
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2018
T. Beeler and N. Thuerey
(Guest Editors)

Volume 37 (2018), Number 8

Collision-Aware and Online Compression of
Rigid Body Simulations via Integrated Error Minimization

Timothy Jeruzalski John Kanji Alec Jacobson† David I.W. Levin†

University of Toronto

Figure 1: Our compression for rigid body simulations can reduce data size to a fraction of its original. Our method retains all 3D geometry
and performs interpolation in time allowing for the compressed output to be used for a number of tasks such as camera re-positioning,
re-lighting and re-timing. Here we show an example of a complex simulation being visualized interactively in a WebGL based viewer.

Abstract

Methods to compress simulation data are invaluable as they facilitate efficient transmission along the visual effects pipeline,
fast and efficient replay of simulations for visualization and enable storage of scientific data. However, all current approaches
to compressing simulation data require access to the entire dynamic simulation, leading to large memory requirements and
additional computational burden. In this paper we perform compression of contact-dominated, rigid body simulations in an
online, error-bounded fashion. This has the advantage of requiring access to only a narrow window of simulation data at a time
while still achieving good agreement with the original simulation. Our approach is simulator agnostic allowing us to compress
data from a variety of sources. We demonstrate the efficacy of our algorithm by compressing contact-dominated rigid body
simulations from a number of sources, achieving compression rates of up to 360 times over raw data size.

CCS Concepts
•Computing methodologies → Animation; Simulation tools; Physical simulation;

1. Introduction

Sweeping advances to physical simulation have dramatically im-
proved the realism of computer animations and the accuracy of
engineering analyses. However, the cost of these advancements is
a massive accumulation of data. High frame rate visual effects and

† Joint last authors

slow motion sequences can require storing data at 48 frames per
second or higher. Sound simulation, or simulation for engineering
design can require even higher temporal resolution than that and
simulations for cosmology often generate trajectories that are eons
in duration. The result is that sharing, browsing or transmitting such

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

Figure 2: Frames are output from any off the shelf simulator pack-
age and are able to be compressed through our algorithm. This flow
applies to both the trajectory and rotation fitting, and is applied
separately for each object.

data becomes almost impossible, often forcing one to regenerate it
from scratch each time, wasting hours (or more) of time (see Fig. 1).

Concretely, dynamic simulations are often run with sub-
millisecond timesteps for stability and accuracy reasons. This means
that a short 10-second simulation of 10,000 objects could generate
over 100,000 rigid transformations or 4.8 gigabytes of data (assum-
ing six double-precision floats per rigid transformation). We can
treat the compression of this data as a sampling problem where our
goal is to choose the best possible samples or simulation states from
which to reconstruct the original signal. Ideally, we would like our
sampling algorithm to be accurate, fast, memory efficient and, in
analogy with other popular file and media compression tools, able
to seamlessly act on data from any source.

Downsampling simulation data to a lower frame-rate comes with
an obvious, though frustrating accuracy-to-compression-rate trade-
off. Sub-sampling rigid transformations below the eventual play-
back frame-rate will result in a choppy animation or requires rigid-
transformation interpolation, inheriting its ambiguities and issues
(see Fig. 3). These problems are exacerbated when animations are
played in slow-motion, a practice common for complex visual ef-
fects (see accompanying video). Animation renderings immediately
benefit from efficient video-compression algorithms, but reduce the
simulation data to an image with a particular choice of viewpoint,
lighting, materials, etc. Contact-dominated rigid body simulations
do not benefit from standard domain reduction such as principal com-
ponent analysis (PCA), despite their success for deformable body
simulations and fluids. The non-smooth nature of collisions and im-
pacts is essential to their perceptual importance, but also the reason
why they are immediately lost by any compression method based
on low-pass filtering (e.g., PCA). Meanwhile, domain-agnostic file
compression methods do not easily accommodate random-access
animation streaming and ignore potential savings lurking in the
temporal coherency of rigid-body trajectories.

We present a method for streaming compression of arbitrarily
long, n-rigid body simulations that satisfy the criteria above.

1. Our method is accurate, and uses efficient integration to compute
the integrated trajectory error, placing keyframes when this error
grows too large.

2. Our fast method is memory efficient and parallel across the
n objects, allowing new data to be processed as soon as it is
produced without the need to store the entire simulation.

3. The simulator itself is treated as a black box, thus our method is
agnostic to the underlying integration method, collision handling
choices, or simulation software.

Figure 3: Taking a low framerate input animation (left) and down-
sampling to save space (center) can yield ambiguous spinning direc-
tions when interpolating later, whereas our method (right) is able to
upsample the given input animation. (see video @ 3:00).

We expect as input, a time-series of n rigid transformations. Our
output is a time-series of coefficients parametrizing a continuous
rigid-body transformation function interpolating between sparse, au-
tomatically placed keyframes. Our function minimizes the L2 error
between the compressed reproduction and the input rigid transforma-
tions, with careful treatment of rotations. Keyframes are triggered
by excessive approximation error or by a “geometry-blind” impact
detection method based on processing finite differences of the incom-
ing signal. Compression error is controlled by a small set of simple,
intuitive parameters. Our compression rates drastically outperform
standard methods such as PCA or file-level compression.

Our compressed output data maintains temporal order and relies
only on temporally local data. This avoids large lookup tables (e.g.,
PCA bases) or requiring that all data is “unzipped” to view the sim-
ulation at a particular moment. We demonstrate the effectiveness
of our compression method with an interactive simulation viewer.
Users may interactively reposition the viewpoint or change rendering
configurations (not possible with video output). Our small data size
enables interactive scrubbing with memory thrashing. The user may
jump to arbitrary far-away moments in simulation time. The continu-
ous nature of our approximation also enables viewing the simulation
in between the original snapshots, enabling detailed analysis or tem-
poral warping such as fast-forward or slow-motion without aliasing
artifacts. We evaluate the performance of our method on a variety
of contact dominated rigid-body simulation scenes.

