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Fig. 1. Using the shape matching element method we can directly simulate this NURBS surface model of a bouncy castle as a volumetric elastic object without
the need for volumetric meshing of any kind.

We introduce a new method for direct physics-based animation of volu-
metric curved models, represented using NURBS surfaces. Our technical
contribution is the Shape Matching Element Method (SEM). SEM is a com-
pletely meshless algorithm, the first to simultaneously be robust to gaps
and overlaps in geometry, be compatible with standard constitutive models
and time integration schemes, support contact and frictional interactions
and to preserve feature correspondence during simulation which enables
editable simulated output. We demonstrate the efficacy of our algorithm by
producing compelling physics-based animations from a variety of curved
input models.
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1 INTRODUCTION
The consumption of geometric surface models by physics-based an-
imation algorithms is fraught with difficulty. For volumetric objects,
this process often involves identifying and discretizing the interior
of the modelled object, typically either as a tetrahedral or hexahe-
dral mesh. This procedure is both expensive and difficult, especially
if the surface model is constructed from higher-order boundary
representations, or if the volumetric discretization is required to
be conforming or feature aligned. Removing explicit volumetric
discretization from the physics-based-animation pipeline can avoid
these difficulties and also provide a more unified modelling and
simulation experience.
NURBS (Non-uniform Rational B-Splines) are a popular higher-

order modelling primitive which are used for computer-aided design
(CAD), computational fabrication and computer animation. NURBS
primitives were the first geometric representation used for physics-
based animation [Terzopoulos et al. 1987], yet, despite over three
decades of research, animation of curved models, such as those built
with NURBS, remains a challenge.

Isogeometric Analysis (IGA) is a physics simulation methodology
that uses the control variables of the NURBS model as the degrees-
of-freedom (DOFs) of the simulation itself. Unfortunately IGA ap-
proaches for volumetric objects still require background volumetric
structures, typically regular grids that make satisfaction of boundary
conditions difficult (which makes collision resolution hard) or more
complicated cut-cell grids which introduce non-trivial root finding
problems into the mix. Crucially, these simulation schemes typically
assume models arise from engineering applications and meet tight
geometric criteria such as that the mesh is manufacturable. These
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inputs are much cleaner than those produced by a typical animation
modeller.

We present the first truly meshless (no volumetric discretization
required) algorithm for direct, nonlinear elastodynamic simulation
of NURBs models. Our nonlinear elastodynamic simulation scheme
requires only a boundary description of the object (we do not strictly
require a solid model, see Fig. 1) and appropriate physical param-
eters. Because we explicitly use the NURBS boundary represen-
tation in the simulation, it is straightforward to handle Dirichlet
and Neumann boundary conditions and to apply contact resolution.
Crucially, because we broadly target animation and not necessarily
simulation for engineering or manufacturing, we don’t require that
models satisfy the rigorous geometric requirements common for
these applications.

Our approach draws inspiration from the recently developed Vir-
tual Element Method (VEM) for solving partial differential equations
on domains tiled with arbitrary polygons. We establish a connection
between VEM and the well-known shape matching simulation algo-
rithm [Diziol et al. 2011; Müller et al. 2005]. This allows us to derive
equations of motion for an arbitrary curved surface model, made
of NURBS, via Lagrangian Mechanics. Importantly, we show how
to replace volumetric data structures for integration and blending
weight computation with ray casting approaches which enables our
meshless approach to elastodynamic physically-based animation.

2 RELATED WORK
Geometric modeling is a necessary precursor to physics-based ani-
mation, however connecting differing geometric representations for
modelling and simulation often requires time-consuming, complex
geometry processing pipelines. For instance, the popular tetrahedral
finite element approach for simulating solid elastodynamics [Sifakis
and Barbic 2012] requires robust algorithms for converting input
surface geometry into a volumetric tetrahedral mesh. This is a diffi-
cult problem and while significant progress has been made, even the
most robust volumetric methods [Hu et al. 2018] can be time con-
suming, fail to maintain correspondence between the input model
and output simulation mesh, and don’t work directly on curved
surface representations such as NURBS.

For many physics-based animation tasks, it would be desirable to
bypass volumetric meshing entirely and directly simulate the geo-
metric model. An ideal approach would avoid meshing of any kind
(no volumetric meshes or cut-cells), support continuum mechanics-
type constitutive models and energies that have become standard
in physics-based animation pipelines, be compatible with a wide
range of time integration schemes and ensure that simulation out-
put can be edited in the same modelling software used to create the
input (important for post-processing). Finally, our method should
put only moderate constraints on input model quality to facilitate
ease-of-use.
Isogeometric Analysis [Cottrell et al. 2009] endeavors to perform

simulation directly on the NURBS output from Computer-Aided
Design (CAD) software. Initial attempts used NURBS surfaces to
represent the medial surface of thin objects [Terzopoulos and Qin
1994]. Volumetric simulations relied on volumetric NURBS [Aigner
et al. 2009] but were limited to a narrow class of geometries. Finite

volume methods are applicable to more general geometries [Hein-
rich et al. 2012; Sevilla et al. 2008] but require a volumetric mesh
to be generated. Modern approaches are constructed around the
extended finite element method which enriches the standard finite
element basis with discontinuous basis functions to improve bound-
ary handling [Haasemann et al. 2011; Hafner et al. 2019; Legrain
2013; Safdari et al. 2015, 2016]. These methods typically start with
an easy-to-generate structured volumetric mesh (tetrahedral or hex-
ahedral), “cutting” the NURBS geometric model against it to enable
boundary handling (such a mesh is called a cut-cell mesh). Like volu-
metric meshing, this cutting operation can be difficult and our ideal
method would avoid it. Some cut-cell algorithms assume engineer-
ing/manufacturing quality input, which puts tight requirements on
input models [Hafner et al. 2019]. Finally these approaches require
additional mechanisms to ensure that simulation results lie inside
the shape space of the input model’s primitives, which increases
the complexity.
Embedded Methods attempt to sidestep many of these issues by

enclosing complex surface geometry inside a simulation coarse
mesh [Muller et al. 2004]. However, producing an appropriate mesh
embedding introduces a number of challenges since the coarse
mesh’s connectivity must mirror that of the embedded surface.
This necessitates the use of complex hierarchical methods like that
of Nesme et al. [2009], which themselves require the user to correctly
intuit an appropriate ultimate grid resolution. Alternately one can in-
troduce cut cell [Tao et al. 2019] or extended Finite Element [Hafner
et al. 2019] approaches which bring with them complicated geo-
metric operations. Furthermore when the DOFs do not lie on the
boundary, methods such as Nitsche’s Method [Nitsche 1971] are
required for handling Dirichlet boundary conditions. Our method in-
herits shape connectivity directly from the boundary input, avoiding
these difficulties entirely.
Shape Matching is a meshless approach to physics-based ani-

mation [Diziol et al. 2011; Müller et al. 2005] and geometry pro-
cessing [Bouaziz et al. 2012] built around shape registration. The
algorithm has been extended from volumetric triangle mesh input
to cloth [Stumpp et al. 2008], to particles [Müller and Chentanez
2011] and even to visual geometry for video games [Müller et al.
2016]. Shape Matching is fast [Rivers and James 2007; Steinemann
et al. 2008] and meshless, but state-of-the-art methods require ad-
ditional modelling input to position simulation primitives [Müller
and Chentanez 2011] or limit simulation primitives to be collections
of convex polytopes [Müller et al. 2016]. Finally, Shape Matching is
tightly coupled to the position-based dynamics (PBD) [Müller et al.
2007] time integration methodology. While incredibly performant,
this approach is incompatible with the constitutive models that are
popular for physics-based animation, as well as other time integra-
tion schemes. The popular Projective Dynamics algorithm [Bouaziz
et al. 2014] enables a more flexible Shape Matching implementation
but is still limited to a subset of constitutive models for elastic solids.

