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Fig. 1. Given a continuously-parameterized shape space (left), we introduce eigenanalysis parameterized over shape space (center), enabling applications such
as subspace simulation and inverse design (right). Unlike eigenanalysis of a single shape, our shape-space eigenanalysis is readily differentiable with respect
to shape parameters, enabling optimization objectives based on eigenmodes, such as locomotion or timbre. Our focus on shape space in turn requires new
techniques for consistency of modes across shape space: compare the shading of shapes within one triangle (eigenfunctions varying over shape space) and
across triangles (distinct modes revealed by eigenanalysis).

Eigenanalysis of differential operators, such as the Laplace operator or elastic
energy Hessian, is typically restricted to a single shape and its discretization,
limiting reduced order modeling (ROM). We introduce the first eigenanalysis
method for continuously parameterized shape families. Given a parametric
shape, our method constructs spatial neural fields that represent eigen-
functions across the entire shape space. It is agnostic to the specific shape
representation, requiring only an inside/outside indicator function that de-
pends on shape parameters. Eigenfunctions are computed by minimizing a
variational principle over nested spaces with orthogonality constraints. Since
eigenvalues may swap dominance at points of multiplicity, we jointly train
multiple eigenfunctions while dynamically reordering them based on their
eigenvalues at each step. Through causal gradient filtering, this reordering is
reflected in backpropagation. Our method enables applications to operate
over shape space, providing a single ROM that encapsulates vibration modes
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for all shapes, including previously unseen ones. Since our eigenanalysis is
differentiable with respect to shape parameters, it facilitates eigenfunction-
aware shape optimization. We evaluate our approach on shape optimization
for sound synthesis and locomotion, as well as reduced-order modeling for
elastodynamic simulation.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Reduced-order modeling, Implicit neural
representation, Computational design, Differentiable simulation
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1 INTRODUCTION
From the aerodynamics of an airplane wing to the flexibility of a
plastic fork, partial differential equations (PDEs) play a crucial role
in physics-constrained product design. The eigenfunctions of PDE
operators are essential for analyzing design solutions, as they help
identify bending or fracture patterns, describe resonant frequencies,
and encode geometric properties such as distance and curvature.
However, eigenfunctions are typically computed for a single ge-

ometry, and geometry modification requires recomputing the dis-
crete operator and its eigendecomposition, which is nonlinear with
respect to geometry. These compute-intensive steps hinder PDE-
based shape optimization and interactive design tasks, which often
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require numerous eigenfunction and derivative evaluations. A key
challenge is that evaluating eigenfunctions during optimization is
cost-prohibitive, and their derivatives with respect to shape param-
eters are not readily available.

We introduce a method and representation for eigenmodes over
shape space, enabling efficient evaluation for any shape, including
those unseen during training (see Fig. 1, Fig. 2, Fig. 4). Since our
eigenfunctions and eigenvalues share continuous parameters with
the corresponding geometry, differentiating eigenfunctions with
respect to shape is straightforward. To the best of our knowledge,
this is the first proposed method of its kind in the literature.
Our method is agnostic to the shape space representation (see

Fig. 3), requiring only an inside/outside indicator function dependent
on shape parameters. As a result, it applies to both manually defined
shape interpolation and neural implicit representations trained over
real-world datasets [Chen and Zhang 2019a].
Our first contribution is a variational method that generates

eigenfunctions for single shape domains represented by neural
fields. While the eigenfunction problem for PDE operators is well-
established in the context of finite element discretizations, it remains
largely unexplored for more generalized domains, such as those rep-
resented by neural implicit representations, even for single shapes.
To address this, we introduce a projection module at the end of
our neural field pipeline, ensuring that each eigenfunction’s output
lies within the classical eigenfunction constraint space. With these
constraints ensured by construction in the output space of our net-
work, we can compute the eigenfunctions by minimizing a suitable
operator-aware loss functional.

Expanding the aforementioned method to a shape space presents
its own unique challenges. For a single shape, these eigenfunctions
are labeled, computed, and discussed in terms of the order of their
dominance, corresponding to a monotonic sequence of eigenvalues.
For a shape space, however, we can no longer think in terms of
monotonicity because eigenvalues as functions over shape space of-
ten cross and exchange dominance (see Fig. 7-right and Fig. 8-right).
Maintaining the right “topological structure” of eigenfunctions over
shape space as they cross each other is critical to engineering design
tasks that require differentiating eigenvalues or eigenfunctions with
respect to shape parameters.
Therefore, our second contribution is a method that jointly op-

timizes eigenfunctions over shape space. This requires accounting

Fig. 2. Elastic eigenfunctions over Shape Space.With a single neural model,we
can compute eigenfunctions for a bridge over the entire shape-space shown
in Fig. 1.

Point Cloud Signed Distance Field Tetrahedron Mesh Neural Implicit Representation

Fig. 3. Eigenfunctions Across Different Representations Our method is
discretization-agnostic; we have demonstrated the calculation of eigen-
functions for point clouds, signed distance fields, tetrahedral meshes, and
neural implicit representations.

for the exchange of dominance relationships over shape space and
a special filtering step during back-propagation, which we refer to
as causal sorting and causal filtering, respectively.

For the first time, we have a shape-dependent eigenfunction rep-
resentation that correctly tracks crossovers of eigenvalues at points
of multiplicity in shape space. This approach generalizes across
families of shapes, allowing us to predict eigenfunctions for new
shapes that were not seen during precomputation. With its novel
dynamic reordering and gradient filtering, it encourages accurate re-
production of eigenfunctions, with consistent modes across different
shapes, enabling applications such as single-model multiple-shape
subspace physics, warm-starting PDE solutions across shapes, and
inverse shape optimization for locomotion and sound profile.

2 RELATED WORK

2.1 Eigenfunctions of PDEs
Eigenfunctions of PDEs have a broad range of applications such
as deformation [Benchekroun et al. 2023; Hildebrandt et al. 2011;
Jacobson et al. 2014; James and Pai 2002], fluid simulation [Cui
et al. 2018; De Witt et al. 2012], locomotion [Kry et al. 2009; Nunes
et al. 2012], sound analysis [Bharaj et al. 2015; Kac 1966; O’Brien
et al. 2002], shape analysis [Mateus et al. 2008; Melzi et al. 2018;
Ovsjanikov et al. 2012; Rampini et al. 2019; Sharma and Horaud
2010; Sun et al. 2023; Vallet and Lévy 2008], and geometric deep
learning [Sharp et al. 2022; Smirnov and Solomon 2021].

The most straightforward approach to calculating the eigenfunc-
tions for a given shape is to mesh the domain and perform eigende-
composition on the constructed discrete operator.

For the Laplace-Beltrami operator, despite the availability of vari-
ous methods [Belkin et al. 2008, 2009; Bobenko and Springborn 2005;
Fisher et al. 2006; Gueziec et al. 1999; Liu et al. 2017; Pang et al. 2024;
Sellán et al. 2019; Sharp and Crane 2020; Shimada and Gossard 1995],
each with its own advantages, none perfect [Wardetzky et al. 2007],
the most commonly adopted discrete operator is the cotangent ma-
trix. For elastic energies, the commonly used discrete operator is
the elastic Hessian, which varies depending on the specific elas-
tic energy. Commonly used elastic energy models include linear
elasticity [Sifakis and Barbic 2012], St. Venant-Kirchhoff [Barbič
and James 2005], co-rotational (ARAP) [Rankin and Brogan 1986;
Sorkine and Alexa 2007], and Neo-Hookean elasticity [Smith et al.
2018], to name a few. A generalized approach for calculating the
Hessian matrix for a given elastic energy can be found in [Kim and
Eberle 2022].
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After obtaining the discrete operator, the eigenvectors can triv-
ially be calculated via eigensolvers [Arbenz et al. 2005; Duersch et al.
2018; Nasikun and Hildebrandt 2022]. Because all these approaches
rely on a discrete operators and perform eigenanalysis on its repre-
sentative matrix, they are tied to a single discretization of one shape.
They cannot find eigenfunctions for general shape families.