2. Related Work

Our goal is to compress the output of any rigid-body simulation
software, whether it is a commercial game physics engine (e.g.,
BULLET [Cou15]) or state-of-the-art research software (e.g., SCISM

[SKV∗12]). While much recent literature in rigid-body dynamics fo-
cuses on improving integration [vZOS08], constraints [MCMJ15] or
contact handling [VSK∗17], our method is agnostic to such choices.

Particle trajectories Any discrete particle (or center of mass) tra-
jectory can be interpreted as a poly-line in 4D [SXYL16]. For ex-
ample, de Vries et al. [dVvS10] use the geometric Ramer-Douglas-
Peucker algorithm [Ram72, DP73] to simplify maritime vessel paths
for routing analysis. However, a trajectory is a curve in space-time
and purely geometric simplification will ignore physically meaning-
ful regularity and events along the temporal axis. Previous works that
use poly-line simplification for particle trajectories [PJAP07, RP12]
rely on linear interpolation in time, but idealized trajectories in a
constant force field (e.g., due to near-earth gravity) are quadratic. C1
curve fitting (e.g., with Catmull-Rom splines [Jun15]) will smooth
away salient events such as contacts.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

Deformable Mesh Animations Most literature on animation com-
pression has focused on deformable shapes, where the input is
a sequence of mesh vertex displacements [MLDH15]. Though
some methods treat vertex trajectories as independent particles
[RP12], most take advantage of the provided regularity and com-
binatorial structure of the input mesh to compress the data (e.g.,
[IR03, ASK∗12, VMHB14]).A popular strategy is to apply prin-
cipal component analysis (PCA) to the number-of-mesh-vertices
by number-of-animation-frames matrix of vertex displacements
[AM00, SSK05]. Karni et al. [KG04] further compress the PCA
coefficient-trajectories with a linear model. Character animations
have received special attention (see [JDKL14], with a series of
methods improving upon the seminal method of James & Twigg
[JT05] that approximates a mesh animation by optimizing a set of
bone weights and linear blend skinning transformations. Rather than
compress the animation of a single complex character, our method
compresses the animation of a complex scene of rigid bodies.

Skeletal Joint Angles The bone angle sequences of an animated
skeletal rig are similar to the rotation component of our rigid trans-
formation sequences. Previous methods have treated each Euler
angle or quaternion component of a bone’s rotation as a 2D curve
[PJAP07, Jun15] and applied geometric simplification and fitting
methods mentioned above. Rigid body rotations are also non-smooth
at collisions, and so piecewise smooth function spaces are more ap-
propriate in our case. Interpolating rotations while staying on the
SO(3) manifold is more involved than interpolating displacements
[Sho85]. Represented as a unit quaternion, special care must be
taken for sign flips and maintaining unit norm. (e.g., Jung [Jun15]
appears to compress the vector part and recovers the scalar that pre-
serves unit norm). Some previous compression methods opt instead
to convert rotations to three particle trajectory signals and recover a
best-fit rigid transformation at runtime [LM06, Ari06]. An elusive
challenge for compressing skeletal joints is to maintain stationary
end effectors in long kinematic chains; Tournier et al. [TWC∗09]
take special care to avoid this so-called “foot skate” issue. In con-
trast, our contact and impulse keyframe trigging ensures that resting
objects stay put. Recently, Goodhue [Goo17] proposed compressing
components of angular velocity along poly-lines, however, this re-
quires sequential access starting from an initial rotation prohibiting
random access and scrubbing style interactions (cf. Fig. 1).

Other types of compression Compressing simulation data is an
important topic of research across other subareas of physics and
animation, such as fluids [HNB∗06, WPS14, EWPT17, JSK16]. In
astronomy, simulations involving a few objects (e.g., 9 planetary
bodies in the solar system) may require durations of eons but inte-
grated at very fine timescales to ensure accuracy. Rein et al. [RL12]
describes a method for sub-sampling n-body gravitational simula-
tions, taking special care of floating point error when re-simulating
between saved checkpoints. Finally, lossless data compression algo-
rithms (e.g., the LWZ algorithm used to create .ZIP files [Wel84])
and geometric primitive quantization methods (e.g., [KISS15]) are
orthogonal to our rigid-motion specific streaming compression. We
may apply further quantization to our optimized values or create a
compressed zip archive of our output data.

Our work dramatically reduces file sizes for contact-dominated
rigid body simulations. This saves disk space but also affords ap-

Figure 4: An input simulation of a cube hitting the ground makes
contact during a single animation frame (blue). Our peak detector
identifies this salient event and ensures it occurs in our compressed
output (orange). Only measuring accumulated trajectory error may
erroneously lead to a false, new interpenetration (yellow).

plications that rely on fast access to simulation data. For example,
Twigg et al. [TJ07] compress center-of-mass trajectories of many
simulations to interactively explore the space of possible simula-
tions. Our algorithm is a drop in improvement to the C0, piecewise
quadratic curve-fitting they propose. Their method measures instan-
taneous error rather than integrated error and only fits based on
the first 10 frames per quadratic segment. Instantaneous error will
often trigger only after a salient collision, whereas we detect likely
contact events automatically (see Fig. 4).