To alleviate these restrictions we turn to other meshless methods
popular in computer graphics and engineering [Faure et al. 2011;
Gilles et al. 2011; Liu et al. 1995; Martin et al. 2010; Müller et al.
2004]. These methods support more advanced constitutive models
and integration schemes but often require background integration
meshes, limit themselves to low order deformation functions and
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lose the direct connection with modelling geometry. Like cut-cell-
based, Isogeometric Analysis approaches, additional constraints
must be added to ensure that simulation output can be represented
by the input model. Given this, we conclude that there is no existing
algorithm that meets our desiderata for success.
Our algorithm takes the Shape Matching approach as inspira-

tion, but rather than follow the PBD formalism, we interpret Shape
Matching as a Virtual Element Method (VEM) [Beirão da Veiga
et al. 2014; Veiga et al. 2012]. Virtual Elements are an extension of
mimetic finite differences [Brezzi et al. 2005; Lipnikov et al. 2014] to
weak-form variational problems. VEM relaxes the mesh generation
requirements of the finite element method by enabling the solu-
tion of partial differential equations on domains partitioned with
arbitrary polytopes [De Goes et al. 2020]. The solution inside each
polytope is approximated using a polynomial function of a specified
order. VEM typically assumes that the boundary of the the problem
domain is described by a piecewise linear complex which makes its
standard formulation incompatible with our curved input geometry.

Contributions
In this paper we develop a new Shape Matching-based, Virtual
Element Method which is directly compatible with NURBS input
geometry rather than piecewise linear surfaces. Furthermore, we
improve the expressivity of the VEM basis by using a shape blending
approach inspired by algorithms for skinning [Jacobson et al. 2014a].
Our method is entirely meshless (requiring no volumetric meshes
or cut-cells) and is compatible with standard constitutive models
and time integrators. It guarantees that simulation output is directly
consumable by the input modelling software and can ingest models
which include large gaps, intersections and disconnected primitives
without additional user input. These features mean that our algo-
rithm is the first truly meshless approach for the direct simulation
of curved surface, NURBS models in physics-based animation.

3 OVERVIEW
The input to the Shape Matching Element Method (SEM) is a NURBS
boundary representation of a volumetric object, along with a set of
physical parameters (density, constitutive model, model parameters,
etc.). The boundary representation is composed of one or more (not
necessarily explicitly connected) NURBS surface primitives that we
will call parts. The output is an elastodynamic simulation. SEM con-
sists of preprocessing and runtime simulation phases (Alg. 1, Alg. 2)
and at no point do we need to generate a volumetric mesh of the
input. In the preprocessing stage we use raycasting to find quadra-
ture points and weights for volumetric integration, as well as to
compute part blending parameters. Finally we construct local shape
matching operators and the mass matrix for our problem.
At runtime we use standard time integration schemes to time

step the system. This requires us to evaluate the energy, gradient
and Hessian (implicit only) which we do at the previously computed
quadrature points. For collisions we use penalty forces and apply
them as external forces during integration (though other methods
could be used).

Algorithm 1 Shape Matching Element Preprocessing

1: procedure Preprocess(𝑚𝑜𝑑𝑒𝑙 )
2: // Get initial DOF and sample boundary ⊲ Section 4
3: q← GetControlPoints(𝑚𝑜𝑑𝑒𝑙)
4: 𝐽 , 𝑆 ← SampleNURBS(𝑚𝑜𝑑𝑒𝑙) ⊲ Section 5
5: x0 ← 𝑆 𝐽q

6: // Generate material points inside the model
7: X ← RaycastQuadrature(𝑚𝑜𝑑𝑒𝑙) ⊲ Section 6.3

8: // Set of blending weights for each X ∈ X
9: W ← BlendingWeights(𝑚𝑜𝑑𝑒𝑙, X , 𝛼) ⊲ Section 6.1

10: X̄ ← DeformationOrigins(X ,w ) ⊲ Section 6.2

11: // Create projection operator
12: Π ← ShapeMatching(q, 𝐽 , S , X̄ ) ⊲ Section 5

13: // Form mass matrix and error hessian, respectively
14: 𝑀 ← MassMatrix(X , X̄ ,W ,Π) ⊲ Section 7.2
15: 𝑀𝜖 ← ErrorMatrix(x0, X̄ ,W ,Π) ⊲ Section 7.6
16: end procedure

4 GEOMETRIC MODEL
Our algorithm acts on objects composed of multiple NURBS sur-
faces (Fig. 2). The three-dimensional position, x, of any point on a

control points

u

v

Fig. 2. A cubic NURBS patch with 16 control points.

NURBS surface can be written as

x (𝑢, 𝑣) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝜙𝑖 𝑗 (𝑢, 𝑣) q𝑖 𝑗 , (1)

where 𝑢 and 𝑣 ∈ IR are the coordinates in the 2D parametric domain,
𝑛 and𝑚 are the number of control points in the 𝑢 and 𝑣 directions,
q𝑖 𝑗 ∈ IR3 are the control points and 𝜙𝑖 𝑗 (𝑢, 𝑣) ∈ IR are the NURBS
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basis functions given by

𝜙𝑖 𝑗 (𝑢, 𝑣) =
𝜔𝑖, 𝑗 𝛽𝑖𝑘 (𝑢)𝛽 𝑗𝑙 (𝑣)∑𝑛

𝑟=1
∑𝑚
𝑠=1 𝜔𝑟,𝑠𝛽𝑟𝑘 (𝑢)𝛽𝑠𝑙 (𝑣)

,

where 𝛽𝑖𝑘 (resp. 𝛽 𝑗𝑙 ) is the 𝑖𝑡ℎ ( 𝑗𝑡ℎ) B-spline basis of order 𝑘 (𝑙 ) and
𝜔𝑖, 𝑗 is the NURBS weight.

Exploiting linearity with respect to the control points, we can
express this mapping as

x (𝑢, 𝑣) =
(
𝜙11 (𝑢, 𝑣) 𝐼 . . . 𝜙𝑛𝑚 (𝑢, 𝑣) 𝐼

)︸                                    ︷︷                                    ︸
𝐽 (𝑢,𝑣)

©«
q11
.
.
.

q𝑛𝑚

ª®®¬︸ ︷︷ ︸
q

, (2)

where 𝐽 (𝑢, 𝑣) is the NURBS Jacobian, 𝐼 is the 3 × 3 identity matrix
and q is the vector of generalized coordinates [Lanczos 2012] The
Shape Matching Element Method will follow from this kinematic
description.

5 SHAPE MATCHING
We begin by describing shape matching to a single NURBS part.
Given two different configurations of the same part (specified by the
control points), shape matching computes a polynomial deformation
that best aligns them.
Let q0 be the initial control points of the part, provided by the

modeler, and q be a vector of modified control point values. We can
compute the undeformed (or reference) position of any point on our
part using X (𝑢, 𝑣) = 𝐽 (𝑢, 𝑣) q0 and the corresponding deformed
(world space) position as x (𝑢, 𝑣) = 𝐽 (𝑢, 𝑣) q.

We can define a polynomial deformation from X =
(
𝑋 𝑌 𝑍

)𝑇
to x as

x (X) =

p(X − X̄)𝑇 0 0 1 0 0

0 p(X − X̄)𝑇 0 0 1 0
0 0 p(X − X̄)𝑇 0 0 1

︸                                                                 ︷︷                                                                 ︸
𝑃 (X)

[
c
t

]
,

(3)
where p (X)𝑇 is the polynomial basis vector
(e.g.,

[
𝑋 𝑌 𝑍 𝑋 · 𝑌 𝑋 · 𝑍 𝑌 · 𝑍 𝑋 · 𝑋 𝑌 · 𝑌 𝑍 · 𝑍

]
),

X̄ is an a priori chosen origin around which to deform, c are the
coefficients for the non-constant part of the polynomial and t is the
translation of the deformation origin. We can compute the shape
matching deformation by solving [Müller et al. 2005][

c
t

]∗
= arg min

c,t

∫ ��������𝑃 (X) [ct] − 𝐽q��������22 𝑑𝑢𝑑𝑣, (4)

where we have suppressed the dependence of X and 𝐽 on 𝑢 and 𝑣
for the sake of brevity.

