material simulation. Our resulting method is
a subspace mixed finite element method completely decoupled from
the resolution of the mesh that is well-suited for real-time simulation
of heterogeneous domains.
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Figure 2: A crab with a hard shell (E=1e10 Pa) and soft joints
(E=1e6 Pa) is simulated with our subspace MFEM and skinning
subspace FEM. With only 2 solver iterations MFEM exhibits
correct rotational and elastic behavior, whereas subspace FEM
with 4 iterations – and consequently half the frame rate – ex-
hibits noticeable damping.
1 INTRODUCTION
All elastic objects in the real world are heterogeneous. Yet many of
our elastodynamic simulations, especially in the real-time regime,
are evaluated on homogeneous materials. Applying them to hetero-
geneous materials makes these solvers slow to converge, leading to
visual artifacts such as artifical damping. These convergence artifacts
are exacerbated by a strict compute-time budget; a slowly converg-
ing solve will have to be cut short as new simulation frames are
demanded. The mixed finite element method (MFEM) introduced by
Trusty et al. [2022] shows success in preserving energetic motion for
full space heterogeneous simulations. Unfortunately, their method
scales in complexity with the full mesh resolution; larger meshes
quickly become unavailable for real-time simulations. For example,
the mammoth example shown in Fig. 1 runs at 263 seconds per itera-
tion (maximum 0.003 FPS), far from the common real-time target of
60 FPS.

On the other hand, subspace methods have been popular in graph-
ics for accelerating optimization problems since Pentland andWilliams
[1989]. However, subspace methods have very well known weak-
nesses in representing extreme rotational motion [Choi and Ko 2005],
which is made worse by material or geometric heterogeneities. Re-
cently Benchekroun et al. [2023] introduce Skinning Eigenmodes, a
linear subspace that preserves rotation invariance during subspace
simulation, and can represent rotational motion.

With the goal of simulating heterogeneous elastodynamic materi-
als in real-time, we propose a subspaceMFEM solver that makes use of
a Skinning Eigenmode subspace and an accompanying heterogeneity-
aware cubature approximation scheme. This solver inherits both the
material-robust convergence benefits of its full space predecessor
as well as the speed and reduced dimensionality provided by the
subspace. The result is a convergent simulation for heterogeneous
domains whose complexity is entirely decoupled from the resolution
of the underlying mesh.

2 RELATEDWORK
2.1 Subspaces for Heterogeneous Materials
Subspace simulation has been of interest in graphics since Pentland
andWilliams [1989], where a subspace is commonly formed via Linear
Modal Analysis (LMA) of the elastic energy Hessian. These types
of modes have well known drawbacks when used for accelerating
elastodynamic simulation. Specifically, they struggle representing
large non-linear deformations, such as rotations, which are a salient
feature of heterogeneous material simulation.

Barbič and James [2005] use modal derivatives, whose aim is to sup-
plement primary LMA modes with higher quality derivative modes
to help the subspace stay up to date with the current deformation.
Unfortunately, modal derivatives do not perfectly span rotations (See
Fig. 5). Modal warping [Choi and Ko 2005], Rotation Strain coordi-
nates [Huang et al. 2011], sub-structuring [Barbič and Zhao 2011;
Kim and James 2011] and rigid-frame embedding [James and Pai 2002;
Terzopoulos and Witkin 1988] all mitigate this issue by factoring out
rotational motion and keeping track of it separately. These methods
unfortunately scale in complexity with the number of rotations to be
tracked, of which there may be many in a large-scale heterogeneous
material. While non-linear subspaces via Deep Neural Networks
have also been proposed [Shen et al. 2021], the resulting complexity
of the subspace requires many optimization steps in order to reach a
solution [Sharp et al. 2023].

Another option is to use linear skinning subspaces, which can
represent rotations implicitly upon their construction. Many skin-
ning subspaces are chosen to represent smooth, local deformations
[Brandt et al. 2018; Jacobson et al. 2012; Lan et al. 2020; Wang et al.
2015]. Smoothness, however, is not an optimal prior when a material
has sharp transitions in material properties (See Fig. 8 and Fig. 3).
Faure et al. [2011] describe a local, material-sensitive set of skinning
weights. Their construction rely on additional user parameters to
control the smoothness of the subspace. Benchekroun et al. [2023]
propose Skinning Eigenmodes, a method of constructing globally
supported skinning weights that reflect material properties from an
eigendecomposition of the elastic energy Laplacian. The globality of
this subspace allows for a compact representation of fine scale mo-
tion. While material aware, Skinning Eigenmodes in standard finite
element solvers still suffer degraded convergence with large hetero-
geneities.We show that the combination of this subspace with amixed
finite element method is the key to robust real-time heterogenous
simulation.

