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A Probabilistic Models and Derivations

We provide details of the derivations associated with the probabilistic models of Section 5 of the main
paper. For convenience, we clarify the following notation:

• tk: the kth timestamp,

• n: harmonic order,

• T : the set of timestamps,

• N: total number of harmonics used.

A.1 Harmonic probing estimator

We start by defining the periodic flux estimator, which is the value of the estimated flux using harmonic
probing at t = tk.

Definition 1 (Periodic flux estimator). The periodic flux estimator φ̂ f (q, tk,T ) at a timestamp tk is

φ̂ f (q, tk,T )
def
=

N

∑
n=−N

Φ̂(q,n f ,T )exp
(

j2πn f tk
)
. (A.1)

A.2 Harmonic probing estimator distribution

We start by characterizing the distribution of φ̂ f (q, tk,T ) for frequencies f that do not correspond to a

laser pulse train. Under low-flux conditions, Proposition 1 tells us that φ̂ f (q, tk,T ) follows a normal
distribution, with its mean and variance determined by the number of photons and number of harmonics.
Intuitively, if the set of harmonics does not align with a pulse train’s frequencies, summing over more
harmonics adds more noise and increases the variance of the result.

Proposition 1 (Distribution of periodic flux estimator). Under low-flux conditions, if Φ(q, f ) = 0, t ∈T ,
and |T | ≫ 1, then:

φ̂ f (q, tk,T )∼N
(2N + |T |

texp
,
2N|T |

t2
exp

)
. (A.2)

Proof Sketch of Proposition 1.

The proof proceeds in three steps:

Step 1: We show that φ̂ f (q, tk,T ) is the result of flux probing [16] with the following probing function
p(t):

p(t) =
2

texp

N

∑
n=1

cos
(
2πn f (t− tk)

)
. (A.3)

Step 2: We characterize the distribution φ̂ f (q, tk,T ) using the following lemma:



Lemma 1 (Proposition 3 in [16]). Let p(t) be a deterministic function of time. The probing mea-

surements p(T ) = ∑τ∈T p(τ) are normally distributed with mean ⟨p, φ⟩ and variance ⟨p2, φ⟩.
Step 3: We derive the mean and variance of the estimator in step 1.

Proof of Proposition 1.

Step 1: Let us consider the kth timestamp in T and denote it as tk. Let T = |T | be the total number

of timestamps and let T−
de f
= T −{tk} be the set of timestamps excluding tk. Then we have

φ̂ f (q, tk,T ) =
N

∑
n=−N

Φ̂(q,n f ,T )exp
(

j2πn f tk
)

(A.4a)

=
N

∑
n=−N

Φ̂(q,n f ,T−)exp
(

j2πn f tk
)
+

N

∑
n=−N

Φ̂(q,n f ,{tk})︸ ︷︷ ︸
equal to

exp(− j2πn f tk)
texp

exp
(

j2πn f tk
)

(A.4b)

=
N

∑
n=−N

Φ̂(q,n f ,T−)exp
(

j2πn f tk
)
+

N

∑
n=−N

1

texp
(A.4c)

=
N

∑
n=−N

Φ̂(q,n f ,T−)exp
(

j2πn f tk
)
+

2N +1

texp
(A.4d)

=
N

∑
n=1

Φ̂(q,n f ,T−)exp
(

j2πn f tk
)
+
−1

∑
n=−N

Φ̂(q,n f ,T−)exp
(

j2πn f tk
)
+

T −1

texp︸ ︷︷ ︸
term for n=0

+
2N +1

texp
. (A.4e)

Let us consider the first two terms in the summation of Eq. (A.4e), corresponding to the nth-order
harmonic, n f :

Φ̂(q,n f ,T−)exp
(

j2πn f tk
)
+ Φ̂(q,−n f ,T−)exp

(
− j2πn f tk

)
=

1

texp
∑

t∈T−
exp
(

j2πn f (tk− t)
)
+ exp

(
− j2πn f (tk− t)

)

(A.5a)

=
2

texp
∑

t∈T−
cos
(
2πn f (t− tk)

)
. (A.5b)

Combining Eqs. (A.4a), (A.4e) and Eq. (A.5b) we obtain:

φ̂ f (q, tk,T ) =
2N +T

texp
+ ∑

t∈T−
p(t). (A.6)

Step 2: Since we assume that |T | ≫ 1, removing tk from T affects its underlying estimated flux

function φ̂ negligibly. From Lemma 1, we know that:

∑
t∈T−

p(t)∼N
(
⟨p, φ⟩, ⟨p2, φ⟩

)
. (A.7)

Substituting Eq. (A.7) into Eq. (A.6) gives us:

φ̂ f (q, tk,T )∼N
(

2N +T

texp
+ ⟨p, φ⟩, ⟨p2, φ⟩

)
. (A.8)



Equation A.8 tells us therefore that we can model φ̂ f (q, tk,T ) as a normal distribution.