3. Methods

The input to our method is a sequence of rigid body states. For each
frame i, we expect a time stamp ti, the body’s current rotation as unit
quaternion components qi ∈ R4 (‖qi‖= 1), and the center of mass
position pi ∈R3. The algorithm is agnostic to the choice of simulator
and is able to compress simulations from high-accuracy scientific
simulators as well as high speed real-time simulators. Along with
the input data, our method is controlled by error parameters εT ,εR
controlling the bound on trajectory and rotation integrated error,
respectively, and σT ,σR controlling the placement of “peak detected”
keyframes at likely impulses or contact events. These peak detected
keyframes enable our method to treat the input simulation in a black-
box fashion as no extra data is required to identify collisions or other
events causing discontinuities in an object’s velocity.

The output of our method is a sequence of rotation and trans-
lation keyframes. Each keyframe contains a timestamp recording
the beginning of a polynomial fit and the polynomial’s coefficients.
Each object in the scene is compressed separately allowing for easy
parallelization, with no knowledge of the underlying geometry or
forces acting upon any of the bodies. The rotations and positions
of an individual object are also compressed separately: this avoids
pitfalls of storing position information of objects rotating in place or
storing rotation information of objects translating without rotating.

3.1. Online Compression

Our compression is online. It operates on the current frame from the
simulator with a limited memory window of state information since
the last keyframe dropped (see Fig. 5). Our integrated error allows
us to track compression error using efficient running updates and
sampling, rather than revisiting large numbers of previous frames
for each new input frame. Our online method efficiently compresses
very large scenes with many objects, as opposed to other methods
which require the whole or significant portions of the simulation to
be in memory during the compression [DP73, TJ07].

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

time time time

…

time time time time

(1) (2) (3)

(7) (8) (9) (10)

Figure 5: As more frames are added into the evaluation window, the error in the fit is recomputed as seen in yellow. The frames continue to be
added into the evaluation window until the error exceeds a threshold, in which case the system saves a keyframe corresponding to the previous
frame. The evaluation window is then reset and new frames are evaluated for the next potential keyframe.

The online compression pipeline for rotations and positions is
the same in high-level structure (see Fig. 2). Upon receiving a new
frame of raw state information we re-fit an interpolating polynomial,
and evaluate the cumulative error between the reconstructed com-
pressed data and the input simulation data. If the cumulative squared
error exceeds user specified bounds, then it automatically records
a keyframe in a compressed format in a method similar to Twigg
et al. [TJ07] Our method is instead performed on the cumulative
error as opposed to a maximum per-frame error bound. In addition
to checking if the error bounds are exceeded, peak detection is per-
formed on the cumulative error in order to detect sudden changes
in object motion (e.g., from external forces or contact events). The
output format of the keyframes is arranged in such a way that it
is guaranteed to compress the input data even if the data does not
follow the assumed interpolating functions, and provides largest
compression ratios for objects undergoing free flight.

3.2. Peak Detector

We focus on contact-dominated rigid body simulations. Because an
object’s trajectory and rotation are not altered much at the moment
of contact, our standard error thresholds (εT ,εR) will only drop
a keyframe some frames later when the fit has high error. While
technically error-bounded, missing contacts means missing visually
(and scientifically) salient events, as can be seen in Fig. 4.

To capture salient events while still treating the simulator as a
black box, we propose an additional peak detector for the trajectory
and rotation signals with respective tunable thresholds σT and σR.
The peak detector is designed to fire if we missed an event on the
last frame: we only know this after the fact. If currently considering
frame t j, then we approximate the second derivative of the error Ë
at the previous frame t j−1 using central finite differencing:

Ë = E(t j)−2E(t j−1)+E(t j−2). (1)

If the second derivative exceeds the peak threshold Ë > σ, then a
keyframe is added for at t j−2: that is, the frame before the spike was
deemed to have occurred (see Fig. 6). Intuitively we are measuring
the acceleration of the error, itself proportional to the acceleration
of the object, which changes dramatically at contact (see Fig. 7).

ɛ

20 40 60 80
Evaluation window size
0

Trajectory Error
2e-3

1e-3

0
20 40 60 80

1

2

Evaluation window size

Trajectory

σ

20 40 60 80
Evaluation window size
0

1e-4

5e-5

0

Second Derivative

Sharp Peaks

Height Error Ë

Figure 6: Ë is able to detect sudden changes in the trajectory
quicker than the E metric, lowering ε increases the number of
erroneous keyframes recorded by the system due to the accumulation
of errors over longer evaluation windows.

Figure 7: Our keyframes (orange) identify collision events.

Experimentally, it was found that adding another keyframe exactly
after the contact frame greatly increased the visual effect on the
decompressed animation as it helped separate regions which could
be described with ballistic motions. We suspect that this is most
necessary for simulator’s using penalty forces where a contact “takes
place” over more than one time step. Additional differences were
noted with events which involved sudden changes in motion such as
an object being thrown from a resting position, or an object coming
to rest on a plane. Without the peak detector, the object would appear
to move during the times when the object was at rest causing poor
reconstructions of the decompressed data as seen in Fig. 4. For the
sake of generality, we apply this peak detector in all cases.

The peak detector is able to detect the collision events sooner
than using just the error signal. This can be seen in Fig. 6, where
the spike in the error derivative occurs before the error bounds are
exceeded. This small difference in time is visually salient in the
reconstructed animations, as it prevents an interpenetration. The
peak detector takes precedence over the standard error threshold
(see Fig. 2) because it places keyframes one timestep earlier.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

3.3. Trajectory Fitting

For trajectories, we use piecewise quadratic splines as inspired by
the analytical solution for ballistic motion (see, e.g., [TJ07]):

p̃i (t) = αi(t− ti)
2 +βi(t− ti)+ γi, (2)

where the coefficients αi,βi,γi ∈ R3 correspond to the 3D acceler-
ation, initial velocity and initial position of the body over a time
interval beginning at ti. This quadratic spline fitting is done in a
memory efficient manner, only requiring the new frames from the
data to be parsed as given from the simulator. We find a full least
squares solution from all of the frames seen previously, and make
no assumptions about the magnitude nor direction on which grav-
ity acts. The following memory efficient method also applies to
higher order fitting in cases where quadratic splines are insufficient
to describe the motion effectively.