2.2 Fast Elastic Solvers for Heterogeneous
Materials

Standard discretizations struggle when applied to heterogeneous
elastodynamics problems which motivates our use of a mixed dis-
cretization [Trusty et al. 2022]. Typically, work on efficient simulation
of heterogenous materials is centered around homogenization or nu-
merical coarsening [Chen et al. 2017, 2015; Kharevych et al. 2009]
which uses a coarse (lower than material assignment resolution) mesh
as a reduced space and homogenizes material properties within each
coarse element. However these methods only simulate aggregate ma-
terial behavior – by construction they cannot accurately represent the
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Figure 3: Material sensitive skinning modes directly lead to
richer motion for heterogeneous materials.
heterogeneous strains induced by material or geometric heterogene-
ity as the shape functions themselves are typically polynomial within
each element. While Chen et al. [2018] derive material-adaptive
multi-resolution basis functions, their approach depends on a non-
physical Rotation-Strain post-warping effect using Rotation Strain
coordinates, which they show produces artifacts. Rather, our material-
aware skinning weights allow more visually exacting reconstruction
of animated motion using fewer degrees-of-freedom.

Another common method for accelerating non-linear elastic PDEs
discretized via Finite Elements is by a cubature approximation [An
et al. 2008; von Tycowicz et al. 2013] of the elastic energy. This approx-
imates the total elastic energy with reweighed contributions from
a set of sparsely sampled representative tetrahedra. The computa-
tion of these cubature points and weights is done in an expensive
offline training phase, requiring the user to provide data with prior
knowledge of the deformations they expect to encounter at run-time.
Instead, Jacobson et al. [2012] accelerate an elastostatic solver by
allowing tetrahedra to share strain quantities with other tetrahedra
in their cluster. These clusters are found efficiently via a 𝑘-means
clustering on the skinning weights, allowing the clusters to reflect
the properties of the skinning weights. We combine both approaches:
we find a strong set of cubature points as the centroid of the 𝑘-means
clusters without requiring a training phase.

3 FULL SPACE MIXED FEM
Our starting point is the mixed finite element method (MFEM) of
Trusty et al. [2022]. We discretize the domain with a tetrahedral mesh
with |V| vertices and |T | elements.

We store positions as the coefficients 𝒙 ∈ R3 |V |×1 of Lagrange
finite elements. We then introduce stretch degrees of freedom (DOFs)
𝒔 ∈ R6 | T |×1, corresponding to the symmetric stretch component of
the polar decomposition of the deformation gradient (𝐹 = 𝑅𝑆).

We maintain consistency between our positional and stretch DOFs
𝒄 (𝒙, 𝒔) = 𝑫 (𝒔 (𝒙) − 𝒔), where 𝒔 evaluates the stretch at each element
as a function of 𝒙 . We make use of 𝐷 = diag( [1 1 1 2 2 2]) and
𝑫 = 𝑰 | T | ⊗ 𝐷 to account for the symmetric off-diagonal terms in 𝑆 .

This leads to the MFEM elastodynamic optimization problem,

𝒙∗, 𝒔∗,𝝀∗ = argmin
𝒙,𝒔

max
𝝀

Ψ𝑥 (𝑥) + Ψ𝑠 (𝑠) + 𝝀𝑇 𝒄 (𝒙, 𝒔) (1)

where Ψ𝒙 (𝒙) is the quadratic component of the elastodynamic energy
that depends only on positional DOFs, Ψ𝒔 (𝒔) is the elastic strain
energy written in terms of the stretch DOFs and the last term enforces
the consistency constraint with Lagrange multipliers 𝝀 ∈ R6 | T | . The

solution is characterized by the KKT optimality conditions, which
can be solved via a Newton-type method [Trusty et al. 2022].