2.2 Shape Spaces and Neural Fields
The shape space in our paper refers to a family of shapes defined by
a continuously parameterized shape code. Shape spaces can serve
various purposes, including defining a solution space for shape
optimization [Jin et al. 2024; Ma et al. 2021], visualizing physical
properties [Schulz et al. 2017], and enabling shape representation
and generalization [Chen and Zhang 2019a]. Common examples of
such shape spaces in the graphics community include design spaces
[Schulz et al. 2018], shape interpolation [Solomon et al. 2015], mesh
Booleans [Liu et al. 2024; Yuan et al. 2024]. Unfortunately, different
shapes usually entail vastly different discretizations, making it very
difficult to smoothly navigate geometrically diverse shape spaces.

To make our method discretization-agnostic and able to integrate
with large shape spaces, we make use of shape families defined by
neural fields [Xie et al. 2021]. These neural fields parameterize a
spatially dependent vector field through a neural network. Early
seminal efforts by Chen and Zhang [2019b]; Mescheder et al. [2019];
Park et al. [2019] utilized this framework for encoding signed dis-
tance fields, wherein each distinct latent vector represents a unique
geometry. Neural fields have since been extensively applied in var-
ious domains, including neural rendering [Mildenhall et al. 2020],
3D reconstruction [Wang et al. 2021; Yariv et al. 2020], geometry
processing [Aigerman et al. 2022; Dodik et al. 2023; Mehta et al. 2022;
Williamson and Mitra 2024; Yang et al. 2021], topology optimization
[Zehnder et al. 2021], constitutive modeling [Li et al. 2023], and
solving diverse PDE problems [Chang et al. 2023; Chen et al. 2022,
2023; Deng et al. 2023; Raissi et al. 2019].

Our work builds upon previous research and extends neural fields
to model eigenfunctions for PDEs. Neural fields offer a significant ad-
vantage over traditional representations like meshes and grids when
modeling eigenfunctions: the ability to model a large family of pa-
rameterized shapes. Specifically, neural fields enable the modeling of
eigenfunctions across a family of shapes by using high-dimensional
shape codes as inputs. Furthermore, unlike prior approaches that
fit neural fields to pre-existing geometric data, our method trains
eigenfunction neural fields in a geometry-informed manner without
requiring any precomputed eigenfunctions as training data.

3 EIGENANALYSIS OF A SINGLE SHAPE
Webeginwith defining eigenfunctions for a single shape and then de-
scribe our method over shape space in Sec. 4. In both cases, we first
discuss the variational perspective as a foundation, and then move
on to implementation. We begin with a variational perspective on
eigenanalysis of the Laplace operator for a specific, non-parametric
volumetric shape in R𝑛 , before extending to elasticity and shape
spaces.

Fig. 4. Laplace Eigenfunctions for a Teapot Shape Space. The eigenfunctions
of the Laplace operator describe the low-frequency heat distributions. We
demonstrate these eigenfunctions across different teapot shapes in the
shape space.

3.1 Eigenanalysis: A Variational Perspective
Consider a compact subset Ω ⊂ R𝑛 with a piecewise smooth bound-
ary 𝜕Ω. We are interested in studying the eigenfunctions of the
Laplace operator Δ, subject to appropriate boundary conditions on
𝜕Ω. The Laplace operator is defined as

Δ𝑢 = ∇ · ∇𝑢 =

𝑛∑︁
𝑖=1

𝜕2𝑢

𝜕𝑥2
𝑖

,

where 𝑢 is a sufficiently smooth function defined on Ω.
The dominant eigenfunction 𝜙1 (𝒙) minimizes Dirichlet energy

𝐸𝐷 [𝜙] = 1
2

∫
Ω
|∇𝜙 |2 𝑑Ω, (1)

among U = {𝑓 ∈ 𝐿2 (Ω) | ∥ 𝑓 ∥2 = 1}, the unit-norm square-
integrable functions in Ω. Restricting the search to unit-norm func-
tions (akin to taking the Rayleigh quotient) helps canonize the
minimizer and equates eigenvalue to Dirichlet energy, 𝜆1 = 𝐸𝐷 [𝜙1].

Peeling off eigenfunctions. The subdominant eigenfunction also
minimizes Dirichlet energy, but this time in the space 𝜙⊥1 , the or-
thogonal complement to 𝜙1 in 𝑆 . And so forth, in order of dominance:
the 𝑖’th eigenfunction 𝜙𝑖 minimizes Dirichlet energy 𝜆𝑖 = 𝐸𝐷 [𝜙𝑖 ] in
C𝑖 = span{𝜙1, . . . , 𝜙𝑖−1}⊥, the space orthogonal to earlier modes:

𝜙𝑖 = argmin
𝜙 ∈ U ∩ C𝑖

𝐸𝐷 [𝜙] . (2)

In this iterative “peeling” procedure, echoing the Courant-Fischer-
Weyl min-max principle, each dominant eigenfunction is found and
“peeled away” revealing the complementary subspace containing the
subdominant eigenspace, where the procedure is repeated. Because
the spaces are nested, the minimizer of the “bigger” space cannot be
greater than subsequent “smaller” spaces, therefore 𝜆1 ≤ 𝜆2 ≤ . . . .
Since we have not explicitly enforced any boundary conditions,

the minimizers all satisfy the natural condition, which, for the
Dirichlet energy, is the vanishing Neumann value 𝜕𝜙𝑖

𝜕𝑛 = 0 on 𝜕Ω,
as shown in Fig. 5. We discuss avenues for essential boundary con-
ditions in Sec. 7.
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Neumann b.c. b.c. preserved across shape space

EvaluationTraining

Fig. 5. Boundary Condition. Minimizing the Dirichlet energy on a shape
naturally enforces a vanishing Neumann boundary condition. To illustrate
this, we visualize the isolines of the eigenfunctions. Notably, the gradients
along the boundary are nearly zero, highlighting the fulfillment of the
Neumann condition.
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Fig. 6. Comparison with eigenfunctions from cotangent Laplacians. When
training on a single shape, our method converges to results consistent with
traditional eigenanalysis.We compare the eigenfunctions obtained using our
approach with those derived from a cotan Laplace (linear finite element on
triangle mesh) matrix. The accuracy of our method matches that of existing
techniques that rely on matrix construction from point cloud sampling.

3.2 Implementation with Neural Fields
We implemented the optimization described in Equation 2 using
neural fields. Our results show good agreement with prior discrete
Laplace operators (see Fig. 6), boundary condition satisfaction (see
Fig. 5), and SE(3) (or SE(2)) invariance (see Fig. 12).

Our implementation models each eigenfunction 𝜙𝑖 as the compo-
sition of a corresponding neural field and a projection operator:

𝜙𝑖 = P𝑖 ◦ 𝜙𝑖 . (3)

The neural field𝜙𝑖 is amultilayer perceptron (MLP)mapping domain
position, 𝒙 ∈ Ω, to field value, 𝜙𝑖 (𝒙). The projection operator P𝑖 :
𝐿2 → U ∩ C𝑖 maps any field to a constraint-satisfying field.
Algorithm 1 performs eigenanalysis for the Laplace operator

over a single shape. We describe the optimization, energy (loss)
evaluation, and projection operator in turn.
Each neural field, 𝜙𝑖 , is trained by minimizing the loss L =

𝐸𝐷 [𝜙𝑖 ]. After convergence, the next neural field is trained, in se-
quence. We estimate the domain integral with stochastic cubature:

L̃ = 𝐸𝐷 [𝜙𝑖 ] =
∑︁
𝒙𝒋 ∈X

|∇𝜙𝑖 (𝒙𝒋) |2 . (4)

ALGORITHM 1: Optimization on a Single Shape for Laplace Eigen-
function

𝑒𝑝𝑜𝑐ℎ = 0;
repeat

X = {𝒙1, . . .}; ⊲ Sample Domain Ω ;
𝜙𝑝𝑟𝑒𝑣 (X) = ones_like(X) ;