We optimize the coefficients of our quadratic fit to minimize
the integrated squared error between the interpolated and input
simulation trajectories, from the time of the previous keyframe ti
and the current simulation frame t j, subject to equality constraints
forcing interpolation of the trajectory at the previous keyframe pi
and at the current frame p f :

αi,βi,γi =argmin
α,β,γ

1
2

∫ t j

ti

∥∥∥α(t− ti)
2 +β(t− ti)+ γ−p(t)

∥∥∥2
dt︸ ︷︷ ︸

ET

,

subject to: γ = pi and α(t j− ti)
2 +β(t j− ti)+ γ = p j

where p(t) provides the input trajectory at any time t. Typically,
simulators output trajectories as values at discrete time steps. With-
out loss of generality we assume the time step size is uniform, and
discretize our error as a summation:

ET ≈
1
2

j

∑
f=i
‖α(t f − ti)

2 +β(t f − ti)+ γ−p f ‖2 (3)

.

The trajectory error is quadratic in the unknown coefficients
(α,β,γ) and linear in the equality constraints, so the global optimum
is the solution to the linear system of equations:

(
ATA CT

C 0

)
α

β

γ

λi
λ j

=

 ATP
pi
p j

 , (4)

where A,P ∈ R(j−i)×3 are matrices whose f th rows contain
[(t f − ti)2,(t f − ti),1] and p f resp., C ∈ R2×3 and λi,λ j are the
interpolation constraint matrix an Lagrange multipliers, resp. The
resultant 5×5 system is solved directly.

We compute the scalar energy ET induced by the optimal coeffi-
cients αi,βi,γi, using the same matrices:

ET =
1
2
‖A

 αi
βi
γi

−P‖2
F (5)

=
1
2

tr

 αi

βi
γi

T

ATA

 αi
βi
γi

+PTP−2

 αi
βi
γi

ATP

 .

If the energy at time t j exceeds a user-specified error bound
ET > εT , then a new trajectory keyframe is added at t j−1 and the
coefficients βi,γi for the fit between ti and t j−1 are saved. Recording
the previous frame ensures that the data recorded can be interpo-
lated to recreate the simulation output with a lower error than the
maximum bound specified by the user.

We take advantage of our interpolation when choosing which
data to save. Suppose we stored successive keyframes at ti < t j < tk.
Then the quadratic fits pi and p j describe the trajectories in the
intervals [ti, t j] and [t j, tk] respectively. For interpolating trajectories,
the end of one fit exactly equals the beginning of the next, so:

pi(t j) = p j−1(t j), (6)

γ j = αi(t j− ti)
2 +βi(t j− ti)+ γi, (7)

αi =
γ j− γi−βi(t j− ti)

(t j− ti)2 . (8)

This progression reveals that we do not need to store αi since it
is always recoverable from the other information at this keyframe
βi,γi, ti and information at the immediate next keyframe γ j, t j.

3.3.1. Cumulative Least Squares Optimization

Naively, if we did not drop a keyframe at t j then we would need to
append another row to the matrices A and P, to compute the optimal
coefficients and their energy for time t j+1. As the window between
keyframes grow to n frames , the memory requirements grows lin-
early O(n), but worse the cost of constructing the matrices A and P
grows quadratically O(n2). Since we conduct this computation for
each frame as we grow the window, the total computation is cubic
O(n3). This is an unacceptable punishment for finding a low-error
and large fit (Though one endured by previous work): if the window
is large, our method will obtain great savings with regards to runtime
and memory usage.

Fortunately, neither solving the linear system in Equation (4)
nor computing the energy in Equation (5) depend on explicitly
constructing A or P, we merely need to know ATA, ATP, and PTP.

For each, new frame of simulation data p j+1, we can update these
matrices with the relevant 3×3 outer products. Introducing, the row
vector t = [(t j+1− ti)2,(t j+1− ti),1], then:

ATA += tTt, (9)

ATP += tTp j+1, (10)

PTP += pT
j+1p j+1. (11)

The system matrices ATA, ATP, PTP ∈ R3×3 are constant size,
and so the memory footprint for adding additional frames to the fit
remain unchanged. As a result, the total computation for a n-frame
window is linear O(n) and the memory required is constant O(1).

3.4. Rotation Fitting

Exact solutions to the rotation of free rigid bodies exist, and pro-
vide a method to reconstruct the motions of free bodies efficiently
[vZS07]. However, these methods depend upon having the inertia

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

tensor for each object in the scene. As our method has no informa-
tion from the simulation, instead of performing an exact solve a
piecewise spline approximation is performed.

We explored using first, second, or third order polynomials to fit
the rotation part of the rigid body simulation. Higher order polyno-
mials theoretically provide a more accurate fit but their coefficients
grow in number, increasing storage size. For the gyroscopic example
shown in the video, using second-order polynomial rotation fitting al-
lowed for an average 30% larger keyframe window before exceeding
the error thresholds, but doubled the storage size of the compressed
output keyframe. For more typical scenes, the cost-benefit ratio is
even worse. Based on this observation we instead interpolate rota-
tions linearly by integrating a constant angular velocity. In contrast
to spherical linear interpolation (a.k.a. “slerp”) [Sho85, Jun15], we
allow rotations by more than 2π between keyframes.