4 SUBSPACE MIXED FEM
We introduce a linear subspace 𝑩 ∈ R3 |V |×𝑟 for our positional DOFs,
and approximate them with 𝒙 ≈ 𝑩𝒖, where 𝒖 ∈ R𝑟 , 𝑟 ≪ 3|V|, are
subspace coefficients. With some precomputations, this subspace
can be used to evaluate the quadratic Ψ𝑥 (·) at run-time explicitly
in terms of reduced dimensions. By contrast, fast evaluation of the
non-linear stretch energy, Ψ𝑠 (·), and the consistency constraint term
requires the use of numerical cubature [An et al. 2008]. Evaluating
these corresponding energy densities over a subset of all tetrahedra,
C, and reweighing their contributions according to a precomputed
cubature weight yields

Ψ𝑠 (𝒔) ≈
| C |∑︁
𝑐

𝑤𝑐𝜓𝑧 (𝒛𝑐 ) = Ψ𝑧 (𝒛), (2)

𝝀𝑇 𝒄 (𝒙, 𝒔) ≈
| C |∑︁
𝑐

𝑤𝑐𝝁
𝑇
𝑐 𝐷 (𝒛𝑐 (𝒖) − 𝒛𝑐 ) = 𝝁𝑇𝒈(𝒖, 𝒛) (3)

where we have introduced 𝒛 ∈ R6 | C | , the stretch DOFs at the cu-
bature tetrahedra, and 𝝁 ∈ R6 | C | , the Lagrange multipliers enforcing
the consistency constraint at the cubature points.

We can finally rewrite the optimization problem entirely in terms
of reduced space DOFs:

𝒖∗, 𝒛∗, 𝝁∗ = argmin
𝒖,𝒛

max
𝝁

Ψ𝑢 (𝒖) + Ψ𝑧 (𝒛) + 𝝁𝑇𝒈(𝒖, 𝒛) (4)

We solve this optimization using Sequential Quadratic Programming
(SQP), where search directions for the (𝑘 + 1)-th iteration are found
by solving the KKT system

𝑯𝑢 0 𝑮𝑇
𝑢

0 𝑯𝑧 𝑮𝑧

𝑮𝑢 𝑮𝑧 0



𝒅𝒖
𝒅𝒛
𝝁

 = −

𝒇𝑢
𝒇𝑧
𝒇 𝜇

 , (5)

where all quantities are evaluated using DOFs from the previous iter-
ation, {𝒖𝑘 , 𝒛𝑘 }. 𝑯𝑢 = 𝑩𝑇𝑯𝑥𝑩 ∈ R𝑟×𝑟 and 𝑯𝑧 =

𝜕2Ψ𝑧
𝜕2𝒛
∈ R6 | C |×6 | C |

are the reduced Hessians (with 𝑯𝑥 being the full-space Hessian);
𝒇𝑢 = 𝑩𝑇𝒇𝑥 ∈ R𝑟 , 𝒇𝑧 =

𝜕Ψ𝑧
𝜕𝒛 ∈ R

6 | C | , and 𝒇 𝜇 = 𝒈(𝒖𝑘 , 𝒛𝑘 ) ∈ R6 | C | are
the reduced forces (with 𝒇𝑥 being the full-space force); 𝑮𝑢 =

𝜕𝒈
𝜕𝒖 ∈

R6 | C |×𝑟 and 𝑮𝑧 =
𝜕𝒈
𝜕𝒛 ∈ R

6 | C |×6 | C | are the reduced space constraint
Jacobians. The transpose is omitted from 𝑮𝑧 since it is a diagonal
matrix of cubature weights.

We condense this system by applying a series of Schur comple-
ments so that for 𝒅𝒖 we instead solve

(𝑯𝑢 + 𝑲 )𝒅𝒖 = −𝒇𝑢 + 𝑮𝑇
𝑢𝑮
−1
𝑧 (𝒇𝑧 − 𝑯𝑧𝑮

−1
𝑧 𝒇 𝜇 ), (6)

where 𝑲 = 𝑮𝑢𝑮−1
𝑧 𝑯𝑧𝑮−1

𝑧 𝑮𝑇
𝑢 , and for 𝒅𝒛 and 𝝁 we solve

𝒅𝒛 = −𝑮−1
𝑧 (𝒇 𝜇 + 𝑮𝑢𝒅𝒖), (7)

𝝁 = −𝑮−1
𝑧 (𝒇𝑧 + 𝑯𝑧𝒅𝒛) . (8)