We discretize the shape matching energy and minimize by solving

𝑃𝑇 𝑆𝑃

[
c
t

]
= 𝑃𝑇 𝑆 𝐽q. (5)

Here 𝑃 (resp. 𝐽 ) is a 3𝑠 × 3(𝑘 + 1) (resp. 3𝑠 × 3𝑛𝑚) matrix where
𝑠 is the number of quadrature points, 𝑘 is the number of terms in
the shape matching polynomial and 𝑛𝑚 is the number of NURBS
control points. 𝑃 (resp. 𝐽 ) is constructed by stacking the evaluations

of 𝑃 (X (𝑢, 𝑣)) (resp. 𝐽 (𝑢, 𝑣)) at each quadrature point. 𝑆 is a diagonal,
3𝑠 × 3𝑠 matrix of integration weights.
Quadrature points are selected so that 𝐽 is of sufficient rank

required to represent all control points. We achieve this by sampling
over each knot span defined by the B-splines, and find it effective
to use the order of the NURBS as the number of quadrature points
sampled in each knot span. Positions and weights of the quadrature
points in each span are chosen using Gauss-Lobatto quadrature.

Relationship to the Virtual Element Method. For a non-planar
NURBS part, a sufficient number of quadrature points will make Eq. 5

well-posed, allowing us to write:
[
c
t

]∗
= Πq where

Π =

(
𝑃𝑇 𝑆𝑃

)−1
𝑃𝑇 𝑆 𝐽 ,

is a projection from the space of control points onto the space of
polynomials. This projection serves an identical purpose (and is
mathematically equivalent up to choice of metric) to the projection
operator used in VEM [Beirão da Veiga et al. 2014]. VEM uses a
single polynomial projection per polyhedral element to solve dif-
ferential equations on complex volumetric meshes. We interpret
shape matching as converting our NURBS part into a single Virtual
Element suitable for elastodynamics simulation. Unfortunately, a
single polynomial deformation space will not be suitably expressive
for even moderately complex models. Previous work [Müller et al.
2005; Rivers and James 2007] used additional lattices or partitions
of the reference space to increase the number of polynomials in the
shape matching. In contrast, our meshless Shape Matching Element
Method works directly on the NURBS geometry itself.

6 SHAPE MATCHING ELEMENT METHOD
Each input object is composed of a set of boundary representations,
B , one for each part b ∈ B . Our kinematic mapping is a blended
construction [Andrews et al. 2016; Jacobson et al. 2014b] which we
write as

x (X) =
∑︁

b𝑖 ∈B

𝑤𝑖 (X) 𝑃𝑖 (X) Π𝑖q𝑖 , (6)

where𝑤𝑖 (X), 𝑃𝑖 (X), Π𝑖 and q𝑖 are the blending weights, polyno-
mial basis, projection operator and control points for the 𝑖𝑡ℎ part
respectively.

Multiple Part Projection
As in §5 we construct each Π𝑖 via shape matching. It is tempting to
use an identical polynomial basis matrix, 𝑃 (X) for all parts, b𝑖 , but
recall that constructing 𝑃 (X) requires the selection of a deformation
origin X̄ (Eq. 3). Using the same origin for all polynomials limits the
expressivity of the kinematic model [Jacobson and Sorkine 2011].
Instead we choose a set of points X̄ (0 < |X̄ | < |B |) to act as
deformation origins (§6.2). For each part we now construct 𝑃𝑖 (X)
using its associated deformation origin X̄𝑗 ∈ X̄ , where each origin
can be shared between multiple parts.

Attempting to use 𝑃𝑖 (X) in Eq. 5 on a per-part basis is problematic
as it can become ill-posed, especially for planar boundary represen-
tations. To alleviate this problem we invoke the hierarchical ordering
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principle, which argues that the behavior of a system is typically
dominated by lower order effects [Li et al. 2006]. Mechanically, this
principle suggests that the amount of motion modelled by increas-
ingly high-order polynomials is, itself, decreasing. This implies that
we can achieve acceptable shape matching results by performing
shape matching hierarchically – starting with the constant term and
then fitting the remaining deformation with progressively higher-
order expressions.
For a given part, b𝑖 , with associated origin X̄𝑗 we first estimate

the constant term, t𝑖 as the centroid of all parts associated with
X̄𝑗 . Next we fit the linear part of the deformation by performing
linear shape matching to b𝑖 . This can be repeated for polynomials
of arbitrary high order, for instance here we apply this approach to
quadratic shape matching:

t𝑖 =
∑︁

b𝑘 ∈X̄𝑗

1
𝜎𝑘
1
𝑇 𝑆𝑘 𝐽𝑘︸       ︷︷       ︸
𝐵𝑖𝑘

q𝑘

c1
𝑖 =

(
𝑃1𝑇 𝑆𝑖𝑃1

)
︸       ︷︷       ︸

𝐴1
𝑖

−1
(
𝑃1𝑇 𝑆𝑖 𝐽𝑖︸  ︷︷  ︸

𝐵1
𝑖

q𝑖 − 𝑃1𝑇 𝑆𝑖1︸  ︷︷  ︸
𝑇 1
𝑖

t𝑖

)

c2
𝑖 =

(
𝑃2𝑇 𝑆𝑖𝑃2

)
︸       ︷︷       ︸

𝐴2
𝑖

−1
(
𝑃2𝑇 𝑆𝑖 𝐽𝑖︸  ︷︷  ︸

𝐵2
𝑖

q𝑖 − 𝑃2𝑇 𝑆𝑖𝑃1︸   ︷︷   ︸
𝐷2
𝑖

c1
𝑖 − 𝑃2𝑇 𝑆𝑖1︸  ︷︷  ︸

𝑇 2
𝑖

t𝑖

)
,

(7)

where 𝜎𝑘 =
∑

b𝑘 ∈X̄𝑗
Tr 𝑆𝑘 is the normalization constant for the 𝑘𝑡ℎ

part, 𝑃𝑙 contains only the monomial basis of order 𝑙 , 𝑃𝑙 is the stacked
evaluation of this matrix at the 𝑠 quadrature points and c𝑙

𝑖
are the

corresponding coefficients. Finally, 𝑆𝑖 is the diagonal integration
weight matrix and 1 ∈ IR3𝑠×3 is a matrix of stacked 3 × 3 identity
matrices – one for each quadrature point.

NURBS Model Parts and Origins

Fig. 3. A simple, four part model with two deformation origins and the
corresponding matrix equation for the quadratic coefficients.

When assembled for all parts, Eq. 7, yields a block upper trian-
gular matrix 𝑈 and a sparse matrix 𝐵 (Fig. 3) which can be used
to efficiently compute the projection operator for the entire object
Π = 𝑈 −1𝐵. The structure of 𝑈 and 𝐵 ensures that Π only couples
objects which share deformation centers, which implies a sparse Π.
The per-part projection operators Π𝑖 correspond to blocks of rows
of Π. Coupling via the deformation origins ensures our method will
reproduce rigid and linear deformations in regions around these
points, while higher order terms help compensate for more local
deformations.
Note that hierarchical shape matching is not guaranteed to find

the optimal polynomial fit and potentially risks overfitting to low-
order terms. However we find that it provides qualitatively reason-
able results and avoids much of the dense matrix arithmetic and
singular value decompositions of alternative methods such as the
Moore-Penrose inverse or QR factorization.