Step 3: In general, when the frequency f is not a harmonic of the laser repetition frequency, we
expect that Φ(q,n f ) = 0 for all n ∈ N.
In low-flux regimes [16], where SPAD dead time can be ignored, we can derive closed-form expressions

for the mean and variance of φ̂ f (q, tk,T ). We start by simplifying ⟨p, φ⟩:

⟨p, φ⟩=
∫ texp

0
p(t)φ(t)dt (A.9a)

=
2

texp

N

∑
n=1

∫ texp

0
cos
(
2πn f (t− tk)

)
φ(t)dt (A.9b)

=
1

texp

N

∑
n=1

Φ(q,n f )+Φ(q,−n f ) (A.9c)

= 0. (A.9d)

Now, we simplify ⟨p2, φ⟩:

⟨p2, φ⟩=
∫ texp

0
p2(t)φ(t)dt (A.10a)

=
4

t2
exp

N

∑
n1=1

N

∑
n2=1

∫ texp

0
cos
(
2πn1 f (t− tk)

)
cos
(
2πn2 f (t− tk)

)
︸ ︷︷ ︸

use trig identity for cosAcosB

φ(t)dt (A.10b)

=
2

t2
exp

N

∑
n1=1

N

∑
n2=1

∫ texp

0
cos
(
2π(n1−n2) f (t− tk)

)
φ(t)+ cos

(
2π(n1 +n2) f (t− tk)

)
φ(t)dt

︸ ︷︷ ︸
= 0 when n1 ̸=n2

(A.10c)

=
2

t2
exp

N

∑
n=1

∫ texp

0
φ(t)dt

︸ ︷︷ ︸
≈ T

(A.10d)

=
2NT

t2
exp

. (A.10e)

Therefore, we have:

φ̂ f (q, tk,T )∼N
(

2N +T

texp
,

2NT

t2
exp

)
. (A.11)

In high-flux conditions, where dead time can be comparable or larger than the photon interarrival
time, the noise model in Eq. (A.8) still holds. While there is no closed-form expression for the mean and
variance in that case, it may still be possible to leverage the sample mean and variance expressions of
Eq. (A.2) for the CFAR sinc-comb detection. In both our experiments and our simulations we find that
even with an SBR of 0.01 and high-flux conditions, our analytical noise model of Eq. (A.2) is effective
in detecting the presence of periodic flux signals.



A.3 CFAR sinc comb detector

A.3.1 Definition of sinc comb detector

In this subsection, we derive the CFAR bound for the sinc comb detector described in Section 5 of the
main paper. Proposition 1 informs us that the flux estimated for a specific time instant from frequencies
not present in the true flux follow a normal distribution. Leveraging this insight, we identify pulse
repetition frequencies that yield reconstructed pulse trains as opposed to reconstructed signals that are
statistically indistinguisable from Gaussian noise. Mathematically, this can be expressed as:

Definition 2 (CFAR sinc comb detector). To achieve a constant probability of false alarm p, a candi-
date frequency f is detected if there is at least one photon timestamp tk ∈ T for which the estimated
instantaneous flux at tk is statistically significant, i.e.,

φ̂(tk)>
2N + |T |

texp
+CDF−1

N
(1− p)

√
2N|T |
texp︸ ︷︷ ︸

CFAR sinc detection threshold ∆

(A.12)

where N is the number of harmonics, and texp is the exposure time. We derive the detection threshold ∆

below.