The updates for the next SQP iteration are then 𝒖𝑘+1 = 𝒖𝑘 + 𝛼𝒅𝒖 and
𝒛𝑘+1 = 𝒛𝑘 + 𝛼𝒅𝒛, where 𝛼 is a step size given by backtracking line
search over the Lagrangian, L(𝒖, 𝒛, 𝝁) = Ψ𝑢 (𝒖) + Ψ𝑧 (𝒛) + 𝝁𝑇𝒈(𝒖, 𝒛).
In this final form, none of the terms depend on a full space quantity, so
the update for 𝒅𝒖 is efficiently solved with a direct dense linear solver,
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Figure 4: The skinning weights we get from Skinning Eigenmodes are naturally material aware. High frequency modes are
concentrated on soft parts of the snail, which are more likely to exhibit rich deformation. In contrast, the stiff shell only
has access to a constant skinning weight (shared by all parts of the snail), allowing rigid motion to be producible within our
skinning subspace.
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Figure 5: Modal derivatives are not suited for reconstructing
rotations on the input shape. Fixing these artifacts typically
requires explicitly tracking a rigid frame [Terzopoulos and
Witkin 1988].
and the updates for 𝒅𝒛 and 𝝁 are local and performed in parallel,
making their cost negligible.

5 SUBSPACE CONSTRUCTION
5.1 Skinning Eigenmode Subspace
There are many ways to construct our positional subspace 𝑩. We
opt for using a skinning subspace [Brandt et al. 2018; Hahn et al.
2012]. As discussed by Benchekroun et al. [2023], these subspaces
span rotations (as shown in Fig. 5), a particularly salient feature for
heterogeneous stiff materials.

Other linear subspaces, such as modal derivatives [Barbič and
James 2005], do not generally span rotations [Benchekroun et al.
2023]. For free flying motion, this limitation may be addressed by
embedding a rigid frame that is tracked explicitly during the simu-
lation [Terzopoulos and Witkin 1988]. For heterogeneous materials
with multiple independent stiff components that do not necessarily
rotate in unison (such as the bar in Fig. 5), keeping track of potentially
many rigid frames becomes increasingly inconvenient, and scales in
complexity with the heterogeneity of the material.

We opt to build our skinning subspace using Skinning Eigenmodes
[Benchekroun et al. 2023], which span rotations and furthermore
provide a straightforward automatic method to generating material-
aware skinning weights (see Fig. 4). Specifically, we obtain a set of
skinning weights𝑾 ∈ R |V |×𝑚 by solving the weight space general-
ized eigenvalue problem,

𝑯𝑤𝑾 = 𝑴𝑤𝑾𝚪. (9)

Above, 𝑯𝑤 = 𝜕2Ψ
𝜕2𝒙1
+ 𝜕2Ψ

𝜕2𝒙2
+ 𝜕2Ψ

𝜕2𝒙3
∈ R |V |× |V | is the elastic energy

Laplacian (subscripts {1, 2, 3} denote each of the 3 dimensions) and
𝑴𝑤 ∈ R |V |× |V | is the scalar mass matrix. The use of the elastic

Young’s Modulus Clusters Cubature Points

Figure 6: Our cubature points are found as the centroids of
each k-means cluster. Note that our centroids are sensitive to
the heterogeneity of the Young’s modulus. Stiffer regions can
have their strain be approximated with fewer cubature points.
energy Laplacian is what provides this subspace with its material-
aware properties.

The decomposition provides us with eigenvalues 𝚪 and eigen-
vectors𝑾 , the latter of which correspond to linear blend skinning
weights. The use of the elastic energy Laplacian is what provides this
subspace with its material-aware properties. These skinning weights
𝑾 can then be used to construct our subspace basis 𝑩 using the
standard linear blend skinning Jacobian formula,

𝑩 = 𝑰 3 ⊗ ((1𝑇𝑚 ⊗ 𝑿̄ ) ⊙ (𝑾 ⊗ 1𝑇4 )), (10)

where 𝑿̄ ∈ R |V |×4 are the rest positions in homogeneous coordinates.
We can relate𝑚, the number of skinning weights to our subspace
DOFs via 𝑟 = 12𝑚.

5.2 Cubature Construction
A cubature scheme is characterized by a set of cubature points, and
their corresponding cubature weights. A good cubature scheme is
crucial for the quality of our subspace approximation. Undersam-
pling leads to spurious deformations [McAdams et al. 2011], whereas
excessive sampling introduces unnecessary cost.