6.1 Meshless Blending Weight Computation
Our kinematic map (Eq. 6) requires blending weights in order to ho-
mogenize our per-part representation. Specifying weights manually
would be antithetical to our goal of providing a seamless translation
from surface representation to physics-based animation. Automatic
weight computation is well-studied (see [Wang et al. 2015], [Jacob-
son et al. 2011] and [Faure et al. 2011]), but typically requires solving
an optimization problem that itself relies on a volumetric discretiza-
tion. This can be avoided by using stochastic methods [Sawhney and
Crane 2020] but these do not yet support the boundary conditions
we require for our problem.

Ideally our shape functions would both partition unity and obey
the Kronecker delta property (the 𝑖𝑡ℎ blending function is one at 𝑖𝑡ℎ
part and zero on all other parts). These properties ensure that our
simulation can properly represent translation and that the solution
stored at each part is the actual deformed position. Additionally we
would like our weights to be sparse both for performance reasons
(leads to sparse matrices) and for expressivity (leads to locality of
deformation).
While partition of unity and sparsity are straightforward to en-

force, the overlapping and intersecting parts (Fig. 17) often encoun-
tered in non-engineering models leads to a contradiction — how can
the blending functions be both one and zero at the points of overlap?
Our solution is to allow weights to include bounded discontinuities
at these points and it is these discontinuities that are difficult to
enforce with previous methods.

Given a set of reference space points X inside our model, we want
to evaluate𝑤𝑖

(
X𝑗

)
, where𝑤𝑖 is the weight function associated with

the 𝑖𝑡ℎ part, b𝑖 , andX𝑗 ∈ X . For eachX𝑗 we find the nearest point on
b𝑖 , X∗. We cast a ray from X∗, towards X𝑗 and find the intersection
with the nearest part, Xℎ .

Using these two distances we define a linear distance weight using
the well-known ReLU function:

𝜃𝑖 = max
(
1.0 −

𝑑primary

min(𝑑total, 𝛼)
, 0.0

)
, (8)

where 𝛼 is a distance cutoff parameter, 𝑑primary is the primary ray
length and 𝑑total is the total ray length. This distance weight (Fig. 4)
is the result of interpolating along the ray from X∗ to Xℎ (or a fixed
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Fig. 4. Distance weight as a function of primary ray length 𝑑primary and
total ray length 𝑑total with cutoff distance 50 (left). Here we use different
colors to denote different parts (right).

point that depends on 𝛼). These weights obey the Kronecker delta
property for all parts but do not partition unity which we repair
using a post-normalization step. For non-planar surfaces, Xℎ may
lie on the same part as X∗. For points inside closed periodic surfaces,
it is critical that the weights equal one in this case, so we set 𝜃𝑖 = 1.

At each X𝑗 we want to compute w(X𝑗 ) =
(
𝑤1 (X𝑗 ), . . . ,𝑤𝑛 (X𝑗 )

)
,

where
∑𝑛
𝑖=1𝑤𝑖 (X𝑗 ) = 1, and each 𝑤𝑖 ≥ 0, which we enforce by

solving a local optimization problem:

w(X𝑗 ) = arg min
w

w𝑇Θ(X𝑗 )w

s.t. 0 ≤ 𝑤𝑖 ≤ 1 ∀𝑖
𝑛∑︁
𝑖

𝑤𝑖 = 1

(9)

where Θ(X) = diag
(

1
𝜃1
, 1
𝜃2
, . . . , 1

𝜃𝑛

)
.

This post-process ensures that our blending weights partition
unity and are non-negative (Fig. 5). For any point on a part that
is non-intersecting, the weights will satisfy the Kronecker delta
property since the inverse distance weights imply that only a single
Θ𝑖 will have a non-infinite weight. For points that lie on more than
one part, the weights associated with the intersecting parts will be
equal and all others will be zero This implies that the deformed
positions of these intersecting points will be an average, which is
a plausible solution and ensures continuity. Finally, the distance
cutoff 𝛼 allows us to control the sparsity of the blending weights.
We employ a simple heuristic to select 𝛼 by searching for one that
produces a set of blending weights meeting a desired sparsity target
𝑇 ∈ (0, 1), which is defined as the ratio of non-zeros to total number
of weights. This yields a unitless, easy to tune parameter.

Using raycasting to compute blendingweights imbues ourmethod
with similar advantages to Sawhney and Crane [2020] (allowing us
to handle intersecting geometry, geometry with gaps and to perform
constructive solid geometry operations on the fly), but allows us to
use more general weighting functions and apply the appropriate
behavior for intersecting parts. The price we pay is that our weights
are not 𝐶0 continuous but rather contain bounded jumps. However,
these jumps occupy an infinitesimal percentage of the volume of our
object, and are easy to avoid when integrating physical quantities,
leaving our simulation unaffected.

Part 1 Part 2 Part 10

Part 11 Part 12 Part 20

…

…

Fig. 5. Our blending weights decay smoothly from 1.0 (yellow) to 0.0 (green)
when moving away from its closest surface. Here we visualize the distribu-
tion of the distance weights (with cutoff distance 5.0) corresponding to each
part.

6.2 Choosing Deformation Origins
Each part, b𝑖 , must be associated with a single deformation origin,
X̄𝑗 , and each origin is computed as the centroid of the set of parts
with which it is associated. While we constrain a part to be paired
with only one deformation origin, an origin may be associated with
any number of parts.

s t a

1

2

3
d

source sink

parts
candidate

origins

1

2

3

a

b

c

d

Fig. 6. Example structure for the network flow selection of deformation
origins with a shape consisting of three parts. Red arrows indicate each
part’s origin association.

Candidate deformation origins are selected by clustering quad-
rature points (themselves computed in §6.3). We group quadrature
points by the combination of parts influencing each point (non-zero
blending weight (§6.1)). Each group now represents a unique part
combination and the centroids of these groups become deformation
origin candidates. To assign deformation origins to parts we use an
integer network flow approach (Fig. 6).
Consider a directed bipartite graph 𝐺 = (𝑉 = 𝐴 ∪ 𝐵, 𝐸) where

each node in 𝐴 corresponds to a deformation origin candidate and
each node in 𝐵 represents a part. 𝐸 is the set of edges connecting
nodes in 𝐴 to 𝐵 where each origin has an edge to every part with
which it attempts to associate. We augment𝐺 to form 𝐺 ′ = (𝑉 ′ =
𝐴∪𝐵∪{𝑠, 𝑡}, 𝐸 ′) where𝑉 ′ is the new set of nodes now containing a
source, 𝑠 , and sink, 𝑡 . 𝐸 ′ is the augmented set of nodes connecting 𝑠 to
each candidate in𝐴 and connecting each part in 𝐵 to the sink 𝑡 . Each
edge (𝑖, 𝑗) ∈ 𝐸 ′ has an associated flow 𝑓𝑖 𝑗 and capacity constraint𝑢𝑖 𝑗 ,
and each edge in 𝐸 also has a cost 𝑐𝑖 𝑗 . The principal constraint for
this network flow problem is the conservation constraint, meaning
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that the net flow for all nodes in 𝑉 is zero. Each edge from 𝐵 to 𝑡
is assigned a capacity of 1, which enforces that any part node in 𝐵
receives flow from a single edge, and as a consequence each part
may only be associated with a single deformation origin. The last
step is to specify the costs on the edges, 𝐸, between the deformation
origin candidates and the parts.

Given a quadrature point group, and an edge from the associated
deformation origin to b𝑖 , we set the edge cost to be the sum, over all
quadrature points in the group of the blending weights associated
with b𝑖 . This cost penalizes heavily “connected” origin candidates,
encouraging sparsity during origin selection. This amounts to mini-
mizing the following integer linear program:

f = arg min
f

c𝑇 f

s.t. 𝐴consf = 0
𝑓𝑖 ∈ Z ,∀𝑖
0 ≤ 𝑓𝑖 ≤ 𝑢𝑖

(10)

where f and c are the edge flow and cost values, respectively, assem-
bled into vectors, and 𝐴cons forms the set of constraints satisfying
the flow conservation constraint. We solve this using the dual sim-
plex solver in MATLAB.