A.3.2 Derivation of CFAR sinc detector threshold

The main intuition of Definition A.12 is that a frequency f is only detected when it is statistically
significant, i.e., f is a noise frequency under our null hypothesis. Given that we know the distribution
of the estimated instantaneous flux at timestamp tk under the null hypothesis from Eq. (A.11), we set
our threshold ∆ according to the z-score needed for a one-sided Z-test [15] to reject our null hypothesis
with a significance level of 1− p. In our detection scheme, we set p = 1/(|T ||Fcand|), i.e., the likelihood
of observing at least one outlier among the total number of timestamps and candidate frequencies. For
instantaneous flux estimates that do not correspond to actual laser repetition frequencies, this can be
expressed as follows:

P(φ̂ f (q, tk,T )> ∆) = p (A.13a)

P(φ̂ f (q, tk,T )≤ ∆) = 1− p (A.13b)

P

(
φ̂ f (q, tk,T )−µ

σ
≤ ∆−µ

σ

)
= 1− p, (A.13c)

where µ = E[φ̂ f (q, tk,T )] and σ2 = var[φ̂ f (q, tk,T )]. Substituting Eq. (A.11) into Eq. (A.13) and invert-
ing both sides gives:

∆ =
2N + |T |

texp
+CDF−1

N
(1− p)

√
2N|T |
texp

, (A.14)

where CDF−1
N

denotes the inverse cumulative distribution function of the standard normal distribution.



B Algorithms

B.1 Laser discovery & synchronization

Below we provide pseudocode for the individual components of the approach described in Section 5.

Algorithm 1: Initial repetition frequency candidates

Input: T – set of timestamps from pixel q, texp

Output: Fcand – set of candidate repetition frequencies

Fcand← /0

# sweep frequencies up to 50 MHz with step size 0.6/texp
∆ f ← 0.6/texp

F ← { f | f < 50 MHz and f = n∆ f for n ∈ N}
p← 1

|F |
for f in F:

# Equation 3 of main paper

Φ̂(q, f ,T )← 1
texp

∑t∈T exp
(
− j2π f t

)

# Equation 4 of main paper

if
∥∥Φ̂(q, f ,T )

∥∥2 ≥ CDF−1
χ2 (1− p) |T |

2t2
exp

:

Fcand←Fcand∪{ f}
return Fcand

Algorithm 2: Frequency localization by high-res scanning

Input: T – set of timestamps from pixel q, texp, Fcand, ∆ ffine

Output: Floc – set of localized repetition frequencies

Floc← /0

kmax← ⌊ 0.6
texp∆ ffine

⌋
for f in Fcand:

# Frequency scanning with fine frequency steps in the neighborhood

of the first harmonic of candidate frequency

kloc← argmax
−kmax<k<kmax

∥Φ̂(q, f + k∆ ffine
,T )
∥∥2

Floc←Floc∪{ f + kloc∆ ffine
}

return Floc



Algorithm 3: Frequency pruning by second harmonic detection

Input: T – set of timestamps from pixel q, texp, Floc, ∆ ffine

Output: Floc – set of localized repetition frequencies

kmax← ⌊ 0.6
texp∆ ffine

⌋
for f in Floc:

# Frequency probing with fine step around the second harmonic of

candidate frequency

kloc← argmax
−kmax<k<kmax

∥Φ̂(q,2 f +2k∆ ffine
,T )
∥∥2

if ∥Φ̂(q,2 f +2kloc∆ ffine
,T )
∥∥2

< CDF−1
χ2 (1− p) |T |

2t2
exp

:

Floc←Floc−{ f}
else:

floc← f + kloc∆ ffine

Floc←
(
Floc−{ f}

)
∪{ floc}

return Floc

Algorithm 4: mHz frequency localization by harmonic hopping

Input: T – set of timestamps from pixel q, texp, Floc, ∆ ffine

Output: Floc – set of localized repetition frequencies

kmax← ⌊ 0.6
texp∆ ffine

⌋
for f in Floc:

for i = 3 to 10:

n← 2i

# Frequency probing with fine step around the n-th harmonic of

candidate frequency

kloc← argmax
−kmax<k<kmax

∥Φ̂(q,n f +nk∆ ffine
,T )
∥∥2

if ∥Φ̂(q,n f +nkloc∆ ffine
,T )
∥∥2 ≥ CDF−1

χ2 (1− p) |T |
2t2

exp
:

f ← f + kloc∆ ffine

else:

break

return Floc



Algorithm 5: Pulse train reconstruction by harmonic probing

Input: T – set of timestamps from pixel q, texp, f

Output: φ̂ f (q, t,T ) – reconstructed pulse train at each timestamp t in T
# maximum frequency detectable by SPAD

fmax← 15 GHz

N←max{n ∈ N | n < ⌊ fmax

f
⌋}

for n =−N to N:

