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Figure 1: Humans naturally communicate desired scene changes by over-sketching (a,b). These sketched strokes, when aligned
with visual abstraction curves of a scene (c), can effectively express user intended changes to scene attributes (d,e). Squidgets
or ‘sketched widgets’ enable interactive manipulation of scene attributes via scene curves (f-h), such as the avocado shape
attributes deformed to match its silhouette abstraction curve (f). All scene curves can homogeneously function as squidgets
including pre-defined rig curves like the gaze/jaw control curves on a 3D facial rig (g), and user drawn bookmark curves that
capture attribute configurations of objects, like the line-of-action curves drawn to pose an animated character (h).

Abstract
People naturally sketch strokes over graphical scenes to convey
scene changes. We propose automatically interpreting these strokes
to execute scene changes with squidgets (sketch-widgets), a novel
sketch-based UI framework for direct scene manipulation. Squid-
gets are motivated by the observation that curves resulting from
visually abstracting scene elements provide natural handles for the
direct manipulation of scene parameters. Additional curves can be
defined by users to author custom handles associated with scene
attributes. Users manipulate a scene by simply drawing strokes,
that are partially matched against scene curves to select a squid-
get and interactively control scene parameters associated with the
squidget. We present an implementation of squidgets within the 3D
animation systemMaya, showing 2D/3D stroke input to manipulate
2D/3D scenes. We report on a controlled experiment evaluating
squidgets on 2D object translation and deformation tasks, and a
broader informal study on squidget creation and manipulation.

CCS Concepts
• Human-centered computing→ Interaction design.
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1 Introduction
Sketching is a traditionally established tool for visual communica-
tion (Figure 2). Digital sketching is now also ubiquitous in interac-
tive design and graphical content creation. User control of scene
objects and attributes/parameters in such applications however is
typically a disparate combination of traditional UI components,
pre-defined widgets, and stroke gestures [43]. While a number of
seminal sketch-based systems for content creation span over half
a century [4, 23, 45, 53, 54], their operational interface has largely
relied on pre-defined stroke gestures and traditional UI elements.

Pen and touch stroke-based interfaces are also increasingly used
to control general computing applications. A vein of research has
thus adapted the interaction of UI menus/buttons [1], sliders [50],
and 3D widgets [43], from a point-and-click to a stroke-friendly
design. Inspired by recent research [41] using sketchy-renderings
of objects for interactive visualization and exploration, we aim to
exploit such renderings for stroke-based scene interaction.

We thus present squidgets (sketch-widgets) as a novel stroke-
based UI framework for direct scene manipulation (Figure 1). Our
work uses the insight that graphical scenes inherently possess
implicit, in-situ handles for scene manipulation. People naturally
sketch a variety of strokes (Figure 2) over perceived scene curves to
visually indicate desired scene changes (Figure 1(a-e)). Practically,
scene curves are either visually imagined abstraction curves (like
the silhouette of the avocado in Figure 1(f)) or explicitly modeled
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Figure 2: Traditional sketch stroke usage to convey aspects of
animation: motion paths (©K. Eissen, R, Steur, BIS Publishers) [15]
(a), line-of-action (© M. Guay) [19] (b), design (over-sketched
ideation ©R. Arora) [3] (c), spatial overlays (©E. Mikiten) [36] (d).

scene objects (like the gaze-controller rig curve in Figure 1(g) or the
line-of-action bookmark curves in Figure 1(h)). We aim to capture
this natural interaction with scene curves using squidgets. Con-
ceptually, this is an inverse rendering problem: compute a minimal
change to the current scene attribute values that will result in a ma-
nipulated scene, in which some scene curve (real or imagined) visually
matches the over-sketched stroke (Figure 1(a-f)).

The benefits of solving such a problem are twofold. First, over-
sketching is natural, direct, and in-situ for 2D (Figure 1(f)) or 3D
(Figure 1(g,h)) applications. Second, no explicit gestures, widgets
or UI components for the scene need to be defined or learned by
the user. There are however, three non-trivial and potentially am-
biguous aspects to solving this ambitious problem: (1) inferring
the user-imagined abstraction curves of a graphical scene; (2) dis-
cerning what part of this curve abstraction to associate with the
over-sketched stroke; and (3) computing changes to the values of
a set of scene attributes that result in a manipulated scene whose
associated visual abstraction best matches the over-sketched stroke.

The squidgets framework allows each of these problems to be
explored, constrained, and addressed independently. (1) Visual ab-
straction of scenes as curves have been extensively studied in Non-
Photorealistic Rendering (NPR) literature [18]. Such abstractions
can be defined using occluding and suggestive contours in a scene
[22] (Section 3), or using image-based approaches to differential ren-
dering [31]. (2) We define a novel curve similarity metric (Section 4)
that is able to match the stroke to (partial) curves using a perceptual
mix of corner, spatial, and shape proximity. A user stroke can thus
be matched to a curve segment in the scene (whether explicitly
modeled as a scene object, or inferred as a visual scene abstraction).
(3) Scene attributes that deform the associated curve segment can
then be sampled around their present values to find a resulting
curve edit that best matches the user stroke.

Increasingly, artists are hand-crafting custom UI layouts using
rig curves for in-situ scene manipulation [29] (Figure 1(g)). Such
curves being explicit scene objects are homogeneously handled by
our framework. Inspired by artistic constructs like the line-of-action
for posing animated characters [19] (Figure 2(b)), we further sup-
port the rapid creation of bookmark curves that are associated with
a given configuration of scene attributes (Figure 1(h)) within our

interaction framework. Note that abstraction/rig/bookmark curves
are simply a categorization of all scene curves (real and imagined)
that can serve as interaction handles in our framework as persistent
scene objects (rig curves and bookmark curves) explicitly define
both a visual scene abstraction (problem 1), and the set of scene at-
tributes associated with the curves (problem 2). Further, since these
curves and their scene attributes, are related by simple invertible
(often linear) functions, finding attribute values to optimally match
an over-sketched stroke is simple (problem 3).

The squidgets framework thus addresses the stroke-based ma-
nipulation of scene attributes via all visually perceived curves
in the scene (imagined abstraction curves, or explicitly modeled
scene curves: rig curves and bookmark curves).

We provide an overview of related work (Section 2), followed by
details of our squidgets framework (Section 3). Section 4 presents
our approach to stroke matching, attribute inference and other
implementation details of a squidgets interaction prototype built
within themodeling and animation systemMaya. Section 5 presents
several squidgets usage scenarios. We discuss the outcomes of a
user study (Section 6) followed by a discussion of overall insights,
limitations, and avenues for future work on squidgets (Section 7).

2 Related Work
The squidgets framework touches upon many areas of graphics and
HCI research that we roughly classify into four themes as follows.

Visual scene abstraction: The fundamental insight behind
squidgets is that imagined curves in a scene provide natural manip-
ulation handles. While such curves are often explicitly evident in
2D graphics (Figure 1(f)), they need to be algorithmically inferred
in 3D scenes (Figures 1(a-e),3). Understanding and computing such
a collection of curves that comprise a visual scene abstraction is
addressed by research in non-photorealistic rendering [18] and per-
ceptual psychology [49]. We rely on this body of work to automati-
cally compute a set of curves that define a visual scene abstraction
comprising silhouette, ridge/ valley, shading contrast and border
curves [5], as seen in Figure 3.

a) b)

Figure 3: NPR and toon shading is used to compute abstrac-
tion curves automatically for a 3D scene (a). User strokes
can then manipulate scene attributes associated with these
curves, like the cone angle of a scene spotlight (b).