Note that this approach yields compactly supported weight func-
tions due to the cut-off parameter (Eq. 8). Depending on this value,
we obtain a range of system matrix sparsity patterns – from fully
dense to block sparse (Fig. 8). Importantly, unlike other boundary-
only approaches, our method is not guaranteed to produce dense
system matrices.

6.3 Meshless Integration
We integrate physical quantities over our undeformed object using
raycasting based quadrature [Khosravifard and Hematiyan 2010].
The key idea behind raycasting quadrature is to transform a

domain integral of the form 𝐼 =
∫
Ω 𝑓 (𝑋,𝑌, 𝑍 )𝑑Ω to an easier form

that enables us to select quadrature points in an entirely meshless
manner. The first transformation is to convert the domain of the
integral to an auxiliary domain, Ω𝑅 on which integration is easy
to compute. In our case we take this domain to be an axis-aligned
bounding box around our model, and rewrite integration as 𝐼 =∫
Ω𝑅
𝑔(𝑋,𝑌, 𝑍 )𝑑Ω𝑅 where𝑔 evaluates to zero outside ofΩ, but equals

𝑓 inside Ω. Next we apply the Divergence theorem to rewrite our
integral as∫

Ω𝑅

𝑔(𝑋,𝑌, 𝑍 )𝑑Ω𝑅 =

∫
Γ𝑅

(∫ 𝑋2

𝑋1

𝑔(𝛼,𝑌, 𝑍 )𝑑𝛼
)
n𝑑Γ𝑅 . (11)

where Γ𝑅 is the boundary of the bounding box with normals n and
𝑋1 and 𝑋2 represent the minimum and maximum values of the box
along the 𝑥-axis. With this form, all we require to evaluate the outer
integral is to integrate over the 𝑦-𝑧 plane located at 𝑋1. With this
simple form, the normal term may be excluded as it always equals 1
in the case of an axis-aligned bounding box. Finally, raycasting is
used to evaluate the line integral along the x-axis. From here, we
find all the intersection intervals where the ray is inside Ω, and
select quadrature points uniformly along this interval. Thus, this
transformation from the original volume integral into an integral

# Rays

0.4

0.7

Relative Error

0.1

2x2 6x6 10x10 14x14 18x18

Ray Sample

Fig. 7. When integrating physical quantities over the volumetric domain
of an object, our raycasting quadrature is robust and converges to the
groundtruth result as we increase the number of rays in use.

over a 𝑦-𝑧 plane plus axis-aligned rays enables us to integrate the
volumes of our NURBS models in a completely meshless approach.

We make a minor modification to this procedure to handle com-
mon geometric pathologies encountered in NURBS modelling, such
as overlapping surfaces, by performing CSG unions while raycast-
ing [Roth 1982]. The output of this raycasting procedure is a set
of quadrature points X and weights v that we use for integration
and also as input to our deformation origin extraction (§6.2) and
blending weights computation (§6.1) Fig. 7 shows the convergence
of this quadrature approach when used to compute the volume of a
NURBS model. In principle we could apply detail-aware sampling
methods [Wang et al. 2012] to improve the robustness of raycast-
ing quadrature even further, but we found it unnecessary for the
examples in this paper.

7 PHYSICS-BASED ANIMATION
Having defined the individual components of the SEM method, we
now briefly detail how we apply it to the problem of physics-based
animation, specifically elastodynamics. The advantage of having a
unified kinematic description (Eq. 6) is that we can directly apply
Lagrangian Mechanics [Lanczos 2012] to arrive at the pertinent
equations of motion:

𝑀 ¥q = f (q) + f𝑔 + fext,
where 𝑀 ∈ IR𝑛×𝑛 is the mass matrix, q ∈ IR𝑛 is the stacked vector
of surface control points, ¥q ∈ IR𝑛 is the generalized accelerations,
f ∈ IR𝑛 is the vector of internal forces, f𝑔 ∈ IR𝑛 are body forces
such as gravity and fext ∈ IR𝑛 are external forces such as those
due to contact. We use penalty springs [McAdams et al. 2011a]
to resolve contact, and the approach of Bridson et al. [2002] for
approximating frictional effects. Because SEM yields equations of
motion in the standard form, it is compatible with any standard
integration scheme, though in this submission we limit ourselves to
Implicit Euler.

7.1 Generalized Velocity
We can rewrite Eq. 6 in matrix form as
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Algorithm 2 Shape Matching Element Simulation Loop

1: procedure Simulate(𝑚𝑜𝑑𝑒𝑙 )
2: while 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔 do

3:

[
c
t

]
← Πq

4: for all 𝑖 ← 1 to |X | do
5: F𝑖 ← 𝜕F

𝜕𝑐 𝑐 // deformation gradient
6: 𝜕𝑉

𝜕𝑐 ←
𝜕𝑉
𝜕𝑐 +

𝜕F
𝜕𝑐

𝑇 𝜕𝜓

𝜕F (F𝑖 ) · volume𝑖
7: 𝜕2𝑉

𝜕𝑐2 ← 𝜕2𝑉
𝜕𝑐2 + 𝜕F

𝜕𝑐

𝑇 𝜕2𝜓
𝜕F2 (F𝑖 ) 𝜕F𝜕𝑐 · volume𝑖

8: end for
9: 𝐾 ← Π𝑇 𝜕2𝑉

𝜕𝑐2 Π

10: f (q) ← Π𝑇 𝜕𝑉
𝜕𝑐 +𝑀𝜖q

11: ftotal ← f (q) + f𝑔 + fext
12: ¤q← TimeIntegration(𝐾, ftotal, ¤q, 𝐽 , 𝑀,𝑀𝜖 )
13: q← q + ℎ ¤q // ℎ is timestep size
14: end while
15: end procedure

x (X) = 𝑁 (X)𝑊Π︸       ︷︷       ︸
Γ (X)

q, (12)

where 𝑁 ∈ IR3×𝑛 =
[
𝑃1 (X) . . . 𝑃𝑚 (X)

]
, 𝑛 is of size 3(𝑘𝑚 + |X̄ |)

with 𝑘 being the number of terms in each polynomial, 𝑚 is the
number of parts, and |X̄ | is the number of deformation origins. 𝑊 is
the diagonal matrix of blending weights, Π is the global projection
operator and Γ (X) is the kinematic Jacobian.

The velocity of a point on the object is then

v (X) = Γ (X) ¤q, (13)

where Γ (X) is the kinematic Jacobian and ¤q are the generalized
velocities of the system.

7.2 Mass Matrix
We derive the mass matrix for our system from the definition of
kinetic energy:

𝑇 =
1
2
¤q𝑇 Π𝑇

∫
Ω
𝜌𝑊 (X)𝑇 𝑁 (X)𝑇 𝑁 (X)𝑊 (X) 𝑑ΩΠ︸                                                    ︷︷                                                    ︸

𝑀

¤q. (14)

7.3 Deformation Gradient
The deformation at a point X in the reference space is given by

𝜕x
𝜕X

=

𝑚∑︁
𝑖=1

(
𝑤𝑖
𝜕𝑃𝑖 (X)
𝜕𝑋

Π𝑖q𝑖 +
𝜕𝑤𝑖

𝜕𝑋
𝑃𝑖 (X) Π𝑖q

)
, (15)

For physics-based animation, we find that it is sufficient to assume
the blending weights are constant in the region around quadrature
points, allowing us to discard the second term.