# Probe the n-th harmonic of f

Φ̂(q,n f ,T )← 1
texp

∑t∈T exp
(
− j2πn f t

)

for t ∈ T :

# Reconstruct pulse train at each timestamp

φ̂ f (q, t,T )← ∑
N
n=−N Φ̂(q,n f ,T )exp

(
j2πn f t

)

return φ̂ f (q, t,T )

Algorithm 6: CFAR sinc comb detection and synchronization

Input: T – set of timestamps from pixel q, texp, Floc, p – probability of false alarm

Output: Flaser – set of detected pulse repetition frequencies

Flaser← /0

for f in Floc:

let φ̂ f (q, t,T ) be the output of Pseudocode 5 with inputs T , texp, and f

# CFAR threshold for pulse train

zp← CDF−1
N
(1− p)

∆← 2N+|T |
texp

+ zp

√
2N|T |
texp

Tlaser←
{

t ∈ T
∣∣∣ φ̂ f (q, t,T )> ∆

}

# Frequency detected if pulse train exceeds CFAR threshold for at

least one timestamp in T
if Tlaser ̸= /0:

Flaser←Flaser∪{ f}
return Flaser



Algorithm 7: Pulse-delay map estimation

Input: T – set of timestamps from pixel q, Flaser

Output: o f + τ f (q) – pulse delay for f ∈ Flaser at pixel q

# maximum frequency detectable by SPAD

fmax← 15 GHz

for f in Flaser:

N←max{n ∈ N | n < ⌊ fmax

f
⌋}

for n =−N to N:

# Probe the n-th harmonic of f

Φ̂(q,n f ,T )← 1
texp

∑t∈T exp
(
− j2πn f t

)

# Period-wrapped counterpart of pulse train φ̂ f (q, t,T )
compute φ̂ f (q,(t mod 1/ f ),T ) = ∑

N
n=−N Φ̂(q,n f ,T )exp

(
j2πn f (t mod 1/ f )

)

o f + τ f (q)← argmax φ̂ f (q,(t mod 1/ f ),T ))
return o f + τ f (q) for each f in Flaser



B.1.1 Additional implementation details

Initial candidate frequencies. We identify candidate repetition frequencies by frequency-scanning the
DC-50 MHz range with step size 0.6/texp. 50 MHz is chosen as an upper bound for repetition frequencies
of typical lasers used in lidar [2]. 0.6/texp is chosen according to Section B.10 of [16].

Frequency non-maximum supression. CFAR sinc comb and synchronization may result in a set Flaser

that contains multiple laser frequencies clustered within a sinc lobe; higher-order harmonics of the same
fundamental frequency; and frequencies that lie within the span of the sinc lobes of a laser’s repeti-
tion frequency. To remove such spurious frequencies, we perform non-maximum supression by clus-
tering all laser frequencies that lie within the same sinc lobe, keeping only the laser frequency f that

maximizes φ̂ f (q, t,T ). Then we remove higher-order harmonics by projecting them to first-order laser
frequencies. Finally we perform another round of non-maximum supression by probing the frequency
intervals ( f −1.5texp, f −0.5texp) and ( f +0.5texp, f +1.5texp) with a step size of 1 mHz.

Boosting SNR by local timestamp aggregation. We randomly choose a single 10 by 10 neighborhood
of pixels to aggregate timestamps and then perform probing operation on this “superpixel” in all our
experiments. This aggregation boosts SNR by up to 10x, and reduces the effect of dead-time under
strong ambient light conditions while preserving memory and runtime efficiency.

Pulse-delay map estimation. We discretize the period-wrapped counterpart φ̂ f (q,(t mod 1/ f ),T ))
using 10000 evenly spaced samples over the domain [0,1/ f ). We estimate the pulse delay by first
identifying the time at which the discretized flux reaches its maximum. We further refine this estimate
by using it as the starting point for Newton’s algorithm, running it for 100 iterations to compute the pulse

delay by locating the global maximum of φ̂ f (q,(τ mod 1/ f ),T )).

B.2 Geometric optimization

We rewrite Eq. (5) of the main paper to formulate the passive 3D geometry reconstruction task as the
following optimization problem:

minimize
ol ,ll ,d(q)

∑
q

ρα,c

{
∥ll − d(q)v(q)

∥∥ + d(q)− c
(
τl(q) + ol

)}
(B.15)

subject to d(q)≥ 0 for all q and α ≥ 0, (B.16)

where ρα,c is Barron’s adaptive robust loss defined by adaptive parameters α,c with constraint α ≥ 0 [4].
We randomly initialize our estimation parameters ol , ll , d(q) in the range between [0,1), and use Adam
optimizer [10] with 0.001 learning rate to run optimization until convergence. Convergence is defined as
the point at which the average change of ol, ll,d(q) across all pixels q falls below 10−3. Typical number
of iterations required for convergence ranges from 100K to 1M.