⊲ Hardcode the known eigenfunction;
for 𝑖 in range [0, 𝑘 ) do

Evaluate Network 𝜙𝑖 (X) ;
Calculate 𝝀 by doing the projection in Equation 5;
Calculate 𝜙𝑝

𝑚+1 (X) by Equation 6;
Calculate 𝜙 (X) by Equation 7;
for 𝒙 in X = {𝒙1, . . .} do

Evaluate gradient 𝜕𝜙 (𝒙 )
𝜕𝒙 by Equation 8;

⊲ In practice, this is implemented using tensors;
end
Calculate loss L by Equation 4 ;
Backward loss ;
Concatenate 𝜙𝑝𝑟𝑒𝑣 (X) with 𝜙𝑖 (X) and detach;

⊲ Update for future orthogonal constraints;
end
𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1 ;

until 𝑒𝑝𝑜𝑐ℎ = 𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ;

Our implementation uniformly samples cubature points X = {𝑥 𝑗 ∈
Ω} via rejection sampling, drawing from a uniform distribution
over an axis-aligned bounding volume, and rejecting samples based
on the indicator (inside/outside query) function of Ω. Since our
implementation assumes only an indicator function, it is agnostic
to the representation of Ω.

The projection P𝑖 takes a general field 𝜙𝑖 and returns the closest
field 𝜙𝑖 ∈ U ∩ C𝑖 satisfying the orthogonality and unit-norm con-
ditions. The projection is composed of two steps: orthogonalization
and normalization, which we represent via the dataflow schematic:

P𝑖 : 𝜙𝑖
Gram–Schmidt−−−−−−−−−−−−→ 𝜙

𝑝

𝑖

normalize−−−−−−−−→ 𝜙𝑖 .

Orthogonalization (projection to C𝑖 ). Any two eigenfunctions 𝜙𝑖
and 𝜙 𝑗 , 𝑖 ≠ 𝑗 , must be orthogonal,

∫
Ω 𝜙𝑖𝜙 𝑗𝑑Ω = 0, a constraint

we achieve by Gram–Schmidt orthogonalization. Given a candi-
date (unconstrained) function 𝜙𝑚 not yet orthogonal to all previous
eigenfunctions, we find its projection 𝜙

𝑝
𝑚 onto the orthogonal sub-

space by subtracting from 𝜙𝑚 the component already spanned by
the𝑚 − 1 dominating eigenfunctions 𝝓 = (𝜙1, . . . , 𝜙𝑚−1). We seek
the 𝝀-weighted linear combination of dominating eigenfunctions 𝝓
that best approximate 𝜙𝑚 ,

𝝀 = argmin
𝝀∈R𝑚−1




𝝀𝑇 𝝓 − 𝜙𝑚





2
, (5)

where ∥ · ∥2 is the 𝐿2 norm, which, like all domain integrals, we
estimate by uniform stochastic cubature. Next, we remove the com-
ponent:

𝜙
𝑝
𝑚 = 𝜙𝑚 − 𝝀𝑇 𝝓 . (6)

The gradient, required for training, follows by chain rule.
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Shape Code Shape Code
Eigenfunction 2

Eigenfunction 1

Eigenfunction Pattern Inconsistent Eigenfunctions Pattern Consistent

Eigenfunction 2

Eigenfunction 1

Fixed Order Shape-dependent Causal Sort

Fig. 7. The wing shape varies over shape space. (left) Ablation: eigenfunctions 1 & 2 swap modal patterns at the point of eigenvalue multiplicity (see Fig. 8).
(right) Our approach: shape-dependent causal sorting improves mode consistency across shape space.

Normalization (projection toU). We enforce the unit-norm con-
straint by normalizing 𝜙𝑝 (𝒙):

𝜙 (𝒙) = 𝜙𝑝 (𝒙)
∥𝜙𝑝 ∥2

, (7)

again estimating the 𝐿2 norm by uniform stochastic cubature.
To accelerate gradient computation, we approximate the gradient

of the norm by treating it as independent of its argument, a similar
approach to [Lévy and Zhang 2010; Williamson and Mitra 2024].

(𝜕/𝜕𝒙)𝜙 ≈ ∥𝜙𝑝 ∥−12 (𝜕/𝜕𝒙)𝜙𝑝 . (8)

Now, we have successfully constructed a set of continuous func-
tions that are orthogonal to each other and possess a unit norm.

Implementation details for a single Shape. We use ADAM [Kingma
and Ba 2017] to optimize the neural networkweights, and implement
our method in PyTorch, evaluating spatial gradients such as ∇𝜙𝑖 (𝒙)
using PyTorch’s autodiff. Theory suggests that to minimize bias in
the optimization, each domain integral should be estimated using
an independently sampled cubature set, however, we found that
using one cubature set per epoch, for all integrals, provides good
results.

Extension to Elasticity. Ourmethod can also be applied to elasticity.
In this case, the resulting eigenfunctions (elastic modes) are vector-
valued fields, 𝝓𝑖 (𝒙) ↦→ R3. We implemented linear elastic energy
[Sifakis and Barbic 2012]. The eigenfunctions in this context are
minimizers of the energy functional:

𝐸𝑒 [𝝓] =
1
2

∫
Ω
𝜇 |∇𝝓 + ∇𝝓𝑇 |2𝐹 + 𝜆

2
Tr2 (∇𝝓 + ∇𝝓𝑇 )𝑑Ω, (9)

Here, 𝝓 represents the vector-valued eigenfunction, and ∇𝝓 is the
deformation gradient (or Jacobian), expressed as a 3 × 3 matrix. The
term ∇𝝓 + ∇𝝓𝑇 is known as the small strain tensor. The Frobenius
norm is denoted by | · |𝐹 , and 𝜇 and 𝜆 are the Lamé coefficients. We
estimate 𝐸𝑒 ≈ 𝐸𝑒 using uniform stochastic cubature.

Crucially, other than substituting 𝐸𝐷 with 𝐸𝑒 , and reconsidering
the knownmodes (discussed below), our theory and implementation
are unchanged, highlighting the broader applicability of the method.

Handling Known Modes. When subject to Neumann boundary
conditions, the dominant mode (𝜆1 = 0) of the Laplace operator is al-
ways the constant function, irrespective of domain geometry. While

the peeling implementation described above is able to find this first
trivial mode, this is wasted computation, since the result is already
known. Therefore, we hard-code the known geometry-independent
eigenfunction analytically, and represent the remaining, geometry-
dependent modes using neural fields. For the elasticity operator,
we hard-code the zero eigenvalue modes corresponding to rigid
translations and rotations.

4 EIGENANALYSIS OVER SHAPE SPACE
We are ready to dive into training over shape spaces. Let the domain
{Ω𝒈 |𝒈 ∈ D} be parameterized by a geometry code 𝒈 ∈ D drawn
from a shape spaceD. Since choosing a point 𝒈 ∈ D fixes the shape
of the domain Ω𝒈 , we could use the eigenanalysis of a single shape
from §3 to determine the eigenfunctions 𝜙𝒈

𝑖
(𝒙).

On the other hand, by explicitly leaving 𝒈 ∈ D as a free param-
eter, we can think of eigenfunctions 𝜙𝒈

𝑖
(𝒙) ≡ 𝜙𝑖 (𝒈, 𝒙) as spatial

fields parameterized over shape space, whose cross-sections at some
𝒈 = 𝒈𝑗 correspond to the eigenfunctions over Ω𝒈𝑗 . Classical results
from perturbation theory [Kato 1980] state that for small, smooth
perturbations of the domain, eigenvalues and eigenfunctions of
elliptic operators (e.g., the Laplacian) vary smoothly, or even ana-
lytically. This opens the door to a reduced-order or parametrized
representation of the eigenfunctions across the entire shape space
D, that is, to efficient learning and representation of eigenfunctions
𝜙
𝒈
𝑖
(𝒙) across a continuous family of domain geometries.