7.4 Constitutive Models
Our algorithm supports arbitrary elastic constitutive models. In this
submission we focus on hyperelastic models [Sifakis and Barbic
2012] wherein the potential energy stored by the object, per unit

volume, is given by the strain energy density function𝜓 (𝐹 ), and its
internal forces and stiffness are the negative gradient and Hessian
respectively. Evaluating and applying constitutive models of this
form requires the ability to (1) evaluate the deformation gradient
over the reference domain of the model and (2) integrate the result-
ing constitutive properties. SEM provides both features and thus
support for such models.

7.5 External Forces
We compute the force of gravity and apply external forces in the
standard way. Gravity is defined as f𝑔 =

∫
Ω 𝜌g𝑑Ω, where g is the

acceleration due to gravity acting on the object. We leverage our
meshless quadrature (§6.3) for integration.
External point forces are applied using the Jacobian transpose

technique which specifies that the generalized force, fext, that results
from a point load, applied at X is given by fext = Γ𝑇 f (X), where f
is the point load itself. Using the Jacobian transpose allows us to
easily apply all manner of external forces including collision and
frictional forces.

7.6 Error Energy
Like all VEM-type methods, ours requires an error energy to ensure
its consistency [Beirão da Veiga et al. 2014]. A natural choice is to
adapt the error energy specified by Müller et al. [2005] to penalize
deviations between the pose prescribed by q and that prescribed by
polynomial basis.

The total error at the boundary of the object can be written as

𝜖 =

∫
𝜕Ω
| |Γ (X) q − 𝐽 (X) q| |22𝑑X, (16)

which is a quadratic.
We augment our physical system with the quadratic penalty en-

ergy 𝛾𝜖 and use it to derive additional force and Hessian terms.
In practice we find that choosing 𝛾 to be the Young’s Modulus of
the elastic solid provides good behavior in all cases. If the poly-
nomial basis can exactly match the deformation of the boundary
representation, this error naturally elides to zero.
In the next section we show a plethora of physics-based anima-

tions created using our approach.

8 RESULTS AND DISCUSSION
We implemented SEM using a combination of MATLAB and C++
using both GPToolbox [Jacobson et al. 2018] and Bartels [Levin
2020] for geometry processing and constitutive models respectively.
Benchmarks were performed using a MacBook Pro with an Intel i5
2.3GHz processor, 16GB of RAM and an Intel Iris Plus Graphics 655
GPU.

Table 1 shows the size of all our examples along with performance
statistics and relevant parameters. We also plot the sparsity patterns
of several stiffness matrices in our examples in Fig. 8. Note that the
individual parts of all models are not connected, and no continuity
constraints or constructive solid geometry operations have been
applied. Rather, the SEM approach implicitly couples the boundary
parts together to allow for seamless volumetric simulation. We
use quadratic deformation for all the animation results, except the
rocket (stiff) and starshipwhich use linear deformation.Models were
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Table 1. Performance and parameters for the Shape Matching Element Method on all examples. All wall-clock timings are reported in seconds, physical
parameters are reported with appropriate units. 𝜌 is the applied density, E is the Young’s Modulus and 𝜈 is the Poisson’s ratio. Sample is the time taken to
sample and construct 𝐽 and ˆ𝑃 (X) , Quad is the time taken to generate quadrature points via raycasting, Weights is the time to compute blending weights,
Build Π is the time to build the projection operator, Step is the average time required to step the simulation (not including collision detection) and Nnz is the
ratio of nonzeros to the total number of elements in the stiffness matrix. We use linearly implicit time integration on all examples and thus the number of step
per frame is 1 in the simulation.

Example |q| Material 𝜌(kg/m3) E(Pa) 𝜈 Sample(s) Quad(s) Weights(s) Build Π(s) Step(s) Nnz(%)
Rocket (soft) 648 Rubber 1.27𝑒3 7𝑒6 0.40 2.83𝑒−2 5.62𝑒−3 5.58𝑒−1 6.83𝑒−2 1.26𝑒0 100
Rocket (stiff) 648 Steel 8𝑒3 2𝑒11 0.32 2.56𝑒−2 5.97𝑒−3 4.59𝑒−1 3.48𝑒−2 9.99𝑒−2 100
Starship 750 Steel 8𝑒3 2𝑒11 0.32 6.78𝑒−2 1.52𝑒−2 8.50𝑒−1 9.52𝑒−2 6.95𝑒−1 100
Beam (twist) 756 Rubber 1𝑒3 1𝑒6 0.45 1.97𝑒−1 2.25𝑒−2 1.35𝑒0 5.16𝑒−1 3.95𝑒0 46.94
Lamppost 942 Rubber 3𝑒3 1𝑒6 0.40 1.28𝑒−1 1.27𝑒−2 1.89𝑒0 1.07𝑒0 2.22𝑒0 56.38
Tire 1404 Rubber/Steel 2𝑒3/3𝑒3 1𝑒6/7𝑒9 0.47/0.35 1.74𝑒−1 1.32𝑒−2 1.82𝑒0 6.79𝑒−1 1.28𝑒1 92.5
Chicken 1773 Jelly 1.27𝑒3 1𝑒4 0.47 9.19𝑒−1 2.31𝑒−2 3.38𝑒0 1.91𝑒0 1.08𝑒1 100
Coffee mug (soft) 1800 Jelly 1𝑒3 1𝑒4 0.47 4.18𝑒−1 2.87𝑒−2 3.77𝑒0 2.08𝑒0 1.19𝑒1 100
Coffee mug (stiff) 1800 Rubber 1𝑒3 4𝑒7 0.40 4.15𝑒−2 1.17𝑒−2 6.86𝑒−1 1.09𝑒−1 5.00𝑒−1 81.42
Castle 1872 Jelly 1.27𝑒3 2𝑒3 0.45 4.84𝑒−1 1.44𝑒−2 1.52𝑒0 5.78𝑒−1 8.02𝑒0 100
Grumpy 2010 Jelly 1𝑒3 1𝑒4 0.40 2.92𝑒−1 1.23𝑒−2 2.29𝑒0 2.89𝑒0 6.02𝑒0 84.15
Astronaut (soft) 3609 Rubber 1.27𝑒3 1𝑒6 0.47 2.47𝑒0 6.71𝑒−2 1.13𝑒1 1.09𝑒1 1.41𝑒1 49.04
Squid 4347 Jelly 1𝑒3 2𝑒4 0.40 4.48𝑒−1 2.47𝑒−2 1.54𝑒1 4.48𝑒1 6.73𝑒0 25.47

created using Autodesk Fusion 360 [Autodesk 2021] and Rhinoceros
3D 7 [McNeel and Associates 2021]. Please see the supplemental
video for more animation results.

Squid Astronaut Chicken

4347 3609 1773

Fig. 8. Our stiffness matrices can be sparse, while the corresponding matrix
has to be dense in the traditional Boundary Element Method [James and
Pai 1999]. Sparsity of our stiffness matrix is primarily determined by weight
sparsity (number of non-zero weights at a given quadrature point) and
polynomial order.

For raycasting operations and rendering we rely on Embree [Wald
et al. 2014] and Blender [Blender 2020], and triangulate the NURBS
surfaces, which only represents an implementation simplification.
Our core algorithm is not dependent on triangulating the boundary,
and an ideal alternative would be using a path tracer that directly
accepts NURBS geometry. For collision detection and handling, for
simplicity we use the triangulation to detect inter-penetrations
at each iteration, and attempt to move the collided vertex out of
its collision surface using a spring-like penalty force, similar to
[McAdams et al. 2011b; Xian et al. 2019]. An ideal alternative would
be adopting the implicit representation of the surfaces for collision
detection and resolution [Buffet et al. 2019; Weber and Gornowicz
2009].