Our linear rotation fit interpolates the previous keyframe quater-
nion qi at time ti and the current quaternion q j at time t j. By modi-
fying the standard spherical linear interpolation formulation, we can
expand it to include multiple rotations around an axis. Using this
the reconstructed rotation at a time t in between is given by:

qi(t) = (q jq
−1
i)

(ri
2π

θ
+1) t−ti

t j−ti qi, (12)

where ri ∈ N is an integer encoding the signed number of full
revolutions the object experiences between time ti and t j. When
the difference in time (t j − ti) is small, this number is typically
zero ri = 0. For fast spinning objects or long fits, this number may
increase |ri|> 0.

We measure the error of our fit as the integrated squared distances
between the interpolated and input simulation rotations as quater-
nions. As for the trajectories in Section 3.3, we approximate this
integral as a discrete sum over the input frames:

ER =
∫ t j

ti
min

s=±1
‖(q jq

−1
i)

(ri
2π

θ
+1) t−ti

t j−ti qi− sq(t)‖2 dt (13)

≈
j

∑
f=i

min
s=±1

‖(q jq
−1
i)

(ri
2π

θ
+1)

t f −ti
t j−ti qi− sq f ‖2, (14)

where s accounts for the unit quaternions’ double cover of the rota-
tion group (i.e., q =−q) and θ is the known rotation angle between
qi and q j . For the degenerate case where qi = q j , we use the axis of
rotation from the previous non-degenerate frame (for low error fits,
this typically only happens due to non-general position aliasing and
we just need to make it to the next frame).

Due to our interpolation constraints, the only unknown ri. The
formula inside the norm is nonlinear with respect to ri, but the
integer constraint implies a brute force solution. The minimal ER
must be achieved for some integer ri ∈ [−(j− i), . . . ,0, . . . ,(j− i)].
In practice, ri is usually very small, so we use a truncated search
over values sorted by absolute values ri ∈ [0,1,−1,2,−2].

Just as in the trajectory fitting, if the minimal error exceeds a
user-specified threshold ER > εR, then a keyframe is dropped at the
previous frame t j−1 and the vector part of the quaternion ±q j−1
and the best integer ri for the window ti to t j−1 are saved.

When recording quaternion keyframe q = xi+ y j+ zk+w, we
record the vector part x,y,z or −x,−y,−z depending if w is positive

or negative. This way, we can utilize the fact that rotation quaternions
have unit norm ‖q‖ = 1 and quaternions double cover rotations
q = −q to reconstruct a valid non-negative scalar part on the fly:
w =

√
1− x2− y2− z2.

For a window of n frames, each energy evaluation requires O(n)
computation, meaning total computation for this window will be
quadratic O(n2). The non-linearity of rotations prevents us from
applying the same cumulative least-squares trick in Section 3.3.1.
In our experiments, we observe that a constant size Monte-Carlo
estimation of the integral in Equation (13) is just as effective as
the full summation. To compute our estimation of ER we sample
rotations randomly in the time window scaling appropriately and
avoiding the endpoints where interpolation forces small error. This
sampling drastically reduces the storage cost for this computation,
as the whole set of data does not need to be stored from the previous
recorded keyframe.

3.5. Decompression Scheme

As supplemental material, we include an example of efficient online
decompression. This system is able to play large simulations with
ease using a simple interface (Fig. 8).

With access to only two keyframes per object, the system can
efficiently interpolate between them using the piecewise spline basis
functions. This drastically reduces the memory cost for replaying
the simulation. As the compression system is able to transform the
discrete samples from the simulation into a piecewise continuous
representation, the simulation can be replayed at any temporal reso-
lution without the need for resimulation. An example of this can be
seen with the tomahawk example as seen in Fig. 3, and in the video.

The included online decompressor includes a playback and scrub-
bing interface, similar to those found in professional video editing

Figure 8: Our WebGL decompressor: After loading the correspond-
ing files, it allows for easy real-time visualization of the compressed
datasets. The camera can be repositioned as desired by interacting
with the rendering window, and the simulation can be explored with
the sliders (see the video for full sequence).

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

Figure 9: The compression of falling boxes with the input simulation
performed in Houdini’s rigid body solver

Figure 10: The compression of falling bunnies simulated in SCIsim
with the reference simulation on the left and our compressed version
on the right, achieving a 71 times compression ratio over the input
simulation at 24 frames per second (see video @ 4:15)

software as seen in Fig. 8. It also allows the user to set the desired
playback speed, and loop through interesting portions of the anima-
tions. With this decompressor, it is able to replay large simulations
with many objects which would not be possible with the standard
method. The city example when uncompressed exceeds 30 GB (at
240 fps), far too large to be viewed normally but is able to be viewed
easily when decompressed in real time.

4. Results and Discussion

We tested our compression algorithm using a 32-core Xeon E5-2637
v3 running at 3.5 GHz, with 64 GB of RAM. Table 1 shows the
performance of our algorithm (both in terms of wall clock time and
compression rate) across a number of examples of varying com-
plexity. Of most importance is that our method achieves higher
compression rates than simply storing data at low frame rates (see
video for examples). We accomplish this while still retaining es-
sentially infinite temporal precision allowing for interesting editing
operations such as adding slow motion to movie scenes. We also
demonstrate that our method works well for a number of popular sim-
ulation packages (Houdini [Sid17] in Fig. 3.5, SCIsim [SKV∗12]
in Fig. 3.5 and Bullet [Cou15] in all other Figs.) achieving between
5x and 360x compression rates. Again, our method is simulator

Figure 11: As error bounds increase, data can be compressed fur-
ther at the cost of a poorer reconstruction.

agnostic so these results were obtained with no changes to our al-
gorithm or implementation. Finally, we show that our compression
times are negligible compared to the required simulation time (our
slowest example takes only 10% of the simulation time). Because
our streaming compression is pipelined with the simulation and can
be parallelized, the actual waiting time imposed on the user would
be much less in practice.