4.1 Shape-Space Eigenanalysis: A Variational Perspective
A first, albeit misguided, attempt to generalize the method discussed
in §3 might be to modify the domain of integration to be the prod-
uct of shape space and the spatial domain. The first eigenfunction
𝜙1 minimizes the integral of Dirichlet energy over shape space∫
D 𝐸𝐷 [𝜙𝒈1 ]𝑑D, the second eigenfunction 𝜙2 does so restricted to
𝜙⊥1 , and so forth. But such peeling would inherently yield eigen-
functions that maintain a fixed dominance relationship across shape
space, which, as we are about to see, is damaging and unnecessary.
We present a didactic example in Fig. 7-left, where the shape

space represents a family of airplanes of changing wing thicknesses
𝒈. As the shape code changes, the vertically oriented eigenfunc-
tions (varying from the left wingtip to the right wingtip) and the
horizontally oriented eigenfunctions (varying from the tail to the
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aircraft’s body) swap dominance. If we also plot the eigenvalues of
the two eigenfunctions, as shown in Fig. 8-left, we observe that the
crossover occurs at a point of geometric symmetry and eigenvalue
multiplicity.
In this example, the classical view of eigenfunctions ordered by

dominance leads to defining the blue curve that (by construction)
always dominates the red curve throughout shape space Fig. 8-left
(“Fixed Order”). Observe how the blue curve represents an eigen-
function that is only piecewise smooth over design space, with a
kink at the crossover; the same for the red curve. Such a kink is
undesirable for neural field training and its applications, consum-
ing more network capacity, slowing convergence, and leading to
numerical challenges or failures in applications that harness the
smoothness and differentiability of eigenfunctions with respect to
𝒈. Worse, such discontinuities increase in number and topological
complexity with the dimension of design space and the number of
eigenfunctions.
Fortunately, these discontinuities are an unnecessary, fictitious

fabrication arising only from clinging to the single shape mindset.
Indeed, Kato [1980] argues instead for viewing eigenvalues as an
unordered set, whose subscript indexing merely provides a unique
identifier, not an ordering. Now eigenvalues and eigenfunctions
are smooth even over crossings at points of multiplicity. This is
depicted in Fig. 7-right and Fig. 8-right (“Shape-Dependent Causal
Sort”), wherein the eigenvalue curve colored blue corresponds to the
eigenfunction that is smooth and horizontally-oriented throughout
shape space; likewise, the red curve corresponds to the vertically-
oriented mode smoothly-varying over shape space. Fig. 13 depicts
the same kind of comparison for a complex shape space.

We therefore turn to a variational principle that jointly considers a
set of eigenfunctions minimizing the sum of their Dirichlet energies
integrated over shape space,

argmin
𝜙0 ...𝜙𝑘

𝑘∑︁
𝑖=0

∫
D
𝐸𝐷 [𝜙𝒈

𝑖
] d𝒈 , subject to “orthogonality.” (10)

This energy is a straightforward extension of the single shape case,
and the story would end here if eigenvalues never crossed. The key
remaining ingredient is the enforcement of orthogonality relation-
ships, which becomes nontrivial because dominance relationships
vary over shape space.

4.2 Implementation Using Neural Fields
To achieve the desirable construction of Fig. 8-right, we must forgo
sequential peeling of an ordered sequence and instead jointly opti-
mize an unordered set of eigenfunctions. As depicted in the same
figure, our optimization must allow different functions to dominate
in different regions of shape space.
This novel direction presents three interwoven technical chal-

lenges: (1) We seek to find multiple eigenfunctions governed by
coupled energy minimization principles across a descending chain
of spaces, (2) Each minimization problem is constrained to a sub-
space determined by the solution of all preceding minimizations,
establishing a causal relation, and (3) The ordering of these causal
relations varies across the shape space.
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Fig. 8. We visualize the eigenvalues corresponding to Fig. 7. The x-axis
shape code matches the middle panel of Fig. 7, following the same shape
variation. The (in)consistency of modal patterns in Fig. 7 can be understood
by examining the eigenvalues as functions over shape space. (left) Ablation:
Comparing the eigenvalue plot to the eigenfunctions depicted in Fig. 7-left,
the mode swap occurs at the point of multiplicity, where the eigenvalue
curve kinks. (right) Ours: Our eigenmodes are as consistent as possible
across shape space, and our eigenvalue curves are smoother, crossing as
appropriate at points of multiplicity.

To address these challenges, we extend the single shape algorithm
with three novel, interconnected concepts, all three strictly required
to obtain eigenfunctions analytic over shape space:

(1) Joint training: As we have seen, sequential peeling produces
an incorrect structure because no single ordering of eigen-
functions is valid across all of the shape space. Therefore, we
must learn 𝑛 eigenfunctions jointly.

(2) Gradient causal filtering: As we shall see, a naïve approach
to joint learning suffers from an action-reaction artifact, whereby
functions earlier in the causal chain are affected by an or-
thogonality constraint that should only affect functions sub-
sequent in the chain. To address this, our backpropagation
filters the gradient to enforce the causality of the orthogonal-
ity constraint.

(3) Shape-dependent causal sorting: Since the ordering of
causal relations cannot be predetermined and indeed varies
over shape space, we determine the order dynamically. At
each evaluation of the loss function, we re-establish the causal
ordering of orthogonality constraints based on the relative
dominance of eigenvalues.

Necessity of these three advances: These three interwoven con-
cepts are all required for our method to achieve, for the first time, a
shape-dependent eigenfunction representation that correctly tracks
crossovers of eigenvalues at points of multiplicity.
We show that our dynamic reordering encourages smoother

eigenfunctions across different shape (see Fig. 7-right) and facil-
itating eigenfunction-dependent shape design.

As in §3.2, we represent each eigenfunction 𝜙𝑖 as the composition
of a corresponding neural field and a projection operator, 𝜙𝑖 =

P𝑖 ◦ 𝜙𝑖 . However, this time the neural field maps both shape code,
𝒈 ∈ D, and domain position, 𝒙 ∈ Ω, to field value, 𝜙𝑖 (𝒈, 𝒙); and the
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projection operator, P𝑖 , which restrict the field to the constraint-
satisfying function spaceU∩C𝑖 , must now account for the variation
of dominance relations over shape space.

Algorithm 2 performs eigenanalysis for the Laplace operator over
shape space. We describe the optimization, energy (loss) evaluation,
and projection operator in turn.

4.2.1 Energy Evaluation. A set of neural fields {𝜙0, . . . , 𝜙𝑘 } is jointly
trained by minimizing the loss (recalling Eq. (10))

L =

𝑘∑︁
𝑖=0

∫
D
𝐸𝐷 [𝜙𝒈

𝑖
] d𝒈 . (11)

We estimate integrals over shape space and spatial domains via
uniform stochastic cubature (see §3.2), uniformly drawing a finite
set of shapes G = {𝒈𝑗 ∈ D}, yielding the discretized loss

L̃ =

𝑘∑︁
𝑖=0

∑︁
𝒈𝑗 ∈G

𝐸𝐷 [𝜙𝒈𝑗

𝑖
] . (12)

The computation of the loss includes evaluation of 𝐸𝐷 , wherein
the gradient ∇ ≡ ∇𝒙 is a spatial gradient calculated solely with
respect to spatial coordinates (recall Eq. (4)). The implementation
for elasticity simply replaces 𝐸𝐷 with 𝐸𝑒 (see §3.2).

4.2.2 Joint Training and Gradient Causal Filtering. Joint training
of eigenfunctions complicates the enforcement of orthogonality
constraints. Since the weights of both the dominating and dom-
inated neural fields are now optimization variables, backpropa-
gation produces an undesirable artifact. The gradient of the or-
thogonalization step has components along both the dominating
and dominated fields. This is the “action-reaction” principle of a
constraint force. A naïve backpropagation of this constraint gra-
dient disrespects the direction of causality, with the dominated
field “pushing back” the dominating field away from its optimum.