For handling trimmed NURBS surfaces, we augment our sampling
of the surfaces by using raycasting integration in 2D. Trimmed
NURBS may be defined by a boundary curve in the parametric
space, so we raycast to find intersection intervals in the UV space
on which quadrature points are generated. For rendering Trimmed
NURBS, we discretize the the boundary curve as a polyline and use
triangle [Shewchuk 1996, 2002] to form a boundary conforming
triangulation. The vertices of this triangulation serve as fixed set of
high resolution UV samples for constructing a render mesh.

original stretched rotated sheared

Fig. 9. 2D patch test. By applying affine transformations to the boundary
of the original undeformed model (left), we show that solving the static
problem gives rigid motion for rotation and constant strain for shearing and
stretching (right).

We first validate the physical plausibility of our method using a
small 2D patch test (Fig. 9). Here the test object is a square made of
four edges (not joined at the corners) simulated using linear poly-
nomials with a single deformation center. We apply a battery of
boundary conditions and resolve the deformation of the element
by minimizing the elastic potential. We note that SEM is able to
represent rigid motions, as well as shearing and anisotropic stretch-
ing. This implies that, with sparse weights, SEM can resolve these
motions locally, leading to physically plausible simulation results.
We demonstrate qualitative convergence of SEM with respect

to linear tetrahedral finite elements when increasing the number
of patches in use. In Fig. 11, we compare the static configurations
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of identical cantilevered beams, simulated using a Neohookean
constitutive model (Young’s Modulus = 0.001 GPa, Poisson’s Ratio
= 0.45). We further perform a basic quantitative comparison against
FEM by measuring the deflection of the beam at equilibrium as
we increase the number of patches along the beam. In Fig. 10, the
deflection of the SEM beams is reported as a percentage of the FEM
beam’s deflection.

90%

75%

60%

10 20 30
Parts

Beam Deflection (as % of FEM)

Fig. 10. The SEM beam deflection is plotted as a percentage of the FEM
beam’s deflection when the beam is at equilibrium. As we subdivide the
SEM beam, its deflection converges to the FEM beam’s deflection.

We use SEM with quadratic polynomials for this test and observe
that our SEM simulation, made of 26 independent NURBS patches,
shows good agreement with FEM. Each subdivision of the NURBS
beam enables more complicated kinematics, but very few surface
elements are needed to produce compelling results.

43,021
tetrahedra

FEM 6 parts 26 parts10 parts

Fig. 11. Our SEM simulation is able to qualitatively converge to a high
resolution FEM simulation result (left) as we increase the number of surfaces
in the model (right).

Additionally, we perform a twisting beam experiment on a 22
part beam model. Despite the relatively small number of NURBS
patches, we see in Fig. 12 that the quadratic polynomials permit
complex deformation.

Fig. 13 shows a scalability study in which a unit cube, composed
of 6 parts, is extended by appending 4 more parts at a time. Note that
our algorithm scales similarly to standard high-order finite element
approaches due to the compact support of our weight functions.

0° 180° 360°

Fig. 12. With the left end of the beam held fixed, we show the result of
rotating the right end of a 22 part beam up to 360 degrees.

1000 3000 5000
DOFs

Nnz%

50%

10%

90% 20

10

1000 3000 5000

Simulation Step Time (s)

DOFs

0

Fig. 13. Here we progressively add more degrees of freedom to a beam
by iteratively inserting 4 part sections, extending the beam in the 𝑥-axis
direction at each step. On the left we report the number of non-zeros as a
percentage of the total number of elements in the stiffness matrix (Nnz%).
The right plot shows the average runtime of a simulation step as the number
of degrees of freedom increases.

We also show that our raycasting weight computation is able
to create shape-aware output. Fig. 14 and Fig. 15 show that ma-
nipulating parts that are nearby but separated will behave in an
appropriately independent fashion. Our grumpy model is capable
of extending its leg without causing unrealistic deformations in the
plant foot, and our octopus model shows independent motion of all
eight limbs upon contact with the ground.

0 seconds 1 second

NURBS Model

Fig. 14. Our raycasting weight computation produces shape-aware blending
weights. Here the locality of our blending weights allows the two legs of
the grumpy model to move independently.

By virtue of its meshless nature, SEM is robust to a wide range
of challenging models with large gaps and disconnected primitives.
Fig. 16 shows frames from a simulation of a rubber chicken. Note that
the chicken model itself features large gaps between the individual
NURBS parts. Despite the lack of explicit connectivity, the SEM
blending weights have the effect of implicitly enforcing connectivity
at these seams.
SEM is also robust to intersections in modelling input. Fig. 17

shows simulations of two jelly coffee mugs. The top row shows a
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NURBS Model
0 seconds 3 seconds

Fig. 15. We simulate a falling octopus, and observe the 8 limbs moving
independently. Self-collision is not accounted for here.

model with negligible overlap, whereas the bottom row shows the
result of a careless modeller who has deeply embedded the handle
of the mug in the body in order to attach it, creating a large area of
overlap. In both cases SEM produces a plausible physically-based
animation without requiring additional model clean-up.

Since the equations of motion for SEM are derived using a general
elastic potential, it is theoretically capable of supporting arbitrary
elastic constitutive models. Fig. 18 shows a rocket ship simulated
with both high stiffness (steel) and low stiffnessmaterials (rubber). In
both cases intuitive and visually pleasing results are created wherein
the trajectories correctly reflect the desired material characteristics.

SEM also supports the simulation of objects made up of heteroge-
neous materials. By specifying different material properties inside
nested parts we are able to simulate a drag racing wheel with a
metal hub and soft rubber tread (Fig. 19).
For downstream applications, the output of SEM simulation is

itself editable in a NURBS modeling program (see Fig. 20). This can
allow artists to easily post-process animations using the same tools
in which they were created.

Finally we show a few additional examples, highlighting the abil-
ity of SEM to handle complex simulations involving deformation,
contact and friction. In Fig. 21 we show two astronauts in jaunty
space suits collide in zero gravity. SEM gracefully allows bounded
discontinuities in simulation output to allow for rich motion. This
is similar to Discontinous Galerkin approaches but in SEM this
behavior emerges from the kinematic model, rather than from ad-
ditional flux terms [Kaufmann et al. 2009]. Our soft enforcement
of part connectivity at boundaries is a result of the weighting func-
tion attributing equal weight values to equidistant parts. This equal
weighting induces elastic forces that attempt to enforce continuity.
In our examples, these discontinuities only introduce minor artifacts
affecting the rendering, but this may be addressed using a separate
render mesh or by using a representation with explicit connectivity.
In Fig. 1 we directly simulate the NURBS surface model of a

bouncy castle under a periodic wind force. In Fig. 22 we show an
animation of the Space-V starship landing on Mars in a graceful way.
This example shows the benefit of NURBS modeling: a relatively
small number of primitives can represent a complex shape. SEM
successfully handles the stiff materials, complicated geometry and
non-trivial collisions in this scene.

9 FUTURE WORK AND CONCLUSIONS
We have presented the Shape Matching Element Method (SEM), the
first completely meshless approach to direct simulation of curved
surface models, made from NURBS primitives. Our approach is
unique in its ability to infer volumetric shape from surface only
input, including input with intersecting geometry between parts
and other defects common to non-engineering models. We believe
that SEM is a significant improvement over standard physics-based
animation pipelines. As evidence of this, the authors submit that
many of the examples in this paper were constructed ourselves
(since the standard graphics menagerie is not available as NURBS
models). Modelling, cleaning, meshing and simulating would’ve
been a burdensome experience without SEM’s ability to leap directly
from (often hastily) constructed models to physics-based animations.

SEM, as it’s presented here, is in its infancy and we believe there
are many exciting areas of future work to explore. We are very
excited to couple SEM to machine learning approaches for design,
parameter estimation and Real2Sim applications. One of the cumber-
some elements in using finite element simulation for such problems
is the need for robust, differentiable volumetric meshing [Gao et al.
2020]. SEM removes this bottleneck entirely, providing a direct map-
ping from geometric input to physics-driven output. We believe
SEM will enable simpler and more robust algorithms for physics-
based ML and allow the application of such algorithms to a much
broader class of problems.