A cubature scheme can be optimized to fit a training dataset [An
et al. 2008]. Cubature weights are computed via a Non-Negative
Least Squares (NNLS) fitting of the forces observed in the training
set. Cubature points are then greedily added at elements where the
current cubature fitting most poorly reconstructs the training forces.
This approach is well suited for scenarios where the user knows a
priori the types of deformation they want to approximate. However,
for scenarios where a user is exploring deformations for potentially
many meshes at a time, the requirement of building a good cubature
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Figure 7: Our subspace MFEM solver almost perfectly repro-
duces the angular motion of the sword over the first 25 simula-
tion timesteps, whereas FEM consistently underestimates it.
training set as well as the time it takes to iteratively solve a large NNLS
problem for the cubature weights can overly constrain the creative
process. Yang et al. [2015] propose an avenue for acceleration based
on a Preconditioned Conjugate Gradient method.

We propose an alternative, fast and simpler method for construct-
ing our cubature approximation that is well suited for heterogeneous
materials, inspired by the clustering scheme of Jacobson et al. [2012].
To sample cubature tetrahedra, we cluster our domain and choose
the tetrahedra closest to the centroid of each cluster. We construct
these clusters from a 𝑘-means clustering on our skinning weights.

𝑙 = kmeans(𝑾 T𝚪−2, |C|), (11)
where𝑾 T are our skinning weights averaged from the vertices to
the elements. We weigh each skinning weight by its inverse squared
eigenvalue 𝚪

−2 in order to favor weights that correspond to low
energy deformations, which are more likely to occur at run-time.
We then compute cluster centroids and choose our cubature points
as the tets closest to each centroid. The cubature weights are then
trivially computed as the mass of each cluster. Using the skinning
weights as our clustering features allows the cubature scheme to
reflect the properties of our skinning weights, such as material and
geometric heterogeneity, or any pinning constraints that may have
been imposed on our skinning weights. In particular, note from Fig. 6
and Fig. 16 that our cubature sampling parallels the anticipated strain
heterogeneity of the domain: regions more likely to deform, such
as soft regions or thin regions, will be sampled relatively densely;
regions less likely to deform, such as stiff or thick regions, will be
sampled relatively sparsely, as shown in Fig. 16.

6 IMPLEMENTATION
We implement our method in both Matlab and C++, with geome-
try processing utilities provided by libigl [Jacobson et al. 2018] and
gptoolbox [Jacobson et al. 2021] and physics utilities provided by
Bartels [Levin 2018]. Our C++ code is parallelized with OpenMP
[Chandra et al. 2001]. For modelling and rendering we use Blender
[R Core Team 2013]. To solve the Generalized Eigenvalue Problem
in Eq. (9), as well as the 𝑘-means clustering, we use Matlab’s eigs()
and kmeans() functions. To solve for the search direction (Eq. (6))

Rest

Bounded Biharmonic
Weights

Skinning 
Eigenmodes

2m55s

Figure 8: Smooth local skinning weights (left), such as Bounded
Biharmonic Weights [Jacobson et al. 2011] are not optimal
for modeling materials with sharp heterogeneities. Skinning
Eigenmodes (right) are material sensitive and lead to a sharp
resolution of extreme twisting motions. Both simulations use
MFEM.
in each Newton iteration we use Eigen’s [Guennebaud et al. 2010]
SimplicialLLT direct solver.

Algorithm 1 provides pseudocode for a single simulation step of
our subspace Mixed-FEM solver.

Matrices coloured in blue remain constant throughout the simu-
lation, whereas matrices in red change every timestep, but remain
fixed throughout Newton iterations.

At the end of each simulation step, mesh geometry is usually
queried for visualization purposes. Standard subspaces require full
space projection, 𝒙 = 𝑩𝒖, to in order to capture the deformed mesh
geometry. This is a full space operation that can easily become the
bottleneck for any subspace simulation application. Instead, we per-
form this step entirely on the GPU [Barbič and James 2005]. As our
subspace is a skinning subspace, it’s especially convenient to perform
this step in the vertex shader [Benchekroun et al. 2023]: we pass
the skinning weights forming our subspace𝑾 to our vertex shader
as vertex attributes in a preprocessing step, and send our reduced
space coordinates 𝒖 as uniforms each draw call. As Table 1 shows,
this effectively makes the computation time for this step negligible
compared to the other stages of our pipeline.
Algorithm 1: Performs one simulation step of our subspace
Mixed-FEM solver
Function simulationStep(𝒖, 𝒛):

while not converged do
𝑯𝑧 ,𝑯𝑢 ← hessians(𝒖, 𝒛)
𝒇𝑧 ,𝒇𝑢 ,𝒇 𝜇 ← gradients(𝒖, 𝒛)
𝑮𝑧 , 𝑮𝑢 ← constraintGradients(𝒖, 𝒛)
𝑲 ← 𝑮𝑢𝑮−1