The inset figure illustrates the
action-reaction artifact. Given a
dominating function 𝜙1 and a
dominated function𝜙2 subject to
the constraint 𝜙2 ∈ 𝜙⊥1 , there are
two ways to decrease the Dirich-
let energy of the dominated func-
tion, either (1) by making adjust-
ments within the orthogonal sub-
space 𝜙⊥1 , or (2) by making ad-
justments to 𝜙1 so as to modify

the admissible space 𝜙⊥1 . The first option (“action”) respects causal-
ity, whereas the latter (“reaction”) does not; yet both arise from
differentiating the constraint 𝜙2 ∈ 𝜙⊥1 with respect to 𝜙1 and 𝜙2.
To eliminate the causality-violating reaction, we must not dif-

ferentiate the constraint with respect to the dominating function.
We call this causality-enforcing ignoring of a gradient term gradi-
ent causal filtering. Such filtering could be used to enforce any
causal constraint relationship in joint training of neural networks,
and we use it to protect the causality of the descending chains of
orthogonal spaces. We implement the filtering using detach()

in PyTorch. After detachment, the gradient of the orthogonality

Filtered gradient
(Ours)

Fixed gradient

Analytical result

2nd 3rd 4th 5th

Computed eigenfunction over Ω=[0,1]

Fig. 9. To illustrate the importance of gradient causal filtering, we com-
pare Laplacian eigenfunctions over the unit interval as produced by: (top)
Ground truth: analytical evaluation of sinusoids satisfying the vanishing
Neumann condition; (middle) Ours: variational eigenanalysis including gra-
dient causal filtering; (bottom) Ablation: our approach excluding gradient
causal filtering.

constraint is considered only with respect to the dominated eigen-
function. Figure 9 presents an ablation study for gradient causal
filtering.

Speedup of single shape training. We train jointly because it is
the only viable path to producing correct results over shape space,
but as a side bonus, the joint approach trains 2× to 4× faster, too,
compared to a sequential approach.
4.2.3 Shape-Dependent Causal Sorting. Since fixing the dominance
order of the eigenfunctions is undesirable (recall §4.1), our opti-
mization allows ordering to vary over shape space. To achieve the
desirable results of Fig. 7-right, we determine the dominance order
dynamically at each optimization step, by comparing the eigenval-
ues (equivalently, Dirichlet energy) of the two eigenmodes for some
point in shape space. Wherever the horizontally-oriented eigenfunc-
tion has the smaller eigenvalue, it dominates the vertically-oriented
eigenfunction, and vice-versa.
Therefore, the order of projection in P is determined by the

eigenvalue and varies for each shape. Since we integrate over shape
space using stochastic cubature, this amounts to determining the
dominance chain at each sample point in shape space by sorting
the eigenvalues (i.e., Dirichlet energy) of the eigenfunctions. Algo-
rithm 2 first evaluates the energy for each unit-norm eigenfunction,
then sorts to determine the causal ordering, and then applies this
order to construct the projection operator.

With dynamic sorting, we produce the desirable results of Fig. 7-
right and 8-right, where each eigenfunction and eigenvalue evolves
smoothly over shape space.

5 EXPERIMENTS

5.1 Training Time & Statistics
We summarize the training time and network parameters for all
examples in Table. 1, all data reported was obtained on an AMD
Ryzen 9 7950X CPU and an NVIDIA GeForce RTX 4090 GPU.

5.2 Agreement with Discrete Operator Eigenfunctions
In Fig. 10, we evaluated the relative differences between our method
and the cotangent matrix as well as the analytical solution. For
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ALGORITHM 2: Training Over a Shape Space

𝑒𝑝𝑜𝑐ℎ = 0;
repeat

𝒈 = Sample Geometry Code;
⊲ The geometry code is an explicit shape parameter (e.g., width)
or a latent variable (e.g., from an auto-decoder).;

𝒙 = Sample Domain Ω;
𝐸𝑑 = [];
for 𝑖 in range [0, 𝑘 ) do

Evaluate Network 𝜙𝑖 (𝒙,𝒈) and gradient 𝜕𝜙𝑖 (𝒙,𝒈)
𝜕𝒙 ;

𝐸𝑑 .append( 1∑
𝜙𝑖 (𝒙,𝒈)2

∑( 𝜕𝜙𝑖 (𝒙,𝒈)
𝜕𝒙 )2) ;

⊲ Evaluate Dirichlet energy on normalized gradients;
end
index, sortedEigenvalue = sort(𝐸𝑑 )
for 𝑖𝑑𝑥 in range [0, 𝑘 ) do

𝑖 = index[𝑖𝑑𝑥] ⊲ Use the order from the sorted index;
Do projection and optimization same as Algorithm 1;

end
𝑒𝑝𝑜𝑐ℎ = 𝑒𝑝𝑜𝑐ℎ + 1 ;

until 𝑒𝑝𝑜𝑐ℎ = 𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ;
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Fig. 10. Our method’s error is comparable with the results of Sharp and
Crane [2020], who present a discretization-agnostic Laplacian eigenanalysis
on a single shape. The different plotlines correspond to the execution of our
method with different neural network configurations, with ’PE’ indicating
the maximum frequency of positional encoding and ’MLP’ indicating the
width of the MLP.
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Fig. 11. For the 1D domainwhere the analytic solution is known, ourmethod
produces results that closely match the analytical solution.

the first 20 eigenfunctions, our method’s eigenfunctions exhibit an
average difference of approximately 6% compared to those from the
cotangent matrix, increasing to 20% as the number of eigenfunctions
grows to 50. This error is comparable with Sharp and Crane [2020],
where both our method and theirs calculate Laplace eigenfunctions
without the need for mesh connectivity. For the 1D domain, where

Original Domain

0.22% error

Rotate 30°

0.25% error

Rotate 60°

Fig. 12. Rotation invariance: eigenmodes produced by our method are
consistent with respect to rotation of the domain.

the analytical solution is known, our method consistently produces
results that closely match the analytical solution, as shown in Fig. 11.

5.3 Rotation Invariance of Neural Eigenfunctions
We retrained the network on rotations of the same shape with
different angles. Fig. 12 shows our method provides eigenfunctions
under rotational perturbations that are highly consistent with the
base unrotated configuration. Specifically, for rotations of 30 and
60 degrees, the average error over the first 30 modes between the
rotated and original domains is 0.22% and 0.25%, respectively. For
context, variations within the 0.2% − 0.3% range frequently occur
due to re-initializing network weights before training, indicating
no significant bias for rotations. The 30th eigenfunction from the
three training results is visualized in this figure.

5.4 Ablation Study on Causal Sorting

Fixed Order
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30
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Causal Sort

0.5 0.05

60

90

Depth of Chair Back (d)

Fig. 13. Eigenvalue Crossover. Plot of eigenvalues versus geometry code for
the chair shape space parameterized by radius (𝑟 ), height(ℎ), and depth (𝑑).
comparing the naïve fixed-order method against shape-dependent causal
sorting. Observe that both plots span a similar set of eigenvalues, but with
different topology, with our proposed naïve baseline (left) surpassed by
our proposed method (right), the latter more accurately resolving crossing
eigenfunctions. Inherent to resolving an infinite function space with a finite
number of eigenfunctions over shape space is that the highest-eigenvalue
resolved eigenfunctions may include components of two or more unresolved
eigenfunctions, in this case, as evident by the kink in the dark blue eigen-
function 7. For this plot, 𝑟 = 0.1, ℎ = 0.8, and 𝑑 varies.

Figure 13 plots eigenvalues with respect to geometry code for the
shape space of Figure 14. Our method resolves eigenvalue crossings,
whereas the proposed naïve baseline does not. The exception is
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Table 1. Timing statistics. We report the training and inference times for all examples presented in this paper, along with the number of eigenfunctions and
the parameters per MLP. The inference time represents the duration required for a single evaluation of all eigenfunctions at 30k cubature points. We assume a
uniform, fixed density for all examples.