The changes in the compression ratios between examples stem
from the nature of the method being able to compress ballistic
motion, but suffers upon increased number of contact events. Even
in the examples with exceedingly high number of contact events
such as the drum example, the method is still able to compress the
simulation. Through the implementation of the output data format,
the method is guaranteed to never exceed the input simulation size.

4.1. Parameter Selection

fps εT εR σT σR
24 5e-2 5e-2 5e-4 5e-2

120 5e-2 5e-2 1e-4 1e-2
1000 5e-2 5e-2 5e-5 5e-3

The selection of the er-
ror bounds and peak de-
tector values ε, σ re-
spectively change the
quality of the compres-
sion ratios and the reconstructions as can be seen in Fig. 6 and
Fig. 11. Raising the error bounds to higher thresholds allows for
smaller compressed filesizes, with a lower limit arising due to the
number of collision events. Raising the bounds higher introduces
more error in the reconstruction and smoothes out the effect of con-
tacts. The optimal values for the peak detector’s σ depend on the
timestep of the input simulation, due to the derivative calculated in
input frame space. Through experimentation it was determined that
the optimal values for the parameters are as shown.

4.2. Accuracy

All results obtained from the decompression of compressed files are
visually identical to the input simulation data (see the accompanying
video), and are able to reconstruct the data at any temporal resolution
requested. The reconstruction is able to recreate the simulation,
even to the state of reproducing simulation artifacts in the input

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

simulation # bodies length runtime fps raw size our runtime our size ratio # peaks # error fits
Drop 1 1.4s 1.4s 1000 83 KB 0.17s 528 B 160× 2 0
Bounce 1 6s 6s 1000 357 KB 0.39s 2.3 KB 155× 40 0
Throw 1 4s 4s 1000 250 KB 0.50s 5.8 KB 43× 130 0
Spin 1 3.5s 3.5s 120 50 KB 0.08s 416 B 120× 0 1
Tomahawk 1 4s 4s 24 6.3 KB 0.44s 248 B 25× 0 1
Gyro Spin 1 23s 23s 120 330 KB 0.17s 12 KB 28× 0 121
Cylinder Roll 1 5s 30s 24 2 KB 0.05s 1.2 KB 1.6× 8 13
Orbits 5 10s 10s 24 68 KB 0.14s 6.3 KB 11× 78 18
Houdini boxes 55 10s 10s 24 530 KB 0.3s 104 KB 5× 1222 641
Tower 107 20s 155s 1000 88 MB 5.5s 244 KB 360× 1378 3473
SCIsim bunnies 200 10s 1800s 24 43 MB 0.9s 602 KB 71× 6764 4958
Large City 6019 300s 17 hours 120 17 GB 2650s 28 MB 607× 260542 281244
Granular Flow 6571 30s 10 hours 120 5.5 GB 596s 1.6 GB 3.5× 2e7 3e6

Table 1: We report both total compressed size and time to compress, along with the number of key frames dropped due to error-bounds
exceptions and due to peak detection. Although downsampling the input animation is a way to reduce the total storage cost, it can be seen that
the compressed representation is still smaller for nearly all of the examples.

Figure 12: When compressed to the same output file size as our algorithm, PCA (3 components) and Douglas Peucker (ε = 1e− 3) show
significant artifacts in the decompressed simulation

simulation as seen at the end of the “bounce” example. Running
the compression algorithm on lower sample rate input simulations
yields smaller compressed file sizes than high-resolution ones and
takes less computation time. However, this provides visually poorer
reconstruction around the contact events when upsampled. Contacts
are not often well resolved during large timestep simulations and so
we inherit this fundamental issue from the simulation itself.

We also performed visual comparison with standard algorithms
which are often applied for animation compression. Our compar-
isons to Principal Component Analysis (PCA) and Douglas Peucker
line fitting (see Fig. 12) make it clear that our compressed output
is of much higher visual fidelity and more closely tracks the input
simulation. Both previous methods exhibit distracting artifacts with
the rotational errors exhibited by PCA being particularly egregious.
More impressive is that we achieve these superior results without
needing to analyze the entire set of simulation data (unlike the
methods we compare against).

It is worth noting that our results can be compressed further with
other independent compression tools such as bzip2. Here we re-
move the ability to operate in a streaming fashion in exchange for
an approximately 1.3× additional compression as seen in Table 2.
In these experiments bzip2 is applied to the raw binary frame data

straight from the simulator, and then to the compressed binary data
from our method. Although the bzip2 is able to reduce input simula-
tion filesize, it is not able to achieve results similar to our method.
Our output can be further compressed with bzip2.

The high compression rates yielded by our approach open up new
avenues for disseminating and interacting with rigid body simulation
data. Our supplemental video shows an example of a web-based
viewer which allows for full 3D viewing and nonlinear scrubbing
through large simulation datasets. Our compressed versions of the
simulations not only loads but permits interactive viewing, scrubbing
and re-timing. Prior to our algorithm, sharing and interacting with
such data in this manner was difficult if not impossible. There are
still limitations to our WebGL decompressor, where our largest
scene (6019 bodies, 5.5 GB uncompressed, 1.6 GB compressed)
cannot be interacted with due to memory constraints.