𝑧 𝑯𝑧𝑮−1
𝑧 𝑮𝑇

𝑢 // assemble stiffness matrix

// Global linear solve
𝒅𝒖 ← (𝑯𝑢 + 𝑲 )−1 (𝑮𝑇

𝑢𝑮
−1
𝑧 (𝒇𝑧 − 𝑯𝑧𝑮−1

𝑧 𝒇 𝜇 ) − 𝒇𝑢 )
// Local solves
𝒅𝒛 = −𝑮−1

𝑧 (𝒇 𝜇 + 𝑮𝑢𝒅𝒖)
𝝁 = −𝑮−1

𝑧 (𝒇𝑧 + 𝑯𝑧𝒅𝒛)

𝛼 ← lineSearch(𝑑𝒖, 𝑑𝒛, 𝝁)
𝒖 ← 𝒖 + 𝛼𝑑𝒖
𝒛 ← 𝒛 + 𝛼𝑑𝒛

return 𝒖, 𝒛
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Figure 9: We start the octobot mesh in the deformed state (bot-
tom left). We then run 30 iterations of FEM and MFEM itera-
tions as we vary the Young’s modulus of the stiff region (shown
in purple). The soft region (shown in blue) remains fixed at
1 × 105𝑃𝑎. For large material heterogeneities, FEM takes much
longer to converge than our MFEM.
7 RESULTS & DISCUSSION
In the following examples, without loss of generality, we apply im-
plicit Euler time stepping and use the fixed corotational (FCR) elastic-
ity model [Stomakhin et al. 2012] (any hyperelastic model is appli-
cable Fig. 15). MFEM denotes our subspace MFEM solver and FEM
denotes a solver which uses the same skinning subspace, but applied
in standard FEM.

7.1 Iteration Ablation
The advantages of our subspace MFEM solver become especially ap-
parent for truncated real-time simulations with large heterogeneities.
Fig. 2 shows a crab model with a stiff shell and soft joints pinned at
one of its hind legs and falling under gravity. The subspace simulation
is carried out with 16 skinning modes and 342 cubature points. We
allow only two solver iterations every timestep and compare results
between our subspace MFEM solver, and a traditional subspace FEM
solver. The FEM example manifests a very common solver truncation
artifact which heavily damps motion. By contrast, our MFEM solver
easily allows the crab to exhibit rich rigid motion.

7.2 Complex Deformation
As shown in Fig. 8, our subspace solver can reproduce extreme twist-
ing motions for a heterogeneous candy with a hard middle (1 × 1010

Pa) and soft extremities (1×106 Pa). The twist is enforced via a spring
force, and the whole simulation is carried out in a subspace of 16 skin-
ning weights and 192 cubature points. We compare our subspace’s
result to one created with bounded biharmonic weights [Jacobson
et al. 2011; Lan et al. 2020] with weight handles located about sam-
ples found via farthest point sampling. While bounded biharmonic
weights provide a smooth basis for simulation, this subspace is not
aware of the heterogeneity present within the candy’s domain, re-
sulting in most of the modes locking their motions to ensure the stiff
regions remain undeformed, leaving little degrees of freedom avail-
able to accomodate the twist. By contrast, our skinning eigenmode
subspace is sensitive to the material properties of the candy, which
allows our simulation to better capture this sharp transition in the
material properties of the domain.
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Figure 10: Pareto-search exploring the cost/benefit tradeoff of
varying our two subspace parameters, the number of skinning
modes𝑚 and the number of cubature points |C| . We visualize
the resulting full space energy gradient after convergence (left)
as well as the computation time per newton iteration (right).
7.3 Material Heterogeneity
Fig. 9 investigates how the extent of the heterogeneity affects the con-
vergence of our subspace Mixed-FEM solve and specifically compares
against the convergence of a traditional FEM simulation.

We start with the Octobot mesh in a deformed state and run both
subspace FEM and MFEM solvers for a single timestep. The subspace
used is composed of 16 skinning modes and 800 cubature points. We
perform this experiment for 3 different Young’s moduli and plot the
iteration progression of the Newton decrement for each solve.