Example Training Time Inference Time(ms) Eigenfunction Count Parameters per MLP

Bridge (Fig. 1) 5.0h 6 25 5.2k
Teapot (Fig. 4) 4.2h 8 30 4.7k
Airplane (Fig. 6) 69s 4 15 15k

Round Chair (Fig. 14, Fig. 15) 4.6h 3 10 15k
Sofa (Fig. 14) 4.0h 3 10 15k

Simulation on Wide Range of Shapes (Fig. 19) 35h 5 15 13k
Differentiable Sound (Fig. 23) 6.9h 11 32 4.6k

Sound - Little Star (Fig. 20, Fig. 21) 7.0h 11 25 5.1k
Walking robot (Fig. 24, Fig. 25) 1.5h 8 30 4.7k
Walking Animals (Fig. 22) 19h 7 30 5.0k

Our Method without Causal Sort

Our Method with Causal Sort

Different Modes

Fig. 14. We visualized an eigenfunction from a simple chair shape space
with and without causal sorting as we navigate the space. Our causal sorting
approach preserves the mode pattern throughout shape space.

the kink in the “highest” eigenvalue (eigenmode 7), which exposes
a fundamental challenge in eigenanalysis over shape space (see
§Sec. 7).

5.5 Ablation Study on Consistent Modes
The importance of resolving eigenvalue crossings is illuminated
by studying the mode of an eigenfunction as it evolves over shape
space. We have already shown that resolving crossings leads to
consistent mode patterns across shape space. In addition to that,
as depicted in Fig. 14 (top row), the absence of shape-dependent
causal sorting leads to significant, rapid changes in the eigenfunc-
tion modes as the shape evolves over the kinks corresponding to
unresolved eigenvalue crossings. By resolving crossings (bottom
row), our method obtains a smooth evolution of eigenfunctions.

6 RESULTS & APPLICATIONS

6.1 Reduced-space Simulation for Shape Families
Interactive Visualization of Physical Properties. Our shape-space

eigenfunctions enable us to track how physical quantities evolve
across the shape space, facilitating fast previews of physical prop-
erties. This significantly simplifies the often tedious and iterative
shape design process. To demonstrate this, we used the shape space
shown in Fig. 1, which is a 5-dimensional shape space that controls

Goal

Project Onto the 
Eigenfunctions

d=0 d=0.3

Fixed Coefficients for Each Basis(Eigenfunction) 

Fixed Order

Causal Sorting

Fig. 15. Physics Property Transfer. A target heat distribution is projected
onto the basis functions and transferred across the shape space. Causal
sorting helps preserve initial distribution of the physical property.

Shape Change

Fig. 16. Interactive Visualization of Deformation. The elastic modes of the
bridge shape space enable interactive visualization of deformations across
various shapes.

the width, length, height, fence size, and fence gap of a bridge. We
assume a uniform and fixed density for the bridge and all subsequent
examples. As shown in Fig. 16, Fig. 17 and Fig. 18, the deformation
and heat distribution initially defined on a simulated bridge can be
seamlessly extrapolated to another bridge with a much larger width
at runtime.
For instance, the solution 𝑢 (𝒙) of a PDE computed over a shape

𝒈 can be transferred to another shape 𝒈′, providing an excellent
warm start 𝑢′ (𝒙) for solving the PDE on the new shape: simply
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Full-Space Simulation
311.0 ms per Frame

Reduced-Space Simulation (Ours)
9.6 ms per Frame

Mean Squared Error = 2.4%
32.4× Speedup

Fig. 17. Error and Runtime Comparison Between Our Method and Full-Space
Simulation We further evaluated the error in our reduced-space simulation
by comparing it with a full-space simulation. Specifically, we simulated two
bridges with fixed boundaries under gravitational loading, following the
setup in Fig. 16. The full-space simulation runs at 311.0 ms per frame. Our
method achieves a runtime of 9.6 ms per frame, yielding a 32.4× speedup,
with a mean squared error of 2.4% in the final displacement. The norm of
the displacement is shown using color coding.
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Fig. 18. Interactive Visualization of Heat. Once we solve the PDE for one
shape, the solution can be transferred across the shape space, warm-starting
the PDE solver over another shape. Without causal sorting, we observe
an order of magnitude slower convergence, due to missed crossings. By
ensuring consistent mode-shapes via causal sorting, our method enables
faster convergence.

project onto the eigenbasis, 𝛼𝑖 =
∫
Ω𝒈

𝑢 (𝒙)𝜙𝒈
𝑖
(𝒙) d𝒙 , to obtain a

low-dimensional embedding of the solution, then reconstruct on the
new shape, 𝑢′ (𝒙) = ∑

𝑖 𝛼𝑖𝜙
𝒈′

𝑖
(𝒙). As illustrated in Figure 18, causal

sort proves an order of magnitude lower error (and correspondingly
faster convergence) using this warm start.
The reason for this is that the mode with causal sorting main-

tains greater consistency across the shape space, resulting in better
preservation of the physical property distribution. As demonstrated
in Fig. 15, with causal sorting, the symmetric distribution remains
intact as the shape changes. In contrast, without causal sorting, the
distribution shifts unevenly across the chair’s back.

Direct Simulation on Generated Shapes. Recent methods represent
shapes through mappings from a latent space to implicit representa-
tions, such as occupancy fields [Chen and Zhang 2019a] and signed
distance fields [Park et al. 2019]. By interpolating within this latent
space, new shapes can be generated, and our method facilitates
direct and efficient simulation on these generated models without
requiring spatial domain meshing. We leveraged a pretrained model
from Chen and Zhang [2019a], which provides a 256-dimensional

shape space, training our approach on specific shape-space coor-
dinates and testing it on additional generated shapes outside the
training set.
We implemented the method of Modi et al. [2024], which simu-

lates corotational elasticity dynamics in a discretization-agnostic
manner. They leverage the reduced basis proposed by Benchekroun
et al. [2023], a linear blend skinning basis with skinning weights set
to Laplace eigenfunctions. In their formulation, the displacement
in the reduced space simulation is expressed as a weighted sum of
affine transformations applied to the shape’s rest positions, with the
rigid mode captured by a single scalar weight for the entire shape.
These two works build a reduced model for a single shape. With
our eigenanalysis, it is now possible to build a reduced model for a
continuous family of shapes.
As shown in Figure 19, we built one reduced model to simulate

over 250 shapes from 13+ ShapeNet categories, including shapes
outside the training set. With our single model, switching between
these diverse shapes is as simple as selecting a new shape code, with
no need for domain (re)meshing or retraining of neural networks.
The resulting simulation effectively captures local deformations, as
demonstrated by the deformed chair/desk legs due to collisions with
the plane, shown in the right.
To train this example, we first built the shape space, and then

performed eigenanalysis. The shape space was trained as an implicit
decoder mapping a 256-dimensional coordinate to an occupancy
field [Chen and Zhang 2019a]. Eigenanalyzing this shape space
yielded the Laplace eigenfunctions that serve as the scalar weight
functions for the skinning eigenmodes [Benchekroun et al. 2023].
While this example uses a learned shape space, as we discussed
earlier, our approach applies also to hand-designed shape spaces
(e.g., parametric CAD models).

Traditionally, simulating a diverse set of objects requires meshing
each individual generated shape and performing eigenmode calcu-
lations for discrete operators (matrices) on the resulting meshes.
Depending on the meshing algorithm, creating a mesh can take
anywhere from around 0.02 seconds [Geuzaine and Remacle 2020]
to over 20 seconds [Hu et al. 2018], and the subsequent eigenanal-
ysis further adds to the computational burden. For instance, at a
resolution of 30k vertices, standard eigendecomposition using SciPy
[Virtanen et al. 2020] takes over 6 seconds to compute the first 15
modes. In contrast, our method eliminates the need for meshing and
directly computes eigenfunctions, enabling fast simulations across
diverse shapes. It calculates eigenfunction for the same number of
cubature points in just 0.005 seconds, significantly reducing both
computational time and memory requirements.