4.3. Limitations & Conclusion

In this work we have presented an online streaming compression
algorithm for contact-dominated rigid body simulations. Our method
is simulator agnostic, operates inline with the simulation itself and
can achieve compression rates of up to 360 times (while taking only
a fraction of the simulation time). We have demonstrated our method

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

Example Input bzip2 ratio Ours Our ratio Ours + bzip2 bzip2 ratio combined ratio
Bounce 175 KB 76 KB 2.3× 2.3 KB 76× 1.6 KB 1.4× 109×
Tower 21 MB 16 MB 1.3× 244 KB 86× 184 KB 1.3× 114×
SCIsim bunnies 43 MB 31 MB 1.4× 602 KB 72× 461 KB 1.3× 93×

Table 2: Comparison of file sizes before and after compression with bzip2. Input resolutions for the uncompressed files are at 240 fps. The bzip2
algorithm is applied to the raw simulation data and also to the compressed output from our method. The compression achieved by our method is
orders of magnitude better at compressing the input simulation. The specific bzip2 command used was bzip2 -z -9 simulation.dat

Figure 13: Granular bodies are spun in a rotating drum at a con-
stant velocity. This example is able to compress the input simulation
3.5× smaller, unfortunately still too large for our online decompres-
sor to handle at interactive rates.

on a wide range of simulated scenes of varying complexity, taken
from three different rigid body simulation packages. We are excited
about the prospects that this work opens up. Beyond the ability
to simply store data or transmit it more quickly to a render farm,
our compression scheme opens up new ways of interacting with
simulation data. From exploring 3D web-based worlds to directly
using three dimensional simulation layers in video editing tools to
easily sharing scientific data in remote locations with potentially
poor connectivity. Below we outline limitations of our work along
with exciting avenues for future work.

Our compression method is inherently a lossy algorithm, and is
unable to exactly recreate the input simulation. The maximum error
is bounded through the construction of the compression scheme,
and so the reconstruction will be close to the input.

The compression ratios from the algorithm are highly dependent
upon the input simulation. Scenes with very high number of collision
events will store many keyframes and will be significantly larger
than scenes with fewer collisions. This drawback is seen with our
granular flow example Fig. 13, where the compression ratio is low.
Our method is guaranteed to never increase the amount of data
over the input simulation and so the method can be applied to
all simulations without fear of exploding filesizes. Error bounds
are parameters, which should ideally be tuned for each simulation.
Smaller, faster objects may need smaller bounds.

While our compressor acts across time, we also explored com-
pressing across space via object clustering. Investigations into clus-
tering were performed using PCA and overcomplete dictionary
dimensionality reduction.

Clustering of trajectories is very well studied, but usually in the
context of many objects undergoing a similar route (e.g., shipping
convoys). In contrast, rigid body objects may travel along highly
uncorrelated trajectories, especially during explosions [SXYL16].

The clustering approaches investigated were deemed insufficient
due to the constraint that the decompressed clustered animations
must be exact in order to achieve the error bounds set within our
method. These methods clustered similar (but not identical) trans-
formations, yielding in poor reconstruction. Storing an “offset” to
the cluster centers yields a storage requirement equivalent to saving
the absolute position of each object, and thus increases the overall
storage cost of the method. Clustering was performed in velocity
space, but has not yielded sufficient gains in the compression ratios
with the low error bounds set for the method.

It would be interesting to explore enriching our compression
function space. For instance, when rigid bodies come to rest upon
a surface they are affected by friction. This leads to a form of
exponential falloff in the velocity of the object which is not well
represented with a quadratic. This is only a problem with simulations
which have a long time with frictional contact between objects,
and in the worst case our method will add additional keyframes to
minimize the error. Including more physically aware basis functions
into our method could lead to further improvements for some scenes.

The same could be said about our rotational function space. The
physics for a rotating object cannot be exactly represented with our
linear interpolation method. While exact solution to the free-flight
Newton-Euler equations exist [vZS07], they require computing the
moments of inertia of the object, which is goes against our desire to
be geometry and simulation agnostic. However, exploring approxi-
mations which observe these properties could be beneficial.

Finally, we would like to explore using our keyframed representa-
tion for editing. Editing rigid body simulations requires changing
the parameters and resimulating either portions or the entire scene.
By isolating the collision events and modifying them, it could be
possible to change the behavior of the simulation without needing
to resimulate entirely. Although this would not create physically
accurate simulations, it could help creators have more control over
the output of these algorithms.

Acknowledgements

This work is funded in part by NSERC Discovery Grants (RGPIN-
2017-05235 & RGPAS-2017-507938, RGPIN-2017-05524, RGPAS-
2017-507909), Connaught Funds (NR2016-17), the Canada Re-
search Chairs Program, and a gift by Adobe Systems Inc.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jeruzalski et al. / Collision-Aware and Online Compression of Rigid Body Simulations via Integrated Error Minimization

References
[AM00] ALEXA M., MÜLLER W.: Representing animations by principal

components. Comput. Graph. Forum (2000). 3

[Ari06] ARIKAN O.: Compression of motion capture databases. ACM
Trans. Graph. (2006). 3

[ASK∗12] AKHTER I., SIMON T., KHAN S., MATTHEWS I., SHEIKH
Y.: Bilinear spatiotemporal basis models. ACM Trans. Graph. (2012). 3

[Cou15] COUMANS E.: Bullet physics simulation. In ACM SIGGRAPH
Courses (2015). 2, 7

[DP73] DOUGLAS D. H., PEUCKER T. K.: Algorithms for the reduc-
tion of the number of points required to represent a digitized line or its
caricature. Cartographica: The International Journal for Geographic
Information and Geovisualization 10, 2 (1973), 112–122. 2, 3

[dVvS10] DE VRIES G., VAN SOMEREN M.: Clustering Vessel Trajecto-
ries with Alignment Kernels under Trajectory Compression. 2010. 2