Fig. 1 stress tests our solver’s ability to simulate large-scale models
with a high number of material discontinuities. Here, a Mammoth
with stiff skeleton bones (1 × 1010 Pa), soft joints (5 × 105 Pa), and
softer muscle (1 × 105 Pa) is excited by an external periodic force
applied on its back bone, moving it up and down and thrashing it
around the scene. We observe energetic rag-doll rotational motion of
the limbs and body, a detail noticeably absent from the unconverged
subspace FEM simulation provided in the supplemental video.

7.4 Geometric Heterogeneity
Heterogenity of elastic moduli is just one possible source of large
variations in elemental strains. Another possible source is the geome-
try of the domain; heterogeneous thickness, for instance, can lead to
comparatively small and large strains in slender and thick regions,
respectively (see Fig. 13).

In this example, we wind up a pendulum, twist it back a few times,
and release it, allowing it to unwind and come to rest. We carry out
the simulation in a subspace composed of 16 Skinning Modes and 400
cubature points (Fig. 16). Starting both methods at the twisted state,
we simulate the unwinding with MFEM and FEM with one iteration
per timestep. We observe that MFEM maintains the same energy pre-
serving benefits, while FEM again exhibits rotation damping artifacts.
This example uses homogeneous material properties, emphasizing
that our method offers an advantage when the strain is heterogeneous,
whether induced by constitutive or geometric properties.

7.5 Mode-Cubature Pareto Fronts
In Fig. 10, we investigate how both our subspace parameters, the
number of skinning modes and the number of cubature points, affect
both the accuracy of our subspace approximation as well as the time
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Table 1: We report average times (in milliseconds) for one iteration of subspace MFEM/FEM and full-space simulations for
meshes of various complexity. MFEM corresponds to a simulation step time for our subspace mixed FEM solver, FEM is the
time for a subspace FEM solve step, and𝑚 and |C| are, respectively, the number of skinning modes and cubature points used in
both subspace solvers. Proj is the time for the full-space projection used in the subspace solvers. Lastly, Full MFEM is the time
for a full-space MFEM iteration (Trusty et al. [2022]).

Mesh |V| |T | m |C| MFEM (ms) FEM (ms) Proj (ms) Full MFEM (ms)
Octobot (Fig. 9) 32 591 132 124 5 227 1.19 1.10 0.42 3,099.1
Gatorman (Fig. 7) 54, 235 227, 035 10 192 2.01 2.04 0.41 11,442.7
Mammoth (Fig. 1) 98, 175 531, 565 16 581 7.37 7.56 0.54 263,545

Crab (Fig. 2) 57,529 223, 565 16 342 5.87 5.51 0.49 7,483.75

Octobot

Gatorman

Mammoth

Crab

Time (ms)
42 60

Gradient
Assembly
Linear solve
Local solve
Linesearch

Figure 11: A timing breakdown of the core components for a
single subspace MFEM simulation step of the Octobot (Fig. 9),
Gatorman (Fig. 7), Crab (Fig. 2), and Mammoth (Fig. 1) simula-
tions.
it takes to run. With the octobot starting in the bent position shown
in Fig. 9 and allowing one simulation timestep to occur. We carry out
this experiment assuming a homogeneous material with a Young’s
Modulus of 105 Pa.

To measure the accuracy of the converged solution (Fig. 10, left),
we project our subspace solution back to the full space and evaluate
the gradient of the full space elastodynamic optimization problem,
which should be 0 for an accurate, converged result. In particular,
note that the top left part of the grid-search makes use of many skin-
ning modes, but still incurs a lot of error. This may seem unintuitive,
but in fact stems from the introduction of a null space in our cuba-
ture approximation. Because we have so few cubature points in this
regime, but many degrees of freedom for motion, spurious 0-energy
oscillations manifest, a known cubature pitfall [McAdams et al. 2011].
In practice, we’ve found that setting the number of cubature points
to 20× the number of skinning modes allows us to safely steer clear
of this regime (Fig. 14), and all the examples reported in the rest of
this paper do not exhibit these spurious deformations.