Scene object transformation and composition: A large body
of research spanning 50 years [45] has specifically addressed the
transformation (e.g. translation, rotation, scaling) of objects in 3D
scenes. We refer readers to a recent survey paper [34] tracing this
research from desktop to immersive devices. Techniques designed
for constrained tasks like docking [9] have also been compared
across various input modalities [6]. Object manipulation techniques
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interact with a 3D spatial context that can be physical (such as a
tangible 3D proxy), or virtual (like mouse controlled 3D widgets)
[10]. Squidget curves provide our spatial context, controlled by 2D
(Figures 1) or 3D (Figure 9) stroke input.

We note that transforming 3D objects with squidgets (Figure 1)
is but one example of our ability to homogeneously manipulate
arbitrary scene object attributes using squidget strokes.

Sketch-based gestures and interfaces: The recognition and
use of stroke-based gestures can be categorized into gestures that
are hard-coded or visually matched [25]. Hard-coded gestures tend
to be expressive but context-specific and difficult to customize.
Visual matching, such as the $1 Gesture Recognizer [51], geomet-
rically matches a stroke to a user-given set of gesture templates.
These gestures are typically scene-agnostic and can be mapped
to general directives (e.g. invoking undo using a scratch gesture).
Similar to visually-matched gestures, squidgets match user-drawn
strokes to the set of squidget curves in a graphical scene.

User strokes, scribbles, and sketch gestures have been applied
to interfaces in a variety of domains [7, 40] including ideation
[3], modeling [4, 12, 23], illustration [27, 28, 48], and animation
[19, 21, 47]. Techniques to aid the execution of sketch strokes and
to aid the drawing process have also been explored [16]. While our
work is focused on an application-agnostic framework for general
stroke-based scene manipulation, we draw inspiration from this
body of work for compelling examples, such as an animated line-of-
action [19] in Figure 2(b), 1(h), to showcase squidgets interaction.

Scene proxies and custom widgets: UI widgets are visual
2D/3D elements designed to provide an in-situ interface to ma-
nipulating objects and aspects of a virtual scene [8]. Sketching
such UI sliders and axes for scene manipulation have also been
explored [30, 50]. Widgets are typically hand-designed to capture
the form/function of scene attributes they control, and can range
from simple spatial transform widgets, to custom curve controllers
used to illustrate mechanical assemblies [37] or specific to the de-
formation parameters of complex objects such as the human face
in Figure 1(g). Point-click-and-drag interaction of such widgets can
be improved using stroke-based techniques [43]. Our squidgets
framework is able to homogeneously interact using over-sketching
with such curve-based widgets (Figure 1(h)).

Curves have also been used as visual proxies and manipulation
handles for deformable objects [39, 44]. Squidgets generalize this
control beyond deformable objects (e.g. the avocado in Figure 1(f))
to any scene elements whose visual appearance can be controlled
by some set of attributes (e.g. the cone-angle of a spotlight in Fig-
ure 3). Finally, sketched strokes have been anchored to objects
in Augmented Reality scenes to provide dynamic visualizations
of changing scene attributes [46], complementary to our problem
where the scene attributes respond to the sketched strokes.

Direct in-situ manipulation: In-situ visualization and control
of object attributes in a scene can greatly streamline a sketch-based
workflow [52]. Squidgets take such a design further, allowing a
user to directly sketch the visual change they expect as a result of
changes in object attribute values.

Such direct visual control requires an inverse mapping from the
visual abstraction of objects and other scene elements to their at-
tribute values. Inverse computation for direct control is popular in
a number of domains on Computer Graphics, such as skeletal kine-
matics (IK) [2, 19], facial expressions [29, 32], CAD modeling [35],
and animation [11, 24]. Squidgets are inspired by these solutions
from specific graphical contexts to build a general framework for
manipulating sparse sets of scene attributes using sketch-strokes.

3 The Squidgets Framework
We introduce a stroke-based UI framework which develops the idea
that any visible or perceived curves in a scene can serve as visual
proxies and manipulation handles to scene attributes. Squidgets ex-
ploit these curves for rapid referencing and direct visual adjustment
of scene attributes, illustrated in Figure 4: with the user workflow
(top row) and underlying building blocks (bottom row). Within
our framework, a squidget is a scene curve 𝐶 whose appearance is
related to the values of an associated set of scene attributes 𝐴.

We naturally perceive a visual scene like Figure 4(a) as an ab-
stracted collection of curves 𝒞 like Figure 4(b). To make a change
to the scene, users first draw a selection stroke 𝑆𝑠 in-situ to visually
specify a curve 𝐶 ∈ 𝒞. For instance, the orange stroke in Figure 4c
visually corresponds to the corner of the dice. Formally, given a
selection stroke 𝑆𝑠 and an ensemble of scene curves 𝒞, we need to
compute a (partial) curve 𝐶 ∈ 𝒞 that best matches 𝑆𝑠 in a percep-
tual sense (Section 4.1). Addressing the added complexity of partial
curve matching is necessary: motivational examples, prior art [39],
and our experiments, all confirm that users naturally draw only as
much of a scene curve as needed to convey a desired scene edit.
For instance, only the part of the avocado silhouette that changes
is drawn to convey a local deformation in Figure 1(f).

Once 𝐶 is selected, users can draw a manipulation stroke 𝑆𝑚
to specify how 𝐶 should appear as a result of manipulating its
associated scene attributes. In other words, the squidget curve 𝐶
serves as an interaction handle for its associated scene attributes.
Formally, let 𝐴 be the set of scene attributes and 𝑓 the render
function for a curve 𝐶 , such that 𝐶 = 𝑓 (𝐴). The silhouette curve of
the dice in Figure 4(b) for example, is a function of the dice shape,
transform, and camera parameters.

Now, given a user drawn manipulation stroke 𝑆𝑚 , we need to
find changed attribute values 𝐴′, such that the edited squidget
curve (𝐶′ = 𝑓 (𝐴′)) ≈ 𝑆𝑚 . For instance, modifying the translation
attributes of the dice from 𝐴 to 𝐴′ in Figure 4(f) results in a curve
𝐶′ where the corner of the moved dice closely approximates the
user stroke 𝑆𝑚 . 𝐴′ thus represents the new set of attribute values
which are applied to the scene, to result in the desired visual change
to 𝐶 (Figure 4(g)). Note, that a single user stroke can functionally
serve as both 𝑆𝑠 and 𝑆𝑚 (Section 3.4).

3.1 Design Guidelines
We distilled the following guidelines from multiple unstructured
discussions with artists, observations of user scene mark-up, pre-
vious experience with in-situ manipulation workflows of scenes,
pilot-testing, and feedback over the iterations of our framework.

Curve Design:All user-perceived curves in a scene are potential
handles for squidgets interaction. These are either imagined visual
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Figure 4: Squidgets enable manipulation of attributes that affect the visual appearance of a scene (a,b) through user selection 𝑆𝑠
and manipulation 𝑆𝑚 strokes (a single stroke can serve as both 𝑆𝑠 , 𝑆𝑚). We infer the scene attributes 𝐴 a user wants to edit by
finding a curve𝐶 from among a set of scene curves that best match the stroke 𝑆𝑠 (c,d: select). We then infer the change of values
from 𝐴 to 𝐴′ needed so the resulting curve 𝐶′ best fits the stroke 𝑆𝑚 (e,f,g: manipulate).

abstraction curves or curves explicitly modeled and rendered as
scene objects. The explicitly modeled rig curves in a scene typi-
cally capture the construction history of objects, often meticulously
hand-crafted by artists to provide in-situ control over scene object
attributes. These artists expressed the need for an overall interface
where such rig curves could operate homogeneously with abstrac-
tion curves, but where such curves (bookmark curves) could be
incrementally and efficiently created within the interface itself.