SEM itself has much room for improvement. First, while we focus
on NURBS surfaces here, the only part of SEM that is NURBS spe-
cific is the shape matching operation. We believe there is potential
to allow mixed models (models which include polygonal meshes,
particles, subdivision surfaces and NURBS) by extending the range
of shape matching operations used by the algorithm. The shape
matching operation itself could be improved to be material-aware
(to better handle heterogeneous materials) or to be robust to noisy
data (allowing direct simulation of scanned data). In future work
we also intend to explore using robust solvers or orthogonal bases
for the shape matching step itself. It is also interesting to consider
the relationship between our error term and the orthogonality con-
straint proposed by Zhang et al. [2020]. Their approach could be
used to remove this term from SEM entirely. Finally, in this paper
we have focused on applying SEM to physics-based animation, and
there is a significant amount of additional work needed to extend
SEM reliably into engineering applications.
The Finite Element method took over 40 years to mature to its

current state and to become the preeminent tool in physics-based
animation. We hope that this is the beginning of a similar, exciting
journey for SEM. Motivated by this sentiment, and to encourage
future research on SEM, the authors will release our SEM imple-
mentation under a permissive license as well as all models created
for this submission.
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tom) still matches its corresponding counterpart without negligible overlaps
(top).

Nicholas Vining, and Christopher Batty for proofreading; anony-
mous reviewers for their helpful comments and suggestions.

REFERENCES
Martin Aigner, Christoph Heinrich, Bert Jüttler, Elisabeth Pilgerstorfer, Bernd Simeon,

and Anh-Vu Vuong. 2009. Swept Volume Parameterization for Isogeometric Analysis.
19–44.

Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2016. Blended Linear Models for
Reduced Compliant Mechanical Systems. IEEE Tran. on Visualization and Computer
Graphics (TVCG) 22, 3 (2016), 1209–1222.

Autodesk. 2021. Autodesk Fusion 360. https://www.autodesk.ca/en/products/fusion-360/
L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. 2014. The Hitchhiker’s Guide to

the Virtual Element Method. Mathematical Models and Methods in Applied Sciences
24, 08 (2014), 1541–1573.

Online Blender. 2020. Blender - a 3D modelling and rendering package. http://www.
blender.org

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012.
Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31,
5 (Aug. 2012), 1657–1667.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages.

Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. 2005. A family of mimetic
finite difference methods on polygonal and polyhedral meshes. Mathematical Models
and Methods in Applied Sciences 15 (04 2005).

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Col-
lisions, Contact and Friction for Cloth Animation. ACM Trans. Graph. 21, 3 (July
2002), 594–603.

Thomas Buffet, Damien Rohmer, Loïc Barthe, Laurence Boissieux, and Marie-Paule
Cani. 2019. Implicit Untangling: A Robust Solution for Modeling Layered Clothing.

ACM Trans. Graph. 38, 4, Article 120 (July 2019), 12 pages. https://doi.org/10.1145/
3306346.3323010

J. Cottrell, Thomas Hughes, and Yuri Bazilevs. 2009. Isogeometric Analysis: Toward
integration of CAD and FEA.

Fernando De Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential
Operators on Polygonal Meshes. ACM Trans. Graph. 39, 4, Article 110 (July 2020),
14 pages.

R. Diziol, J. Bender, and D. Bayer. 2011. Robust Real-TimeDeformation of Incompressible
Surface Meshes. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’11). ACM, New York, NY, USA, 237–246.

François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. 2011. Sparse
Meshless Models of Complex Deformable Solids. ACM Trans. Graph. 30, 4, Article
73 (July 2011), 10 pages.

Jun Gao, Wenzheng Chen, Tommy Xiang, Clement Fuji Tsang, Alec Jacobson, Morgan
McGuire, and Sanja Fidler. 2020. Learning Deformable Tetrahedral Meshes for 3D
Reconstruction. In Advances In Neural Information Processing Systems.

Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K. Pai. 2011. Frame-
Based Elastic Models. ACM Trans. Graph. 30, 2, Article 15 (April 2011), 12 pages.

G. Haasemann, M. Kästner, S. Prüger, and V. Ulbricht. 2011. Development of a quadratic
finite element formulation based on the XFEM and NURBS. Internat. J. Numer.
Methods Engrg. 86, 4-5 (2011), 598–617.

Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel,
and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite
Elements. ACM Trans. Graph. 38, 6, Article 157 (Nov. 2019), 15 pages.

Ch. Heinrich, B. Simeon, and St. Boschert. 2012. A finite volume method on NURBS ge-
ometries and its application in isogeometric fluid–structure interaction. Mathematics
and Computers in Simulation 82, 9 (2012), 1645 – 1666.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages.

Alec Jacobson et al. 2018. gptoolbox: Geometry Processing Toolbox.
http://github.com/alecjacobson/gptoolbox.

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Trans. Graph. (proceedings of ACM
SIGGRAPH) 30, 4 (2011), 78:1–78:8.

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP Lewis. 2014a. Skinning: Real-time
Shape Deformation. In ACM SIGGRAPH 2014 Courses.

Alec Jacobson, Zhigang Deng, Ladislav Kavan, and J. P. Lewis. 2014b. Skinning: Real-
Time Shape Deformation (Full Text Not Available) (SIGGRAPH ’14). ACM, 1 pages.

Alec Jacobson and Olga Sorkine. 2011. Stretchable and Twistable Bones for Skeletal
Shape Deformation. ACM Trans. Graph. (proceedings of ACM SIGGRAPH ASIA) 30, 6
(2011), 165:1–165:8.

Doug L. James and Dinesh K. Pai. 1999. ArtDefo: Accurate Real Time Deformable
Objects. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). 65–72.

Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. 2009. Flexible
simulation of deformable models using discontinuous galerkin fem. Graphical
Models 71, 4 (2009), 153–167.

Amir Khosravifard and Mohammad Rahim Hematiyan. 2010. A new method for
meshless integration in 2D and 3D Galerkin meshfree methods. Engineering Analysis
with Boundary Elements 34, 1 (2010), 30 – 40.

Cornelius Lanczos. 2012. The variational principles of mechanics. Courier Corporation.
Grégory Legrain. 2013. A NURBS enhanced extended finite element approach for

unfitted CAD analysis. Computational Mechanics 52 (04 2013).
David I.W. Levin. 2020. Bartels: A lightweight collection of routines for physics simula-

tion. https://github.com/dilevin/Bartels.
Xiang Li, Nandan Sudarsanam, and Daniel D Frey. 2006. Regularities in data from

factorial experiments. Complexity 11, 5 (2006), 32–45.

ACM Trans. Graph., Vol. 40, No. 4, Article 69. Publication date: August 2021.

https://www.autodesk.ca/en/products/fusion-360/
http://www.blender.org
http://www.blender.org
https://doi.org/10.1145/3306346.3323010
https://doi.org/10.1145/3306346.3323010


The Shape Matching Element Method: Direct Animation of Curved Surface Models • 69:13

NURBS Model

0 sec 6 sec4 sec2 sec 22 sec20 sec10 sec8 sec 40 sec

Steel

Rubber

......

......
open 

Fig. 18. SEM is able to produce animation using a wide variety of material parameters. Here we simulate both a steel and rubber rocket ship. To make this
even more challenging, the rocket model is an open surface (at the bottom), but a plausible animation is still generated.
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Fig. 19. Our SEM is directly applicable to the simulation of objects with
heterogenous materials.
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Fig. 20. Here we show the output of an SEM animation loaded into
Rhinoceros 3D 7 for additional editing.
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Fig. 22. Our SEM is robust to stiff materials, complicated geometry and non-trivial collisions. Here we show the Space-V starship makes a graceful landing on
the rugged surface of Mars.
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