B.2.1 Space of solutions

As mentioned in Section 6 of the main paper, given L lasers and N pixels, the solution to the system
of algebraic equations of Eq. (5) lies in R

4L+N (3L for the light source positions, L for the sync offset,
and N dimensions for the depth of N pixels). Since Eq. (5) can be expressed as a polynomial, we can
associate an algebraic manifold of dimension 4L+N−1 to each pulse delay measurement. For general
laser and scene point positions, the algebraic manifolds associated with any two instances of Eq. (5)
will intersect transversally [9]. This results in a discrete solution space with no continuous deformation



ambiguities for L=2, N=8 and L=3, N= 6. Counting these solutions is beyond the scope of this paper;
see [7] for a possible approach.

In practice, we find that (a) 3 lasers are sufficient for reliable reconstruction of complex scenes and
(b) 2-laser reconstructions are very sensitive to outliers/shadows (see Section G.2 and Figure G.14 for
further details). Lastly, when the scene is a single plane, light sources can only be localized up to a
reflection ambiguity as placing light sources at their virtual positons with the scene acting as the plane
of reflection preserves the ToF measurements.



C Opportunistic ToF in Presence of Multi-Path Transport

In this section, we discuss the effect of indirect light transport to our method and we expand on how it
affects (a) our sinc comb model, laser discovery and synchronization, and (b) pulse-delay estimation,
source localization and depth estimation.

C.1 Impact of multi-path transport on sinc comb model and laser discovery

When multi-path light transport is not negligible, the impulse δ (t−τl(q)) in Eq. (1) becomes a function
hq(t) describing the scene’s temporal impulse response for pixel q (Figure C.2). Despite this, the sinc
comb structure of incident flux in the Fourier domain is preserved because it depends only on the laser’s
frequency comb and the exposure crop (Eq. (2)). Thus, Figure 3 (row 2, col 4) and Figure 4 still apply.
Consequently, laser discovery and synchronization, which depend only on the sinc comb structure, are
also invariant to multi-path transport. For concreteness, we focus on some specific cases of two-bounce
transport below.

C.1.1 Impact of 2-bounce specular transport on laser discovery and pulse train estimation

Now consider the case where the scene consists of a specular and a diffuser surface arranged as shown
in Figure C.1. The flux incident at q and q′ from l1 results in the detection of a single laser in both cases.

Specifically, the train φ̂ f (q,T ) reconstructed for l1 in Figure C.1a will contain two pulses for every pulse
emitted by the laser, as shown in Figure C.2c. This treatment is precisely what allows contributions from
multiple bounces—diffuse, specular, etc—to be associated to the laser that actually produced them: in
the supplementary video, distant diffuse inter-reflections (as in Figure C.2b can be seen appearing and
disappearing on the male mannequin’s cheek over a few consecutive frames, due to 2-bounce light from
the “magenta” (Figure C.3a) and “green” (Figure C.3b) laser, respectively.

C.2 Impact of multi-path transport on pulse-delay estimation and geometry optimization

Pulse delays may be estimated erroneously for some lasers (e.g., the paths l1→x→y→q and l1→y→q
in Figure C.1a may result in an estimated pulse similar to that of Figure C.2c) or for all of them (e.g.
due to path l1→z→x→q′ in Figure C.1b). We handle such errors in the geometric optimization stage
(Section 6), where global constraints across all pixels and lasers can be utilized. Specifically, our use
of a robust loss function in Eq. (B.15) serves to reduce the influence of pulse delays that are inconsistent
with a global solution for scene depths and laser positions by treating them as outliers. As can be seen
from the estimated pulse delays and final influence maps of the bathroom1 scene in Figure C.4, pixels
receiving only multi-bounce light from the green laser (red arrow) are successfully reconstructed by
ignoring that laser’s corrupted delays, whereas pixels corresponding to the case shown in Figure C.1b
(mirror’s surface) are automatically identified as unreconstructible as shown by the influence maps in
Figure C.4. Thus, as long as enough pixels in the camera’s field of view have pulse delay measurements
that are not uncorrupted by such multi-path transport, the scene’s lasers can be localized in 3D and the
non-specular surfaces can be reconstructed accurately. In the synthetic scene shown in Figure C.4 for
example, the total RMSE was 7.2 mm without considering errors on the Venetian blinds and 5.3 cm with
the errors included.1