Stroke semantics: Users tend to draw simple and short strokes
whenever possible to interact with the scene. Users often draw
partial strokes with just enough context to unambiguously select a
scene curve (e.g. only the corner of the eye shape in Figure 1(g)),
or to clearly convey the desired manipulation (e.g. only deformed
part of the avocado silhouette in Figure 1(f)). For small incremental
edits, interaction can be streamlined by allowing a single stroke to
serve as both the selection and manipulation stroke.

Interactive manipulation: Oversketched strokes typically con-
vey rough edits. Finer control can be enabled by repeated overs-
ketching, or by interactively dragging the stroke spatially.

Attribute redundancy:Complex scenes often have a large num-
ber of scene object attributes that can be manipulated to satisfy
a desired manipulation stroke for abstraction curves. The overs-
ketched stroke in Figure 1(b) for example, could be manifested by
moving the lamp on the table as in Figure 1(d), but also by moving
the scene camera in the opposite direction, or by non-uniformly
scaling the lamp to have a much thicker base. It is thus important
to limit the set of attributes considered for abstraction curve ma-
nipulation, or have these associations explicitly defined with rig
curves and bookmark curves.

3.2 Inferring Scene Curves and Attributes
Given a 2D/3D scene, existing NPR and toon rendering techniques
[5] allow us to efficiently and automatically create a collection
of outline, silhouette, shading and feature poly-line abstraction
curves of scene objects (Figures 1, 3). These curves comprise a scene
abstraction 𝒞. The attributes 𝐴 for any curve 𝐶 ∈ 𝒞 are typically

those of its corresponding scene object. The rendering function 𝑓

specifies how these attributes 𝐴 define the visual appearance of 𝐶 .
For example, the control vertex positions of the avocado’s outline
curve and the spatial 2D transform attributes of the avocado object
define its shape and location in the scene in Figure 1(f). For shading
discontinuities like the drop shadow in Figure 3, the attribute set
expands from the objects casting the shadow to include the light
attributes like the cone angle of a scene spotlight. Note that the set
𝐴 associated with any curve 𝐶 in our implementation is automatic
and illustratively minimal.

3.3 Stroke to Select a Squidget Curve
User strokes perform two functions: selecting a squidget curve (seg-
ment) based on similarity to a stroke; and changing scene attributes
to make the selected squidget curve approximate a stroke.

The similarity measure between a selection stroke 𝑆𝑠 and a target
curve 𝐶 ∈ 𝒞 is highly dependent on scene context and application
domain. For instance, in scenes where the curve shapes are distinct
(e.g. rounded chess pawns vs. corners of a cubical dice in Figure 5(a),
middle), a similarity measure based on shape alone can suffice. A
shape-only metric however, performs poorly in cluttered scenes
with many curve shapes being good matches for an input stroke
(Figure 5(b,c)). For example, in a scene with multiple chess pawns, a
similarity measure that favors spatial proximity between 𝐶 and 𝑆𝑠
may be necessary to disambiguate selection (Figure 5(a), bottom).
We present a novel perceptual curve similarity metric based on
corner, spatial, and shape proximity in Section 4.1. Note that such
an algorithm can be further customized to add other matching
criteria like stroke thickness and color, and additional heuristics
constraining the attribute values search space.

The user’s input stroke is matched for similarity against all
curves in the scene, and the best matching curve is selected. Option-
ally, nothing can be selected if all matches are worse than a given
threshold. Other mechanisms could also be leveraged for selected
curve disambiguation, such as reducing the size of the curve set
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a) b) c)

Figure 5: Disambiguation. Sketching unique shape features
allows to unambiguously select and manipulate the dice in
a one stroke interaction, even from a distance (a, middle).
When multiple objects match the stroke, proximity is used
for disambiguation (a, bottom). Ambiguities arise when two
objects are an equally good match (b, c). In such cases, a two-
stroke select-then-manipulate interaction is more suitable.

𝒞, e.g. using layer groupings of scene objects, or pre-selecting a
specific scene object.

Note that a single point-and-click interaction is simply a degen-
erate case in our framework where the user selection stroke 𝑆𝑠 is a
single point. Thus, a user can select the gaze-controlling rig curve
in Figure 1(g) with a point click (degenerate stroke) on or near any
point of the eye-shaped curve, and then move the eye-shaped curve
to a desired location by a subsequent click. Sketch strokes provide
greater spatial and shape context for both curve selection and scene
manipulation, than the spatial context provided by a single point.
For example, the < stroke drawn in different orientations can be
used to both move and rotate the rig curve in Figure 1(g). Sketch
strokes further enable the selection and manipulation of parts of
the scene curves (Figure 1(f)).

3.4 Stroke as a Squidgets Manipulation Handle
Given a selected squidget curve, we assume the manipulation stroke
𝑆𝑚 is representative of its appearance as a result of associated
scene attributes being changed from their current values of 𝐴 to
𝐴′ (in other words 𝐶′ = 𝑓 (𝐴′) ≈ 𝑆𝑚). This can be solved as an
optimizationwhere𝐴′ is close to𝐴 in value, and 𝑓 (𝐴′) is close to 𝑆𝑚 .
For the examples shown in our implementation, we are able to solve
the above optimization as a best linear least squares minimization
of transformation attributes and control point positions.

For small or incremental changes to a squidget’s handle curve𝐶 ,
a single user stroke can specify both selection (𝑆𝑠 ) and manipulation
(𝑆𝑚) (Figure 4). For stroke manipulation/deformation in complex
scenes (e.g. Figure 5(b,c)), selection and manipulation steps may
necessitate two strokes: an over-traced stroke to unambiguously
select a desired squidget; and a subsequent manipulation stroke.

3.5 Rig and Bookmark Squidget Curves
Artists increasingly hand-craft rig controllers: in-situ curve configu-
rations pre-authored to control scene object attributes (Figure 1(g)).
Such rig curves are selected and manipulated homogeneously using
strokes within our squidgets interaction framework.

Scene manipulation and setup often entails interactive explo-
ration, where key configurations of scene object attributes are incre-
mentally discovered and need to be bookmarked for future use. We
support this workflow using bookmark curves, drawn and explicitly
associated with configurations of scene object attributes within the
squidgets framework itself (Figure 1(h)). Specifically, a user-drawn
stroke can be associated with the current values of a set of scene
attributes to define a discrete bookmark curve. Selecting this curve
using a squidgets framework at any point sets the associated scene
attributes to their bookmarked values.

A number of such discrete bookmark curves can also be chained
to define a continuous piece-wise interpolation of the curves and
their scene attribute values. Two discrete bookmark squidgets
𝐶0, 𝐴0 and 𝐶1, 𝐴1 for example, can be combined into a weight𝑤 ∈
[0, 1] interpolated, continuous squidget curve 𝑖𝑛𝑡𝑒𝑟𝑝 (𝐶0,𝐶1,𝑤)
with similarly interpolated attributes 𝑖𝑛𝑡𝑒𝑟𝑝 (𝐴0, 𝐴1,𝑤) for a set
𝐴′ that could be the union or intersection of attribute sets 𝐴0, 𝐴1.
Continuous bookmark curves conceptually enable in-situ attribute
keyframing (Figure 2(a)), visualized by a piece-wise linear path
connecting a sequence of discrete bookmark curves (Figure 1(h)).

Any object selection and curve modeling tool can be used to cre-
ate rig and bookmark curves with associated scene object attributes
in 2D/3D. Our implementation specially facilitates the drawing of
bookmark curves on planar canvases in 3D (Figure 8), where each
canvas additionally provides a grouping for bookmark curves and
their associate scene attributes.