7.6 Timing Comparison and Discussion
Table 1 provides timings per MFEM and FEM iteration respectively.
We compare timings for the Octobot (Fig. 9 and Fig. 10), the Gatorman
(Fig. 7), the Mammoth (Fig. 1) and the Crab (Fig. 2) with varying
subspace sizes. We also compare our solver’s performance to the
full-space MFEM solver of Trusty et al. [2022] and attain an average
speed up of over 3 orders of magnitude. The additional computation
required of our MFEM solver, when compared to FEM, is only the
local stretch and Lagrange multiplier solves Eq. (7), which incurs an
added𝑂 (𝑘) operations. This step only incurs a marginal difference as
shown clearly in the timing breakdown of Fig. 11, which shows the

MFEM simulation time is dominated by the 𝑂 (𝑚2𝑘) dense 𝑲 matrix
assembly. With an asymptotically equivalent runtime as FEM, as well
as more favorable energetic behavior at low-iterations, our solver
enables real-time heterogenous domain simulation. In contrast, an
equivalent subspace size requires FEM to perform more iterations
(Fig. 2 and Fig. 7), making real-time simulation unattainable in many
cases.

7.7 Artifact Tradeoffs between MFEM and FEM
While FEM exhibits extreme damping artifacts at low iteration counts,
our solver can exhibit overly-energetic motion at low-iteration counts.
Fig. 7 shows a subspace simulation on a case with extreme deforma-
tion and a localized external force.

Here, a soft gatorman (5 × 105 Pa) wielding a stiff (1 × 1012 Pa)
sword is pulled back from its tail (using a soft penalty constraint) and
slingshotted towards its enemies. The subspace for the simulation is
composed of 10 skinning modes and 192 cubature points. We com-
pare our subspace simulation results with those of a traditional FEM
solver as we increase the number of solver iterations. Note that our
subspace allows us to capture the localized rotational motion of the
sword which is absent from the FEM solution. We find that MFEM is
overly energetic at low iterations, causing an initial overestimation
of angular motion. This results in jittering artifacts, which quickly
disappear when taking more than one solver iteration. In contrast,
FEM requires many more iterations to recover the correct rotational
behavior (see the supplemental video for a demonstration).

7.8 Limitations of Global Subspaces
The global support of the skinning eigenmode subspace allows our
simulation to efficiently capture complex ranges of motion. This can
lead to noticeable global artifacts when a user is exciting a local region
of the mesh. For example Fig. 12 shows a user bending the mammoth’s
hind leg, causing a jerk motion in the mammoth’s trunk. We measure
the amount of deformation induced by summing accumulated vertex
displacements throughout the simulation. We increase the size of the
subspace and observe that this artifact goes away as the number of
skinning modes increases.

8 CONCLUSION AND FUTUREWORK
We have presented a new subspace mixed finite element method
that offers real-time elastodynamic simulation for large-scale hetero-
geneous domains. Typical subspace methods experience degraded
performance and jarring artifacts in these settings. We show that
coupling a skinning eigenmode subspace with a mixed finite element
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Figure 12: Because of our globally supported subspace, bending
the knee of the mammoth causes the trunk to deform. This
artifact goes away as we increase the size of the subspace.
method and applying a heterogeneity-aware cubature scheme yields
a solver robust to extreme heterogeneities with performance decou-
pled from the resolution of the underlying mesh. Our method pro-
vides exciting opportunities for future work. There exists a complex
cost/quality tradeoff between dense globally supported subspaces,
and sparse locally supported subspaces. Understanding this trade-
off would help resolve the artifacts in Fig. 12 and would pave the
way to robust reduced-space contact simulation – a difficult open
problem for reduced space methods [Lan et al. 2020]. Finally, we be-
lieve our subspace MFEM solver could be extended for use in physics
based inverse design in engineering and biomechanics where domain
heterogeneities are commonplace.
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Figure 13: We pin the pendulum from the top, twist the bottom end, and simulate the unwinding. We compare results from
FEM and MFEM with one solver iteration per timestep against a converged subspace FEM solution. Even at low iterations our
MFEM solvers show much better agreement, which is reflected on the plot on the right where total angular momentum for
each pendulum block is plotted over time.
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Figure 14: Under-integration with our clustering-based inte-
gration leads to artificial softening in softer regions. Here we
simulate a 48,000 tetrahedra heterogeneous cantilevered beam
and visualize the maximum deflection with different numbers
of cubature points. 5 skinning modes are used for this simula-
tion.
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Figure 15: Our method is compatible with any hyperelastic
material model. Here we apply a load and simulate beams to
equilibrium with As-Rigid-As-Possible (ARAP), fixed corota-
tional (FCR), and stable Neohookean material models

Figure 16: Our cubature sampling scheme is geometry aware
and constraint aware. Note that our schemes samples more
densely in the thin regions and only samples a single point on
the far left where the pendulum is pinned.