[EWPT17] EBERHARDT S., WEISSMANN S., PINKALL U., THUEREY
N.: Hierarchical Vorticity Skeletons. Proceedings of the Symposium on
Computer Animation (SCA ’12) to appear (Jun. 2017), 11. 3

[Goo17] GOODHUE D.: Velocity-based compression of 3d animated
rotations. In ACM SIGGRAPH Posters (2017). 3

[HNB∗06] HOUSTON B., NIELSEN M. B., BATTY C., NILSSON O.,
MUSETH K.: Hierarchical rle level set: A compact and versatile de-
formable surface representation. ACM Trans. Graph. 25, 1 (Jan. 2006),
151–175. 3

[IR03] IBARRIA L., ROSSIGNAC J.: Dynapack: Space-time compression
of the 3d animations of triangle meshes with fixed connectivity. In Procȯf
SCA (2003). 3

[JDKL14] JACOBSON A., DENG Z., KAVAN L., LEWIS J.: Skinning:
Real-time shape deformation. In ACM SIGGRAPH Courses (2014). 3

[JSK16] JONES A. D., SEN P., KIM T.: Compressing fluid subspaces.
In SCA (Aire-la-Ville, Switzerland, Switzerland, 2016), Eurographics
Association, pp. 77–84. 3

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh animations. ACM
Trans. Graph. 24, 3 (July 2005), 399–407. 3

[Jun15] JUNG J.: Compressing skeletal animation data. https://engineering.
riotgames.com/news/compressing-skeletal-animation-data, 2015. Ac-
cessed: 2018-01-23. 2, 3, 6

[KG04] KARNI Z., GOTSMAN C.: Compression of soft-body animation
sequences. Computers & Graphics (2004). 3

[KISS15] KEINERT B., INNMANN M., SÄNGER M., STAMMINGER M.:
Spherical fibonacci mapping. ACM Trans. Graph. (2015). 3

[LM06] LIU G., MCMILLAN L.: Segment-based human motion compres-
sion. In Proc. of SCA (2006). 3

[MCMJ15] MÜLLER M., CHENTANEZ N., MACKLIN M., JESCHKE S.:
Long range constraints for rigid body simulations. In Proc. SCA (2015).
2

[MLDH15] MAGLO A., LAVOUÉ G., DUPONT F., HUDELOT C.: 3d
mesh compression: Survey, comparisons, and emerging trends. ACM
Comput. Surv. (2015). 3

[PJAP07] PREDA M., JOVANOVA B., ARSOV I., PRÊTEUX F.: Optimized
mpeg-4 animation encoder for motion capture data. In Proc. of Web3D
(2007). 2, 3

[Ram72] RAMER U.: An iterative procedure for the polygonal approxi-
mation of plane curves. Computer graphics and image processing 1, 3
(1972), 244–256. 2

[RL12] REIN H., LIU S.-F.: REBOUND: an open-source multi-purpose
n-body code for collisional dynamics. Astronomy & Astrophysics (2012).
3

[RP12] ROSEN P., POPESCU V.: Simplification of node position data ;for
interactive visualization of dynamic data sets. IEEE Trans. Vis. Comput.
Graph. (2012). 2, 3

[Sho85] SHOEMAKE K.: Animating rotation with quaternion curves.
SIGGRAPH (1985). 3, 6

[Sid17] SIDEFX: SideFX Houdini, 2017. 7

[SKV∗12] SMITH B., KAUFMAN D. M., VOUGA E., TAMSTORF R.,
GRINSPUN E.: Reflections on simultaneous impact. ACM Trans. Graph.
31, 4 (July 2012), 106:1–106:12. 2, 7

[SSK05] SATTLER M., SARLETTE R., KLEIN R.: Simple and efficient
compression of animation sequences. In SCA (New York, NY, USA,
2005), ACM, pp. 209–217. 3

[SXYL16] SUN P., XIA S., YUAN G., LI D.: An overview of moving
object trajectory compression algorithms. Mathematical Problems in
Engineering (2016). 2, 9

[TJ07] TWIGG C. D., JAMES D. L.: Many-worlds browsing for control
of multibody dynamics. ACM Trans. Graph. 26, 3 (July 2007). 3, 4, 5

[TWC∗09] TOURNIER M., WU X., COURTY N., ARNAUD E., REVÉRET
L.: Motion compression using principal geodesics analysis. Comput.
Graph. Forum (2009). 3

[VMHB14] VASA L., MARRAS S., HORMANN K., BRUNNETT G.: Com-
pressing dynamic meshes with geometric laplacians. Computer Graphics
Forum 33, 2 (2014), 145–154. 3

[VSK∗17] VOUGA E., SMITH B., KAUFMAN D. M., TAMSTORF R.,
GRINSPUN E.: All’s well that ends well: Guaranteed resolution of simul-
taneous rigid body impact. ACM Trans. Graph. (2017). 2

[vZOS08] VAN ZON R., OMELYAN I. P., SCHOFIELD J.: Efficient algo-
rithms for rigid body integration using optimized splitting methods and
exact free rotational motion. The Journal of chemical physics (2008). 2

[vZS07] VAN ZON R., SCHOFIELD J.: Numerical implementation of the
exact dynamics of free rigid bodies. Journal of Computational Physics
225, 1 (2007), 145 – 164. 5, 9

[Wel84] WELCH T. A.: A technique for high-performance data compres-
sion. Computer (1984). 3

[WPS14] WEISSMANN S., PINKALL U., SCHRODER P.: Smoke rings
from smoke. ACM Trans. Graph. 33, 4 (July 2014), 140:1–140:8. 3

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

https://engineering.riotgames.com/news/compressing-skeletal-animation-data
https://engineering.riotgames.com/news/compressing-skeletal-animation-data