4 Implementation
The squidget framework supports a range of implementations for a
variety of applications and workflows. Here, we present details for
an implementation1 within the 3D animation system Maya 2024.
User stroke input is provided by a mouse, track-pad, or Wacom
Cintiq 24HD Touch tablet.

4.1 Perceptual Curve Segment Matching

a) b) c) d)

Figure 6: Strokes (orange) being matched to curves (cyan)
with corners (red) (a). Strokes can be partially matched and
aligned by ICP, and cornermatching (b). Curves segments can
be parametrically matched (c) and the best matched curves
used to manipulate scene attributes (d).

A general similarity metric for curve matching is an ill-posed
problem, depending on its use case and assumptions on the geo-
metric properties of the curves. Curve matching for most interac-
tive graphics applications are based on corner, shape, and spatial

1https://github.com/ohnooj/squidgets

https://github.com/ohnooj/squidgets
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similarity [17]. Perceptually, we tend to align curves at correspond-
ing sharp corners with matching smooth curve segments shapes.
Depending on where the matching curves are drawn, spatial trans-
forms may be needed to better align corresponding shape segments.
We distill these observations into a curve matching algorithm with
weights that favor different criteria, making the algorithm easy to
adapt to specific use cases (see details in supplemental), or fit to
training curve data (Figure 6). We assume 𝑃 is an open curve for
now and adapt our solution to closed curves later.

Terminology
Curve: we represent a curve 𝑃 as a poly-line sequence of points

𝑃 =< 𝑝1, .., 𝑝𝑛 >.

Curve arc-length: is computed, for a curve 𝑃 , as the sum of poly-
line segments 𝑎𝑙 (𝑃, 𝑘) = ∑𝑘

𝑖=2 | |𝑝𝑖 − 𝑝𝑖−1 | |.
Curve corners: for a curve 𝑃 , let 𝐶 (𝑃) =< 𝑐1, .., 𝑐𝑚 >, be indices

for internal corner points 𝑝𝑐𝑖 in sequence. The corners thus
induce smooth curve segments 𝑃𝑙 =< 𝑝𝑐𝑙 , .., 𝑝𝑐𝑙+1 > (for 𝑙 ∈
{1,𝑚−1}), the end curve segments being 𝑃0 =< 𝑝1, .., 𝑝𝑐1 >
and 𝑃𝑚 =< 𝑝𝑐𝑚 , .., 𝑝𝑛 >. Segment arc-length for an internal
curve segments 𝑃𝑙 is thus 𝑠𝑎𝑙 (𝑃𝑙 ) = 𝑎𝑙 (𝑃, 𝑐𝑙+1)−𝑎𝑙 (𝑃, 𝑐𝑙 ). At
the extremes 𝑠𝑎𝑙 (𝑃0) = 𝑎𝑙 (𝑃, 𝑐1) − 𝑎𝑙 (𝑃, 1), and 𝑠𝑎𝑙 (𝑃𝑚) =
𝑎𝑙 (𝑃, 𝑛) − 𝑎𝑙 (𝑃, 𝑐𝑚).

Curve corner position+orientation: we define the position 𝑜 (𝑃, 𝑖) =
𝑝𝑐𝑖 for a corner point 𝑖 in the set of corners 𝐶 (𝑃) of curve
𝑃 . A coarse tangent-like orientation at this point is given
by the vector 𝑣 between its adjacent corner points 𝑡 (𝑃, 𝑖) =
𝑣 (𝑝𝑐𝑖+1 , 𝑝𝑐𝑖−1 ), where 𝑣 (𝑎, 𝑏) = (𝑎 − 𝑏)/| |𝑎 − 𝑏 | |. For the
extreme curve segments we use 𝑝𝑛 as 𝑝𝑐𝑚+1 and 𝑝1 as 𝑝𝑐0 .

Corner correspondence algorithm
Given two curves 𝑃 and 𝑄 , we first find an optimal correspon-

dence between the set of corners𝐶 (𝑃) and𝐶 (𝑄), that act as sparse
anchors in perceptual shape matching [17]. We use a dynamic
programming formulation that minimizes the matching energy of
corresponding corners on 𝑃 and 𝑄 .

Let 𝑀 (𝑃, 𝑖,𝑄, 𝑗) be the corner matching energy for the 𝑖𝑡ℎ cor-
ner in 𝐶 (𝑃) to correspond to the 𝑗𝑡ℎ corner in 𝐶 (𝑄), defined as
a weighted sum of a spatial alignment energy 𝐴(𝑖, 𝑗) needed to
move and coarsely align the corners, and a coarse shape energy
measured by a local disparity in curve arc-length of their adjacent
curve segments. In other words:
𝑀 (𝑃, 𝑖,𝑄, 𝑗) = 𝑤𝑡 ∗𝐴(𝑖, 𝑗) +𝑤𝑠 ∗ (|𝑠𝑎𝑙 (𝑃𝑖−1) − 𝑠𝑎𝑙 (𝑄 𝑗−1) | +

|𝑠𝑎𝑙 (𝑃𝑖 ) − 𝑠𝑎𝑙 (𝑄 𝑗 ) |).
The corner alignment energy 𝐴(𝑖, 𝑗) above is a weighted sum of a
translation 𝑇𝑟 (𝑖, 𝑗) = 𝑜 (𝑃, 𝑖) − 𝑜 (𝑄, 𝑗), and a rotation 𝑅𝑜 (𝑖, 𝑗) that
rotates vector 𝑡 (𝑃, 𝑖) to 𝑡 (𝑄, 𝑗).

We need to adjust the above computation of coarse shape en-
ergy and corner alignment at end curve segments, to allow par-
tial curve matching. For example, when 𝑖 = 𝑚 let parameter 𝑠 =

𝑚𝑖𝑛(𝑠𝑎𝑙 (𝑃𝑚), 𝑠𝑎𝑙 (𝑄 𝑗 )), and we use the point 𝑞 on 𝑄 at parameter
𝑎𝑙 (𝑄, 𝑐 𝑗 )+𝑠 as corresponding to end point 𝑝𝑛 of 𝑃 . The shape energy
term above |𝑠𝑎𝑙 (𝑃𝑖 ) − 𝑠𝑎𝑙 (𝑄 𝑗 ) | is then replaced by |𝑠𝑎𝑙 (𝑃𝑖 ) − 𝑠 |, and
the corner alignment𝐴(𝑖, 𝑗) uses a translation𝑇𝑟 (𝑖, 𝑗) = 𝑜 (𝑃, 𝑖) −𝑞,
and a rotation 𝑅𝑜 (𝑖, 𝑗) that rotates vector 𝑡 (𝑃, 𝑖) to 𝑣 (𝑞, 𝑞𝑐 𝑗 ). The
case for the beginning segment 𝑃0, and the two end segments of 𝑄
are treated similarly.