Compared to prior discretization-agnostic methods such as Modi
et al. [2024], our pretraining time for this example is longer at
35 hours. However, our method generalizes to a broader range of
shapes. While Modi et al. [2024] require retraining for each indi-
vidual shape, our approach supports evaluation on a continuous
family of shapes, making it more efficient when handling over 200
query shapes. Additionally, our method has a significant advantage
in memory consumption, as its memory cost remains constant re-
gardless of the number of shapes, whereas their method incurs a
linear increase in memory cost as the number of shapes grows.
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All simulations use 

One reduced model!

Fig. 19. Reduced-space Simulation.With just one training session, the model can represent the basis for hundreds of shapes, enabling direct reduced-space
simulations. Using the pretrained occupancy field from [Chen and Zhang 2019a], we constructed a shape space mapping a 256-dimensional coordinate to an
occupancy field. After training on this shape space, our eigenfunctions can represent the skinning eigenmodes for all shapes within it. This allows for direct
simulation of any shape from the model without requiring meshing over the spatial domain or retraining neural networks.

Table 2. Quantitative comparisons on shapes from DiffSound [Jin et al. 2024]. We evaluated the mean absolute error (MAE) by averaging the differences
between predictions and ground truth across varying thicknesses. Our method enables pretraining on shape families, which is difficult for DiffSound due to its
requirement for remeshing in each optimization step. This allows us to achieve a comparable MAE to DiffSound while significantly reducing query time.

Object Target Thickness, DiffSound[Jin et al. 2024] / Ours MAE↓
0.3 0.4 0.5 0.6 0.7

Bunny 0.304 0.299 0.407 0.400 0.508 0.497 0.608 0.597 0.709 0.699 0.0073 0.0016
Armadillo 0.338 0.284 0.456 0.403 0.590 0.501 0.696 0.592 0.730 0.691 0.0623 0.0075
Bulbasaur 0.308 0.298 0.411 0.398 0.512 0.500 0.614 0.597 0.718 0.695 0.0125 0.0023
Squirtle 0.312 0.296 0.416 0.394 0.520 0.495 0.624 0.595 0.718 0.707 0.0177 0.0054

Fig. 20. Elastic Mode Visualization.We visualized the final shapes along with
the elastic modes, using color coding to represent the norm of the R3-valued
eigenfunction. Note that the vibration is concentrated in the bowl of the
glass, with almost no vibration occurring in the foot or stem.

6.2 Differentiable Modal Sound Synthesis
Our method enables fast shape optimization with eigenvalue-based
objectives, such as finding a shape whose vibration modes and
frequencies when struck produce a desired sound. We implemented
the damped modal sound synthesizer and optimization approach
proposed by Jin et al. [2024].
They study the Volumetric Thickness Inference problem, which

seeks to estimate the wall thickness 𝑡 of a hollow shape based on its

Fig. 21. Little Star.Ourmethod enables the optimization of shapes to achieve
target sounds. For instance, we optimize a family of wine glasses so that
tapping their edges produces the melody of the song ’Little Star.’

sound when struck. We briefly recall their shape space definition:
Given one solid shape, define a family of hollow shapes parame-
terized by wall thickness 𝒈 = 𝑡 ∈ [0.15, 0.8], by thresholding the
signed distance field (SDF) of the solid shape, such that 𝒙 is in the
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Fig. 22. Shape Optimization for Locomotion Across a Broader Range of Characters.We extended our approach to a more complex shape space derived from
interpolations between 12 animals. This enhanced shape space enables the optimization of more complex and diverse shapes.

shape if −𝑡 < SDF(𝒙) < 0. As a precomputation, we eigenanalyze
the elastic energy Hessian for the shape space.
We implement their query: Given a target eigenvalue (vibration

frequency) 𝜆gt
𝑖
, we seek the shape 𝒈∗ that minimizes the difference

in eigenvalue:

g∗ = argmin
g

𝑁∑︁
𝑖=1




𝜆𝑖 (g) − 𝜆
gt
𝑖




2 , (13)

where 𝜆(𝒈) is the elastic energy, because the eigenfunctions are unit
norm.

We follow their testing protocol: Select a target shape from four
different shapes, select a thickness from {0.3, 0.4, 0.5, 0.6, 0.7}, syn-
thesize the desired (ground truth) sound based on the first 𝑁 =

32 eigenvalues, optimize Eq. (13) and compare the thickness and
spectrogram of the result g∗. As depicted in Fig. 23 the optimized
shape and its spectrogram align more closely with the target shape
and sound after optimization. As shown in Table. 2, our method
achieves comparable error to Jin et al. [2024], however, while they
report about two hours per query, our approach completes in under
three minutes, a 40× speedup. Our discretization-agnostic approach
avoids the costly remeshing required at each optimization step of
their approach. Our method requires pretraining on the shape space,
unlike Jin et al. [2024]. The precomputation time for our approach
is approximately 7 hours per shape space, making it more efficient
when handling 4 or more queries.

Shape Optimization for Pitch. We perform shape optimization
with the goal of designing shapes that produce specific pitches. By
optimizing the geometry of wine glasses and tapping them, we
generate sounds corresponding to a predefined sequence of notes.
We constructed a 4-dimensional shape space for glasses, where

the shape parameters control the radius of the bowl, the radius of
the foot, the length of the stem, and a global scaling factor. We
optimized the eigenvalue for a chosen low-frequency mode, which
is visualized in Fig. 20.
To ensure the chosen mode dominates the resulting sound, we

set its damping factor, 𝑑 , to 12.5, which is half the damping factor
of the other modes; here 𝑑 is the damping factor in the model of Jin
et al’s Eqs. (9) and (10) [Jin et al. 2024]. We minimize the loss (see
Eq. (13)) over 𝑁 = 1 mode to obtain g∗.
To generate an engaging melody, we set the target eigenvalues

𝜆gt to correspond to the square of frequencies of the notes: ’do’
(261.63Hz), ’re’ (293.66Hz), ’mi’ (329.63Hz ), ’fa’ (349.23Hz ), ’so’
(392.00Hz ), and ’la’ (440.00Hz ). Each optimization requires 500
gradient descent steps and takes less than 50 seconds to complete.

Init Guess Ground Truth Optimized

Init Guess Ground Truth Optimized

Fig. 23. Volumetric Thickness Inference. We optimize the thickness of the
shape to produce sounds that better match the target sound. The spectro-
gram of the resulting sound and the corresponding shapes are visualized,
showing that the optimized results are closer to the goal compared to the
initial guess.

As shown in Figure 21, we successfully obtain shapes that achieve
the target sound through optimization.

6.3 Shape Optimization for Locomotion
Inspired by work showing the utility of eigenfunctions as an actua-
tion signal, our method allows us to take locomotion optimization
one step further, and ask questions regarding shape optimization
for locomotion. Inspired by [Benchekroun et al. 2024], we define a
controlled actuation force on a character using the eigenfunctions:

𝒅 = 𝑫 (𝒈)𝒂(𝑡) ,

where the matrix 𝑫 (𝒈) ∈ R3𝑛×3𝑟 contains the eigenfunctions of
our elastic operator, specifically done by setting the columns 3𝑖 +
1 . . . 3𝑖 + 3 to [𝜙𝒈

𝑖
, 0𝑛, 0𝑛]𝑇 , [0𝑛, 𝜙𝒈𝑖 , 0𝑛]

𝑇 , [0𝑛, 0𝑛, 𝜙𝒈𝑖 ]
𝑇 respectively,

for 0 ≤ 𝑖 < 𝑟 [von Tycowicz et al. 2013].
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Tomove the character forward, we also added an explicit damping
friction force 𝑓𝑐 ∈ R3𝑟 described by Benchekroun et al. [2024], pe-
nalizing the relative velocity between the character and the ground,

𝑓𝑐 = 𝜇𝐽𝑐 |𝑇 ¤𝑧 ,

where 𝜇 is the damping coefficient, and the contact Jacobian 𝐽𝑐 |𝑇
maps the reduced velocity ¤𝑧 to the full-space contact tangential
velocities before projecting them back into the reduced space.