1The increased depth errors on the Venetian blinds occurred because the tiny gaps between the blinds’ blades resulted in

transient rendering artifacts and thus were unrelated to our method.
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Figure C.1: Failure cases of pixelwise pulse-delay estimation. (a) Laser l1 emits a pulse that reaches

the diffuse point y directly and simultaneously reflects off the mirror-like (specular) surface at point x

before also reaching the same diffuse point y. As a result, two pulses—one direct and one specular-

reflected—arrive at the point y. These pulses create two identical peaks at pixel q, as illustrated previ-

ously in case P3 (Figure C.2). (b) The pulses from light sources l1 , l2 and l3 reach the diffuse point z

which is not directly visible from pixel q′. Instead, the light scattered at z reflects off the mirror surface

at x before reaching q′. As a result, the estimated pulse delay for each light source will be incorrect since

there is not direct reflection from point z to q′.
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Figure C.2: Effect of multi-path light transport to the incident flux at a pixel q. (a) Subsurface scat-

tering broadens the pulse shape, resulting in a slower falloff. (b) Non-specular two-bounce reflections

introduce additional pulse with lower amplitude. (c) Specular two-bounce reflections produce secondary

pulses that are potentially identical in shape and amplitude to the directly-reflected laser pulses. All of

these phenomena can be modelled as a convolution of the laser pulse ψl with the pixel’s transient re-

sponse hq , leaving the underlying sinc comb model unaffected.
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Figure C.3: 2-bounce indirect reflections in Figure 1 scene. (a) Indirect light transport on the mannequin

face from the magenta laser. (b) Indirect light transport on the mannequin face from the green laser.
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Figure C.4: Simulation results on the bathroom1 scene from the dataset of Bitterli [5], containing

specular surfaces. Specular reflections result in additional peaks, causing erroneous pulse-delay maps

that do not provide correct geometric constraints. Such delays are identified and handled as outliers

shown in the laser-specific influence maps on the second row. The laser-specific influence maps are

computed per-pixel upon convergence of geometric optimization, by taking the derivative of the adaptive

loss function, according to Eq. (9) on Barron [4]. See Section J for further details on our simulations.



D Natural Asynchrony of Pulsed Lasers
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Figure D.5: Left: Frequency estimates of two laser generators operating at 5 MHz over an 8 hour

period. Right: Zoomed-in frequency estimates for a duration of 8 minutes and 20 seconds.

We assess the degree of synchronization betweeen two identical picosecond lasers with identical but
individual driver devices as follows. We set the nominal frequency of two Alphalas lasers to 5 MHz,
which is well within their nominal frequency range of 1 MHz to 40 MHz. We then use two channels of
our time-to-digital converter (TDC) to timestamp the sync signal output by their individual drivers. The
TDC generated a sequence of time-stamped markers, one per period, for each of the lasers. We use the
markers to estimate the lasers’ frequency for each one-millisecond interval during an acquisition as the
inverse of the average timespan between consecutive markers. Figure D.5 shows how these frequencies
varied over an acquisition of 8 hours (left) and 8 minutes (right). Despite being set at the exact same
frequency, the actual frequencies of the lasers initially differed by 128 Hz and exhibited additional drift
of nearly 1 Hz over a period of 8 hours of constant operation. This suggests that while Hz-scale frequency
stability over that interval was maintained, the absolute difference between the frequencies of those two
identical laser devices was much larger (over 100 Hz in our lasers).



E Acquisition Setup

E.1 Experimental hardware

The following sensor and laser source were used in our experiments:

• Free-running SPAD: We use a single-pixel PDM Series Fast-Gated SPAD from Micro Photon
Devices, operated in asynchronous mode. The SPAD has a pixel pitch of 50 micrometers, a timing
jitter of 68 picoseconds, a 231 nanosecond dead time, and a quantum efficiency of 30% at 532 nm.

• Time-to-digital converter (TDC): The SPAD’s output is converted into a stream of timestamps
using a Swabian TimeTagger Ultra. The TimeTagger Ultra’s timing resolution is 1 picosecond and
its RMS timing jitter is 8 picoseconds. The TDC features four independent channels, one of which
was used for the SPAD.