Now let 𝐸𝐶 (𝑃, 𝑒, 𝑓 ,𝑄, 𝑔, ℎ) be the energy to match a sequence
of corners from 𝑒, .., 𝑓 in 𝐶 (𝑃) to corners 𝑔, .., ℎ in 𝐶 (𝑄). We can
define this energy using Dynamic Programming as:
𝐸𝐶 (𝑃, 𝑒, 𝑓 ,𝑄, 𝑔, ℎ) =𝑚𝑖𝑛𝑖∈𝑒,𝑓 , 𝑗∈𝑔,ℎ [𝐸𝐶 (𝑃, 𝑒, 𝑖 − 1, 𝑄, 𝑔, 𝑗 − 1)+

𝐸𝐶 (𝑃, 𝑖 + 1, 𝑓 ,𝑄, 𝑗 + 1, ℎ) +𝑀 (𝑃, 𝑖,𝑄, 𝑗)].
Curve segment matching algorithm
The matching corners provide anchors for a parametric corre-

spondence between poly-line curve segments 𝑃𝑙 (for 𝑙 ∈ {1,𝑚})
and their matching segments in curve 𝑄 (WLOG |𝐶 (𝑃) | ≤ |𝐶 (𝑄) |).
In the event that 𝑃 has no corners, we find a best-fit rigid transform
that minimizes the distance between points on 𝑃 and the curve 𝑄
using the iterative closest point ICP algorithm [33]. We then find
the closest pair of points on ICP aligned 𝑃 and 𝑄 and treat them as
corners on 𝑃 and𝑄 respectively to provide an anchor for parametric
correspondence. We also note that for the end segments 𝑃0 and 𝑃𝑚 ,
we use an arc-length parameterization to define a correspondence
truncated by the segment of 𝑃 or 𝑄 with a shorter arc-length. We
now have two sets of parametrically matched curve segments in
𝑃 , 𝑄 induced by 𝑃𝑙 (for 𝑙 ∈ {0,𝑚}). Note again, for the case where
𝑃 has no corners we re-combine the closest-point-pair induced
segments after parameter correspondence, so they are treated as
a single smooth curve segment. For each corresponding pair of
segments 𝑃𝑙 and𝑄𝑙 , we resample the sparser poly-line to match the
point count 𝑑 of the denser segment. We now compare these seg-
ments simply using a matching set of corresponding points where
𝑃𝑙 = {𝑝𝑙1, .., 𝑝𝑙𝑑 } and 𝑄𝑙 = {𝑞𝑙1, .., 𝑞𝑙𝑑 }. The matching energy 𝑀𝑙

can be combined as a single best-fit rigid transform 𝐴𝑙 to align the
point sets, and an average of residual distance-squared between
corresponding points after the alignment transform. In other words,

𝑀𝑙 = 𝑤𝑎 ∗ ||𝐴𝑙 | | + (𝑤𝑝/𝑑) ∗ (
∑𝑑
𝑖=1 | |𝑝𝑙𝑖 − 𝑞𝑙𝑖 | |2).

The overall curve matching energy 𝐸 (𝑃,𝑄) between curves 𝑃 and
𝑄 is a sum of the matching energies of their corresponding curve
segments

∑𝑚
𝑙=0 (𝑀𝑙 ).

For a given application, the best match between 𝑃 and a set
of curves 𝑄1, ..𝑄𝑘 is then simply𝑚𝑖𝑛𝑖∈{1..𝑘 } (𝐸 (𝑃,𝑄𝑖 )), subject to
setting the weight parameters to provide control over the impact of
corners, spatial translation, rotation, and the shapes of the curves
being matched.

For closed curves, we first perform a rigid ICP transformation to
roughly align them, We then run the stroke matching above with
a high spatial weighting to only allow small local movements of
curve segments to align corners and curve segments.

4.2 Squidget Curve Creation
While rig curves are user pre-authored 3D scene curves, abstraction
and bookmark curves need to be created or set-up by our system.

Abstraction Curves
We use NPR toon-rendering in Maya to create imagined curves

from scene objects (Figure 7(b)). Arbitrary object attributes can
visually change these toon curves. Our implementation restricts
these attributes to object transforms and object vertex positions for
illustration. We further note that toon-rendering is view-dependent
and toon curves can change discontinuously upon object or camera
transformation. We thus create 3D curves𝒞 from 2D toon-rendered
outlines given the current scene and camera parameters, as if they
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Figure 7: A user-drawn selection stroke is shown in screen space (top row, bottom row shows a world space view) (a). Maya toon
render outlines are converted to abstraction curves in world space (b). Each abstraction curve𝐶 projected to screen space𝐶2𝐷 (c)
is aligned with 𝑆 (d), transforming𝐶𝑆 to 𝑆 (e). The object corresponding to the best matching curve is selected for manipulation.

were pasted on their corresponding 3D objects, before any interac-
tive scene manipulation begins.

Bookmark curves
Like rig curves, bookmark curves can be arbitrarily-created

2D/3D curves in Maya. Once created, they can be associated with
any set of scene attributes within our framework.

Bookmark canvases: We provide support for the streamlined cre-
ation and scene attribute association of bookmark curve groups
using canvases. A canvas is a plane or surface that is positioned
in 3D and associated with a set of scene attributes. Users draw a
screen stroke projected onto the closest canvas to create an in-situ
3D bookmark-curve and automatically map the current values of
the scene attributes to the curve. Multiple squidgets can inherit the
same scene attributes from the parent canvas but with different
values such that groups of bookmark cruves can be managed via
different canvases and spatially re-arranged in the scene by the user
to reduce visual clutter. Visibility of canvases can also be toggled
manually or automatically (e.g. based on proximity to a hovering
pen position, or on how oblique a canvas is to the current scene
view). We experimented with other attribute selection schemes
such as automatically selecting recently changed attributes, but
found our proposed canvas-centric approach to provide a good bal-
ance between efficiency and flexibility in bookmark curve creation.

Discrete/Continuous Bookmark Curves: Bookmark curves can be
linked in sequence by drawing a stroke that crosses discrete book-
mark curves. This continuously interpolated bookmark is visually
indicated by a poly-line path through the mid-points of discrete
bookmark curves in sequence. The path further acts like a UI slider
that provides linearly interpolated control between the scene at-
tribute values associated with adjacent discrete bookmark curves.

4.3 Squidget Curve Selection
The curve matching algorithm (Section 4.1) matches the selection
stroke 𝑆𝑠 to the best matching 3D squidget (abstraction/ rig/ book-
mark) curve 𝐶 projected into screen space Figure 7. Note that for
3D stroke input in AR/VR the matching takes place in 3D itself.

Corner, Spatial, and Shape Weights: Our algorithm in Section
4.1 allows us to differentially weight the importance of corners, a

spatial transform, and the shape of curve segments in curve match-
ing. A number of factors influence the weight settings, including:
input device (trackpads and mice have greater noise than pen/tablet
and thus a lower corner weight); separate select and manipulation
strokes (the spatial weight for a dedicated selection stroke is low
as we expect users to closely trace over the desired curve); nature
of curves (for largely straight line segments in architectural ap-
plications the shape weight can be set as low, for known smooth
curves the corner weight can be set low). In a number of scenarios,
assumptions about the scene and/or interactions allow to simplify
aspects of the algorithm, as described in the supplemental materials.

We hand-tuned weights for application and stroke workflow
(e.g. a 2-stroke workflow (𝑆𝑠 ≠ 𝑆𝑚) expects an overtraced selection
stroke and thus weights spatial proximity heavily). In scenes with
many squidget curves, spatial proximity of the user strokes to the
desired select/manipulate curves provides the most reliable behav-
ior, given the corner and shape sensitivity of strokes to sketching
inaccuracy. Weights can also be learned using training examples of
squidgets scenes and user strokes, or interactively set by a user.

4.4 Squidget Manipulation
Once a squidget curve is selected, we need to compute the change
to its associated scene attribute values, such that the resulting squid-
get curve best matches the manipulation stroke 𝑆𝑚 . This search for
optimal attribute values depends on the associated attributes. For
example, for shape attributes like object vertex positions, the ver-
tices can closely approximate the manipulation stroke by directly
conforming object vertices to the shape of the manipulation stroke.
For object transform attributes, there is an analytic best-fit trans-
form that conforms a squidget curve to a manipulation stroke [38].
Discrete bookmark curves simply snap attributes to the bookmark
curve closest to the manipulation stroke and continuous bookmarks
are interpolated based on where the manipulation stroke intersects
its poly-line path. Abstraction and rig curves can have complex re-
lationships between their associated scene attributes and the curve,
requiring a neighborhood search of attribute values, to find the
curve that best matches the manipulation stroke.