We couple this actuation signal with a differentiable simulation
and run it for 200 timesteps and obtain the final full-space displace-
ment field 𝒖∗ (𝒈) = 𝑫 (𝒈)𝒛∗. Then, we optimize for the shape code
parameters 𝒈∗ by maximizing the norm of 𝒖∗:

𝒈∗ = argmax
𝒈

(∥𝒖∗ (𝒈)∥2)

We first designed a 3-dimensional shape space for the walking
robot. Starting from an initial guess within the shape space, we per-
form gradient-based optimization. The final shape obtained from our
optimization moves faster than the initial guess, as demonstrated
in Figure 24. Note that this process is particularly challenging with
traditional methods, as it requires computing the gradient of the
eigenfunctions (which are used to design the controllers for the ac-
tuation forces) with respect to the shape parameters. This is difficult
using traditional eigenanalysis based on matrices, and even more
so for shapes with algebraic multiplicity.

The change in modes across the shape space can impact the opti-
mization process. Specifically, when modes shift, the gradient with
respect to the shape space increases in magnitude, which can com-
plicate the later stages of optimization. In Figure 25(a), we visualize
the shape-space norm gradient. Without causal sorting, these abrupt
mode changes lead to a larger gradient, making the optimization
process more challenging. In contrast, our proposed causal sort en-
sures that the modes transition smoothly across the shape space, as
shown on the right, reducing this issue and enabling a more stable
and efficient optimization process.
To demonstrate the impact of omitting causal sorting on opti-

mization convergence, we performed shape optimization with and
without causal sorting, using the same initial guess: width = 0.7,
length = 0.7, and leg thickness = 0.3, optimized for 30 steps. As
shown on the right of Fig. 25(a), the final solution is better with
causal sorting. To further demonstrate this, we optimized the walk-
ing robot’s shape with different initial guesses in the shape space
and performed shape optimization, as shown in Figure 25(b). With-
out causal sorting, two distinct final solutions are found, each with
different movement patterns (in one, the robot walks sideways, and
in the other, it walks vertically), with one solution corresponding to
a local minimum. However, with causal sorting, only one consistent
solution is obtained, with a stable walking pattern.
Our optimization approach can be extended to operate within

a more intricate shape space derived from signed distance field
(SDF)-based interpolation of 12 distinct animal shapes. This interpo-
lation constructs a continuous 12-dimensional shape space, enabling
smooth transitions between different animal characters and offering
a rich variety of geometries for optimization. As illustrated in Figure
22, our method effectively optimizes these animal characters within
the shape space.

Shape Space

Initial  Guess

Optimized

Fig. 24. Shape Optimization for Walking Robot.We optimize the design of
a walking robot for a fixed controller, resulting in a robot that walks 18×
faster than the initial design.

0

0.5

1

1.5

1 5 10 15 20
Iterations

With Causal Sort
No Causal Sort

Solution

(a) Visualization of gradient norm scaling in shape space. As shown on the left,
fixed-order eigenfunction calculations result in mode changes at crossovers, leading
to large gradient norms and making optimization more challenging. By contrast, the
middle shows how our method, with causal sorting, achieves smoother eigenfunction
transitions across the shape space, resulting in smaller gradient norms. The consistent
eigenfunction can lead to a better final solution of the optimization, as shown on the
right.

(b) Starting from different initial guesses within the shape space of a walking robot,
we observed two distinct final solutions with differing movement patterns when
causal sorting was not applied. This occurs because the actuation force relies on
eigenfunctions, and mode changes in eigenfunctions lead to variations in movement.
By using causal sorting, we achieve consistent final solutions.

Fig. 25. The mode changes at crossovers significantly increase the gradient
norm in shape space, as shown in 25(a). This creates an unsmooth gradient
landscape, making optimization more challenging. Without causal sorting,
as illustrated in 25(b), the process resulted in two different final solutions.
In contrast, causal sorting encourages consistent final solutions.

7 DISCUSSION AND FUTURE WORK
With these promising results, there remain areas for improvement
and expansion.

For a single shape represented by a triangle mesh, eigenanalysis
of the Cotan matrix is faster than stochastic gradient descent opti-
mization. Our method’s comparative advantage therefore lies in its
generalization to shape spaces and general shape representations.
As the number of eigenfunctions increases, so does their spatial

frequency, and accurate training of higher frequencies is a known
challenge for neural fields. Since our mathematical framework and
optimization approach are not specific to neural fields, and it would
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Fig. 26. Gradient Indicators of Higher-Frequency Crossovers. The norm of
shape space gradients (the gradient with respect to the geometry code
| 𝜕𝜙 (𝒙,𝒈)

𝜕𝒈 |2 ) shows a significant increase at the crossover, therefore can be
used as an indicator of the crossover from higher-frequency eigenfunctions.

be interesting to apply the variational formulation, causal gradient
filtering, and causal sorting to the optimization of eigenfunctions in
other representations, including representations that easily extend
to higher frequencies.

We have currently limited our scope to Neumann boundary con-
ditions. Eigenfunctions subject to Dirichlet or Robin boundary con-
ditions could be handled in the future by using PINN techniques for
enforcing essential boundary conditions, such as blending with a
weighting function that ensures constraint satisfaction by construc-
tion; alternatively, by introducing additional penalization terms that
contribute to the loss function [Berrone et al. 2023]. In the latter
case, causal gradient filtering could be leveraged to ensure that the
Dirichlet penalty dominates the variational energy corresponding
to the PDE operator.
Our implementation of stochastic cubature presently gives uni-

form weight to all samples. This is appropriate if the cubature is
drawn from a uniform distribution. However, certain domain shapes
may benefit fromnonuniform cubature such as importance sampling.
In that case, the number of samples per shape would potentially
differ, potentially biasing the training to emphasize some regions of
shape space over others, further necessitating a normalization of
cubature weights per shape.
Truncating an infinite-dimensional space with a finite number

of subspaces inherently leads to missing information. In our case,
this limitation can result in crossovers from higher-frequency eigen-
functions that cannot be fully captured due to the finite number
of eigenfunctions used (recall eigenfunction 7 of Figure 13). While
with a finite budget we do not offer a fundamental way around this,
we can identify missed crossings by evaluating shape space gradi-
ents 𝜕𝜙 (𝒈,𝒙 )

𝜕𝒈 . As shown in Figure 26, there is a significant increase
in the gradient norm at points where there is a crossover from a
higher-frequency eigenfunction, which serves as a reliable indicator
of these crossovers. In applications, then, the few eigenfunctions
with missed crossings may be omitted, or, less aggressively, they
may be included with knowledge of their piecewise nature. For ex-
ample, in our application to transfer of PDE solutions across shapes,
such an eigenfunction would be included if the two shapes lie on
the same side of the crossing.

In the future, it would be interesting to explore continuation
methods [Allgower and Georg 2003] that seek to “build out” the re-
mainder of the incomplete eigenfunction curves without arbitrarily
increasing the total eigenfunction budget.

The gradients with respect to the geometry code may have further
uses. For instance, by incorporating a shape space gradient norm into
the training objective, it may be possible to achieve even smoother
evolving functions among shape families.

Shape-dependent representations of eigenfunctions appear to be
a promising and versatile tool for working with eigenfunctions in
continuously-parameterized shape spaces, broadening the scope of
reduced physical models and accelerating inverse design problems.
We believe that they also open the door to other applications in
geometry processing (e.g., spectral processing methods), computer
vision (e.g., shape correspondence), computational physics (e.g.,
fluid and deformable solid coupling), and indeed in all fields that
leverage eigenanalysis of PDE operators.
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