• Galvo mirrors: For experiments where 2D imaging was required, we used a pair of galvo mirrors
from Thorlabs (Model GVS012) to acquire measurements over a 2D field of view with our single-
pixel SPAD.

• Ultrafast high-power pulsed laser: We used a class-4 picosecond laser with a wavelength of
532 nm (NKT Photonics Katana 05HP). We vary its repetition rate from 9.993 MHz to 10 MHz
during our acquisition and set its power to 0.2W. Its FWHM was 110 ps under the experimental
conditions we employed, resulting in a flux function with frequency support up to 10 GHz.

• Mirrors: We used Thorlabs E01-BB02 mirrors to redirect the collimated laser beam to various
points in the scene.

• Picosecond laser drivers: We used two Alphalas PLDD-100M picosecond drivers as reference
clocks for measuring frequency drift.

• Pulsed laser illumination: We use mirrors (Thorlabs E01-BB02) to redirect the laser beam
towards a piece of A4 paper taped onto the wall. The A4 paper acts as a diffuser, scattering laser
light onto our scene.

E.2 Comparison to commercial lidars

We compare the laser power we use in our experiment to a commercially available automotive flash
lidar, Lumentum’s M53-100 [12].

The M53-100 reports a 400 W typical peak optical power with a 0.1% duty cycle at 905 nm wave-
length (NIR). This results in a 0.4 W average optical power. We operated the Katana HP-5 at 0.2W
average power and the wavelength of the laser beam is 532 nm. Since photon energy is inversely pro-
portional to its wavelength (Einstein-Planck equation [1]), photons at 905 nm wavelength carry approx-
imately 1.7× less energy than photons at 532 nm wavelength. We compute the ratio in photon flux
between our light source and the M53-100:

0.294≈ 0.2 W

0.4 W︸ ︷︷ ︸
ratio in optical power

× 532 nm

905 nm︸ ︷︷ ︸
ratio in photon energy

. (E.17)

Therefore using a sensor with a comparable quantum efficiency at 905 nm; replacing our laser with the
M53-100; and increasing its beam divergence from its native 19◦ to the 180◦ hemisphere used in our



experiments would result in 3.4x more photons detected per pixel on average.

E.3 Capture procedure

Since we had access only to a single-pixel SPAD, the only way to emulate concurrent imaging over a
2D field of view of multiple asynchronous lasers is to (1) scan the field of view pixel by pixel, (2) repeat
this 2D scan for each laser position, (3) compute the union of the photon timestamp streams due to the
pulsed lasers and ambient light and (4) account for the SPAD’s dead time by removing timestamps from
this union that occurred during the SPAD’s dead time intervals. Specifically:

1. Temporal pixel alignment: In order to emulate concurrent imaging, the photon timestamps of
all pixels must be computationally shifted relative to each other to create the effect of a common
absolute clock. We use the laser synchronization markers to provide temporal alignment of the
photon timestamps within the laser repetition period.

2. Scanning and timestamp stream collection: We used the galvo mirrors to scan the scene one
pixel at a time, with each pixel collecting photons for the same time duration (100 milliseconds
unless otherwise stated).

3. Concurrent imaging of multiple asynchronous pulsed lasers: Since we had access to only
a single pulsed laser source, we repeat the previous steps as many times as the number of light
sources (typically three, unless stated otherwise). The final timestamp stream for each pixel is ob-
tained by combining the individual timestamps from each pulsed laser source along with ambient
timestamps, while accounting for dead time. Specifically, if two photons from different streams
were detected within the dead time after alignment, one of them is removed.

4. Total acquisition time: Total acquisition times vary by experiment and ranged from 2 hours for
a 128×128 scan to 10 hours for a 512×512 scan. See Section F for the details.



F Experiments I: Additional Details for Figure 1 Experiment

F.1 Laser discovery and computational synchronization

We provide additional details about the experiment shown in Figure 1 (middle).

Scene: The scene itself is shown in Figure 1 (left, top). It consisted of two mannequins separated by
a board covered with black fabric. The board was intentionally placed between the mannequins to cast
shadows from at least one laser. In this scene, the single-photon camera is positioned 1.12 m from right
wall, and 2.99 m from the background wall.