For interactive control of squidget curves, users can employ a
2-stroke technique where 𝑆𝑠 and 𝑆𝑚 are separate strokes, a 1-stroke



Kim et al.

user-defined
bookmark curves

d)

a) b) c)

manipulations via abstraction curves manipulations via rig curves manipulations via traditional widgets

Figure 8: Top: To modify a scene, visual artists can freely choose between manipulating scene objects using abstraction curves
(a), rig curves (b), or traditional widgets (c). Bottom: The artist can save the scene (and hence all the scene parameters) by
sketching a bookmark curve (d, left). Iteratively modifying (a-c) and bookmarking scene configurations (d) allows the artist to
create multiple versions, which can later be referred to, or interpolated by linking the bookmark curves (d, right).

a) b) c) d)

Figure 9: Within a VR environment, strokes are drawn to
control a wood-chopper by moving the axe they hold (a-b)
and adjusting the body pose (c-d).

technique where 𝑆𝑠 = 𝑆𝑚 , or a hold-and-drag technique to inter-
actively refine the attribute values after drawing 𝑆𝑚 , like a virtual
slider that incrementally changes scene attributes or interactively
changes the object transform.

It is important to note that when squidget curves are matched in
screen space, all manipulations happen orthogonal to the camera.

5 Applications
Most 2D design applications already support sketch input, and
can thus seamlessly incorporate squidgets for quick editing of scene
parameters using abstraction curves, as illustrated in Figure 1(f). In
3D design applications, in-situ control through squidgets can be a
powerful approach compared to traditional widgets. For instance, in
a VR environment sketching strokes that match the scene’s abstrac-
tion curves can control characters, e.g. a stroke indicating where
an axe should move Figure 9(a,b). Character and face rigs often
have many rig curve handles for each part of the body, and posing
often requires manipulating multiple handles together. Squidgets
can facilitate character and face posing by allowing artists to directly
work with face (Figure 1(g)) or character rig curves (Figure 8(b)), by
drawing the shape of the rig handles. Using bookmark curves, artists
can also author their own "rig" curves, as illustrated in Figure 10.

Combining squidgets enables rich authoring workflows. Fig-
ure 8 illustrates how an artist (a) manipulates the sun’s location by
drawing arc strokes to match the sun’s abstraction curve, (b) poses
the squirrel by sketching strokes that match rig curves of its tail,

Figure 10: User-authored bookmark curves can be associated
with discrete configurations of face attributes to capture a
smile (left) and a laugh (right); and further combined into a
continuous bookmark curve squidget, where the curves and
related face attributes can be interpolated (center).

head and body, and (c) changes the scene lighting using traditional
widgets. When satisfied with the scene, (d, left) the artist creates a
bookmark curve, i.e. a simple tick mark for easy reference to this
configuration. Then, (a-c) they continue to modify the scene, (d)
adding a bookmark curve for each new configuration. Through this
workflow, the artist authors key frames of a short animation where
the sun rises and the squirrel bounces, which they can interpolate
by creating a continuous bookmark squidget (d, right).

6 Evaluation
We evaluate our framework through a controlled experiment (§6.1),
and an informal qualitative evaluation with visual artists (§6.2). In
the interest of space, we provide a summary; a thorough description
and report can be found in the supplemental materials. The study
was approved by our institutional ethics board.
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6.1 Controlled Experiment: Manipulate Objects
We ran a within-subject experiment (n=12) to evaluate whether
people understand the squidgets concept and the usability of using
sketch input for manipulating scene parameters. We recruited 12
participants who were familiar with pen input but with little expe-
rience using 3D design software through our institutional channels
and word of mouth. The study lasted ∼45min; participants received
CAD$30. The study ran on a computer laptop plugged into a Wa-
com Cintiq 24HD screen tablet; and was implemented with the
Maya software with most features stripped out from the view to
best approximate a generic, traditional vector graphics editor.

6.1.1 Study Design. Participants completed two sets of scene ma-
nipulation Tasks: translate and deform a graphical object to match a
target. The Techniques included a baseline with traditional graph-
ical manipulation tools as found in vector graphics software (Maya
selection/translation tool for translation tasks and single-vertex
soft-selection with various deformation falloffs for deformation
tasks), and different squidget variations: 1-stroke (selection and ma-
nipulation are performed within a single input stroke), select→drag
(selection with an input stroke, upon which the object sticks to
the cursor to be further dragged around), and select→manipulate
(an initial stroke is used for selection; subsequent drawn strokes
perform manipulations to the selected object).

For the translation task, we varied difficulty according to the
ambiguity that additional distractors would introduce for selection
or manipulation: SpatialDifficulty refers to how far each dis-
tractor image is from the target axis location; ShapeDifficulty
determines how visually similar in shape the distractor is to the
task image. For the deform task, DeformDifficulty modeled task
difficulty as a function of type of applied deformations. See supple-
mental material for details on the study design and procedure.

6.1.2 Study Procedure. (1) The experimenter first obtained con-
sent, then explained to participants that they were tasked with
helping design a summer drink poster by moving or changing the
shape of fruit stickers, using different techniques. (2) Because the
study did not evaluate discovery but rather proficiency with the
tool, the participants were allowed to practice for as long as de-
sired with each Technique × Task. (3) Trial repetitions within each
Task × Technique block were presented in a randomized order.
For each trial, Time, Operation, and Undo were collected. After
each block, participants were instructed to complete a NASA-TLX
questionnaire [20]. (4) Finally, participants were invited to fill out
a post-study evaluation asking them to rank the interactive tech-
niques for each task, along with open comments.

6.1.3 Results. We report the 95% bootstrapped confidence intervals
(CI) on means to assess effects [13] along with qualitative data. We
focus on key insights; see supplemental for a detailed report.

Performance: squidgets are comparable to the baseline
most of the time. Figure 11 shows the effect of Technique and task
Difficulty on performance. Overall, the baseline was generally
comparable to squidgets for both completion time and operation
counts, across tasks, with a few exceptions, discussed below.

For translations, distractors challenge 1-stroke. As we an-
ticipated, we find strong evidence that 1-stroke presents notable
challenges for move tasks with a hard SpatialDifficulty. The
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Figure 11: Effect of Technique and Difficulty on measures
for the translation (A-B) and deform (C) tasks.
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Figure 12: Move Task: P7’s sketch strokes for 1-stroke,
select→drag, and select→manipulate. More in supplemental.

strokes the participants drew (Figure 12) are mostly arc-shaped
strokes that match a small portion of the objects’ silhouette. While
this strategy largely works when strokes serve one of two functions
(selection or manipulation), for 1-stroke there is increased challenge
in the presence of distractors. When distractors were spatially close
to the target, participants drew "incremental" simple strokes to
move the object progressively (Figure 12, bottom row). They did
not systematically attempt to fine-tune the stroke to incorporate
distinguishable features for disambiguation. Participants rated 1-
stroke as more mentally and physically demanding, more effortful,
more frustrating, and less performing than the other techniques
for moving tasks. However, two participants rated it as the most
preferred, because “being able to do things in one stroke was overall
much smoother compared to selecting.” (P3).

For translate tasks, different techniques will suit different
people. The best technique for move tasks depends on personal
preferences. The most popular, select→drag (7/12 rated as most
preferred), was liked for its efficiency — “The fastest and the most in-
tuitive, and also had very good control in where you want to move the
object” (P2), and continuous interaction — “You get to see real-time
where the object is.” (P10). Those who preferred the baseline (5/12)
also mentioned high precision and control. Participants appreci-
ated both techniques “were very simple and easy to understand right
away.” (P9). They were more mixed about select→manipulate, point-
ing to downsides such as “having the 2 stroke was very redundant
compared to the other options” (P8). While separating the select and
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Figure 13: Deform Task: P7’s sketched strokes for 1-stroke,
and select→manipulate. See supplemental for more.

manipulation strokes offers advantages conceptually, participants
did not recognize these benefits during the controlled experiment.

For deform tasks, a tool (baseline) is used iteratively while
sketching the target (squidgets) is hit-or-miss. The baseline
resulted in very few (if any) undo operations, but required about
as many operations as 1-stroke and select→manipulate. This in-
dicates that, with the baseline, participants opted for subsequent
manipulations instead of reversing the last operation. For squidgets,
undo operations were more common, suggesting that participants
imagined that the target deformation could be achieved in one
go: “The deform-by-stroke tool feels more natural because that’s how
I anticipate deformation in my head” (P10). However, due to the
challenges in drawing curves which perfectly match the intent,
this required multiple attempts, especially for lay users with no
particular expertise with digital drawing.

Deformations types do not correlate with task difficulty.
DeformDifficulty had no effect, or even a countereffect on per-
formance measures, suggesting that our metric is a poor proxy for
anticipated difficulty. We found that participants struggled most
with trials for which they had a hard time identifying what was
deformed and how (i.e. peach & apple, Figure 13). Note that this is
an artificially introduced and extraneous step which was inevitable
for a controlled experiment but would not occur in a real-world
scenario, where people know what target shape they want.

For deform tasks, the sense of control is affected by the
predictability of the technique and the dexterity with input.
While some participants found that the baseline offers more control
and predictability, others felt the opposite was true because vertex-
based distortion was constraining: “[the baseline] is my least favorite
because you have to evaluate which width to use.” (P10), and having
poor predictability: “it’s hard to map a larger deformation of the
image to just a single vertex movement in my head.” (P11). Similarly,
some found 1-stroke offers control and is highly predictable, whereas
others found it did not behave as expected, e.g. “it moved parts that
I did not necessarily want moved” (P8). Opinions were also split for
select→manipulate, with several finding that it gave “finer control”
(P10), but a few finding it was difficult to understand.

For deform tasks, select→manipulate has strong potential.
select→manipulate was a popular choice for deform tasks. One of
its main advantages is fine control over the portion of the stroke
concerned with the manipulation, which several participants noted
was powerful. P11 articulated it best: “I like it best because I feel like
it provided the most amount of control - I can control the length of the
curve that I want to deform as well as how much I want to deform it.”.

Figure 14: An animator uses rig curves to control a character.

6.2 Impressions From Visual Artists
We invited two animators for interactive sessions to gather their
impressions of the squidget framework on 3D scenes (Figure 14)
in a formal 1-hour session where they explored all variations of
squidgets while thinking aloud, followed by a semi-structured in-
terview to discuss their experiences. A1 is a professional animator
with ∼25 years of experience in the commercial and visual special
effects industry, and whose primary tool is Maya. A2 is a researcher
in graphics with 2 years of experience doing facial animation on
Faceware2 and Maya. 3

Conceptually, squidgets show promise. Animators found
that squidgets were well suited for creative workflows, qualifying
the techniques as "very useful", "intuitive" and "very neat". They
found sketch input in-situ is a powerful mechanism that “brings
everything to the center of the scene” (A2), which helps maintain
the creative flow. This contrasts with traditional interfaces: “as
soon as you go into the interface, you’re breaking what you’re doing”
(A1). Animators found it to be “very satisfying” when the system
correctly interpreted their intent from “just putting a stroke down”
(A2). They showed excitement for the conceptual approach: “a soft-
ware that captures your strokes, and eventually learn to predict what
you’re trying to do [...] That’s a perfect piece of software” (A1), albeit
currently, the implementation needs improvements (see below).

Projecting a 2D stroke in a 3D scene. In our controlled experi-
ment, we opted for 2D scenes due to the difficulties of 3D navigation,
especially for lay users. Animators worked with 3D scenes, allow-
ing us to gain insight into challenges and mitigating approaches.
Our implementation interprets 3D transformations with respect to
the camera view, which animators found “mentally confusing” (A1)
and misaligned with their expectations. They suggested alternative
constraints to guide the transformations, such as axis constraints
(x,y,z planar directions), or physics-based heuristics that result in
“plausible movements” (A2) like moving along a wall or undulating
on a water body. A1 indicated that “even the stuff that is a little bit
extraordinary is based on real world physics”. Other scene objects
were also indicated as useful guides to sketch over, for instance for
assembly models, where sketching over objects will allow things to
fit perfectly together "like a Tetris" (A1).

Disambiguation. Animators commented on disambiguation
challenges exacerbated by near-by or too similarly shaped squid-
gets. They strove to balance the effort required to draw enough
details or unique features for disambiguation. select→manipulate
and select→drag achieved this goal successfully. One strategy we
2https://facewaretech.com/
3Four other expert animators also freely explored squidgets in earlier informal sessions,
which allowed us to refine our framework.
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observed aimed to optimize for selection, then use minimal strokes
for translations: “I tried to draw over the object; and then, it would just
be like dashes. Very quick ones. [...] I like how even if you were lazy
and don’t want to sketch the full curve, you can also get there” (A2).
Animators also strategically picked parts that are simple to repli-
cate to achieve precision in a two-stroke workflow. The squidget
paradigm acts “differently than how you’ve selected for, you know, 30
years” (A1), which can hinder adoptability. But animators indicated
that sketch selection would work well to select distant objects when
these are visually distinct.

Squidgets workflow #1: Coarse and granular changes. A1
discussed combining squidgets for coarse and granular changes,
noting that 1-stroke and select→manipulate are efficient for large
movements but lack granular precision, while select→drag affords
precision but is laborious for large manipulations. They described
an envisioned workflow where 1-stroke or select→manipulate in-
teraction would first “snap the object in position”, followed by re-
finements by dragging while swapping between translation and
rotation to “just slightly move it exactly where it needs to be”.

Squidgets workflow #2: Pose and bookmark in-situ. A1 and
A2 quickly picked up on the potential of squidgets for animation.
They experimented with posing a character [19] or a face using
abstract or rig curves, keying that pose with a bookmark curve,
repeating the operation multiple times with a new pose and key.
Then, they linked the bookmark curves and scrubbed through the
interpolated animation using select→drag. Within this workflow,
the ease with which they could "re-key" or add a new pose without
having to switch between the scene and a timeline would “save
artists hundreds of hours” (A1). A2 appreciated how the connected
bookmark curves “visualizes the timing in the spatial domain” akin
to notations that artists use to indicate durations between frames;
also reminiscent of timelines based on motion flow [14, 26, 42].

Bookmark curves as a personalized language. Animators
quickly appropriated bookmark curves as a personally-defined vi-
sual language. When bookmarking different character poses A1
and A2 drew the lines of action [19] “following the spine and the
legs of the character” (A1), but later adopted minimal lines, as if the
pose of the character was not necessary to fully “encode”. Indeed,
“making curves simpler will make it easier to query [...] I think just
having the position is enough for me to specify which frame I want”
(A2). They also mentioned that custom markers would be useful
for objects whose absolute position does not change, like faces.

Scenarios of usage. Concrete scenarios where animators see
squidgets as a valuable alternative to their current practice in-
clude modularizing keyframe animation by creating sequences
for smaller modules and controlling each squidget module with a
meta-squidget; and the creation of bookmark curves for intangible,
difficult to reach scene parameters (e.g. lighting). A2 also felt that
select→manipulate interaction with abstraction curves would be
particularly suitable for exaggeration effects, like squashing and
squeezing.

Areas for improvement. Squidgets have the potential to cause
visual clutter if too many are created. Finally, because multiple
different squidgets can be coupled to the same scene attributes,
changing one squidget may affect the states of the others, causing
concerns that such cases could yield undesirable results.

7 Discussion
Our prototype implementation and user studies affirm the feasi-
bility of squidgets interaction and that the concept of squidgets,
as a powerful and natural mechanism to express scene edits, was
understood and appreciated by both experts and lay users. The
studies confirmed our design guidelines and provided further in-
sight into the squidget paradigm: (i) input device fidelity, drawing
skill, and the choice of strokes for selection and manipulation, all
affect the ability to select and perform desired complex scene edits;
(ii) oversketching naturally aligns with 1-stroke interaction, but is
only effective in simple scenes where disambiguating selection is
easy, or when the desired edit is small (i.e. the selection and ma-
nipulation strokes are very similar); (iii) the select→drag workflow
was appreciated for allowing a quick, coarse stroke for selection
and manipulation that can be interactively refined by dragging; (iv)
an important difference between novice and expert users lied in
their ability to draw uniquely identifying parts of strokes that aided
selection and manipulation of scene objects. Experts also liked the
gestural nature of squidgets interaction for quick scene exploration
and bookmarking, and saw it as complementary to existing tools.

We present squidgets as a conceptual framework for interaction.
Our implementation of squidgets within Maya is but one instance
of a squidgets workflow. As our results show, there is potential
within the framework to fine-tune the use of multiple strokes to
disambiguate selection, vary the associated scene attributes, and
the resolution and precision with which they are edited.

7.1 Limitations
Ambiguous inverse control: Conceptually, squidgets capture an
ill-posed and ambiguous inverse control problem. Despite this, con-
straining the number of squidget curves and their mapping to scene
attributes can make interacting with squidgets predictable and satis-
fying. There may be inherent redundancy in some scene attributes.
For example, a stroke indicating a larger sphere in Maya can be
realized by a change to the sphere’s radius, its scale transform, or an
infinite combination of the two. Such redundancy can be mitigated
by regularization or authoring explicit bookmark curves that clar-
ify the attributes to be controlled by the squidget. Our prototype
implementation also makes a number of simplifying assumptions
such as only controlling transform and shape attributes via abstrac-
tion curve squidgets. Given recent research on data-driven inverse
rendering, we hope to solve general scene attribute manipulation
for abstraction curve squidgets as an optimization learned from
forward rendering simulations.

Confidence and predictability: The curve matching interac-
tion may leave users with little transparency regarding output
prediction and can leave users guessing what will happen. Users
commit to drawing an entire stroke before receiving feedback on
their actions, and if the result is not what a user wants, there may
be little guidance on how to draw a more accurate stroke for their
desired task. Several approaches can be explored for increasing
confidence and predictability as follows.

For squidgets selection: The 1-stroke workflow is best suited (1)
when distinct stroke gestures are unambiguous, i.e., there are few,
visually distinct squidget curves, or (2) for incremental changes,
i.e., the difference between the selected and manipulated curve is
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small. While more efficient, this workflow can be unpredictable,
especially in scenes with many squidgets. A correction step can
be considered where the user picks among the top few visualized
matches. The select→manipulate workflow is very predictable if
the selection stroke traces over even a small portion of the desired
curve (akin to click-to-select). Visualizing the best curve match to
the partially drawn stroke in real time can increase user confidence.

For squidget manipulation: Dynamically rendering a ghost pre-
view of the manipulated curve that best matches the user stroke
can communicate how squidgets interprets input in terms of scene
attribute changes. select→drag allows interactive scene refinement
through spatial dragging; it does not allow refining the stroke shape
though, something which could be considered using oversketch-
ing before committing a scene edit. Finally, a squidgets interaction
history can also be used to reinforce repeated selection and manip-
ulation behaviors, and penalize those that are undone.

2D input: While our framework supports 2D/3D scene curve
manipulation, users interact with 2D strokes drawn in screen space
(with the exception of mid-air strokes drawn in AR/VR). As a result,
scene attributes are edited to produce view-depth preserving edits
of the selected scene curve. The onus is thus on a user to pick good
views to draw strokes, avoiding views where desired attribute edits
significantly impact the scene depth.

Deformation difficulty:We chose simple bell-shaped deforma-
tion tasks for fair comparison between the proportional modifica-
tion baseline tool in Maya and our squidget implementation. We
acknowledge though that squidgets allow more expressive shapes
with any number of waves and swirls, than does our baseline. Fu-
ture work should investigate alternative measures that more closely
align with difficulty prediction.

7.2 Future Work
Multi-stroke input: Squidgets, like single-stroke gestures, cur-
rently use a single input stroke for selection/manipulation. Given
the ability to draw multiple strokes before they are processed for
selection/manipulation can greatly increase the expressive power
of squidget interaction. For example, a pair of parallel strokes could
better select thin tubular objects (a wine glass stem), or three in-
tersecting strokes could indicate a 3D frame of reference providing
better control over attributes that change scene depth.

Stroke attributes: Our experiment only focused on geometric
shape matching for scene curve selection and manipulation. Sketch
strokes themselves have a rich set of attributes like weight, color
and style, that could be exploited to further control the selection
and manipulation of scene curves and associated attributes.

Bookmark curve extensions:Many of the animators in Sec-
tion 6.2 saw the value of bookmark curves to bootstrap and improve
in-situ graphical interfaces. Bookmark curves, currently used to
represent discrete scene configurations, or interpolated in sequence
can be embedded in-situ on manifolds to allow a richer exploration
space of scene attributes [3]. Bookmark curve templates that trans-
fer curves and associated scene attributes across objects is also
exciting.

3D Navigation: A crucial element of graphics workflow is cam-
era navigation. Though we did not explicitly implement navigation

methods (and left users to use default camera controls), squidgets
lays a foundation to build upon stroke-based 3D camera naviga-
tion. Rig curves and bookmark curves can be pre-authored like
typical 3D navigation widgets, to allow camera navigation con-
trol, or for constrained 3D navigation to key 3D configurations
or along transformation trajectories. Abstraction curves automati-
cally inferred from a 3D scene-view are particularly effective for
view-dependent on-screen navigation; curves can provide useful
alignment and docking constraints in a scene to further aid rapid 3D
navigation. Further exploration would be required to understand
user tendencies to explicitly convey camera actions with strokes.

8 Conclusion
Squidgets present a grand unified vision for stroke-based interaction
that leverages human perception of images as a collection of real
or imagined curves. Our prototype only implements a small subset
of squidget interactions in 2D/3D scenes with 2D/3D stroke input.

While our studies do also point out challenges in squidget inter-
action for scene attribute control, we believe these can be addressed
by better constraining curve selection and attribute manipulation to
the task context and application domain. Squidget do place expec-
tations on user drawing skill, but we believe these can be reduced
by simple and unique squidget curve shapes, stroke beautification
techniques, incremental refinement via multiple strokes, and visual
feedback that guides and snaps users towards better strokes.

Squidgets are a novel interaction framework that couples our
natural tendency to indicate changes to a visual scene by drawing
strokes over it. We have shown using our implementation and
studies that such an approach is both viable and promising and
hope that this work will fuel further work in direct, in-situ, sketch-
based scene interaction.
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