Illumination: We used the procedure outlined in Section E.3 to acquire timestamps corresponding to
3 pulsed lasers outside the SPAD’s field of view and approximately 2.16 m away from each other. The
pulse repetition frequency of the lasers was set to 9.998 MHz, 9.999 MHz, and 10.000 MHz, respec-
tively. The frequencies were intentionally chosen to differ at kHz scales because those are the hardest to
distinguish (Section J.3, Figure J.20).

Scanning and timestamp stream collection: We used the galvo mirrors to scan the field of view with
a spatial resolution of 0.38 cm, resulting in a 512×512 image. We used an exposure time of texp = 0.1
seconds for timestamp stream acquisition at each galvo position. Average photon counts at every pixel
acquired is 11040 photons. Photon counts at individual pixels vary significantly due to shading and
shadows: differences in photon counts between brightest and dimmest pixels are 15159, 9581, 9270 for
laser 1, 2, and 3, respectively.

Frequency scanning and detection: We aggregate timestamps from a 10× 10 patch. We then probe
from 0 Hz to 50 MHz with a step size of 6 Hz. We set the constant probability of false alarms to 1 over
the number of probed frequencies for the initial candidate frequencies, i.e. 0.12 · 10−7. From this step,
362 candidate frequencies were above the CFAR bound which were then refined as part of our frequency
detection method (Algorithms 2—6). Three laser frequencies passed the CFAR sinc comb detector. The
whole process from scanning to detection takes 1.9 hours.2

Laser separation: Computational laser synchronization is essential for passive 3D imaging, as it recon-
structs the pulse train of each laser, enabling the generation of pulse-delay maps used as inputs for the
geometric optimization. For each detected laser frequency, we reconstruct its corresponding pulse train
by performing harmonic probing (Algorithm 5) up to the 1500th harmonic for all pixels in the image.
In this scene, reconstructing the pulse train for each detected laser frequency involves computing only
1500 Fourier coefficients per detected laser frequency, resulting in a total of 4500 coefficients for the
three detected lasers.

Visualization of laser wavefronts propagating asynchronously: We reconstruct the flux by integrating
the incident pulse train at each pixel over a 125-picosecond exposure. This corresponds to a frame rate of
8 billion frames per second. Figure F.6 shows the transient before (left) and after (right) laser separation,
demonstrating the flux function decomposition into pulse trains from the detected pulsed lasers. In
Figure F.6 (right), we represent each laser with a distinct color for visualization purposes. Notably,
the separation of laser pulses reveals intriguing phenomena occurring on the picosecond timescale. For
instance, in the top row of Figure F.6, the top wall (annotated with a white ellipse) appears illuminated
by a single wavefront in the transient image of unseparated pulsed lasers. However, our method reveals
that this effect actually arises from the simultaneous illumination of the wall by wavefronts from two
different pulsed lasers. This phenomenon is even more prominent in Figure F.6 (row 2, left). This is
consistently observed across the remaining rows in Figure F.6.

2For comparison, our implementation of [16] takes approximately 60 hours.



Computational syncing: Our approach makes it possible to automatically sync-lock to one of the pulsed
lasers, effectively freezing it in time, and allowing us to observe how the other pulsed lasers drift relative
to it. Figure F.7 (row 1) illustrates this first-of-its-kind visualization, where the “magenta" pulsed laser
is frozen, while the other two lasers move forward in space as time progresses. To freeze a pulse, we
select the same relative time across different periods, aligning with the laser’s cycle. However, the other
pulses, having different periods, appear to propagate at varying speeds relative to the synchronized laser.
An intriguing effect occurs when we sync-lock to the pulsed laser with the shortest period. Since this
pulse repeats more frequently, it appears stationary while the slower pulses propagate in the opposite
direction. This phenomenon offers a novel visualization of aliasing in the transient domain, showing an
optical illusion similar to how a fan can appear to spin backward.

F.2 Pulse-delay map estimation

We provide additional details and results for the pulse-delay maps for the scene in Figure 1.

F.2.1 Pulse-delay map estimation & frequency detection error

We examine the sensitivity of our estimated frequency on the pulse delay estimation. Figure F.8 com-
pares changes in the pulse-delay estimation resulting from frequency estimation changes ranging from
1 mHz to 10 Hz for frequencies 9.998, 9.999 and 10.0 MHz. Figure F.9 shows the mean and median
pulse delay error versus the frequency errors. While we do not have access to ground truth frequencies
and pulse delays, we observe that even a small change in the estimated frequency on the order of a few
hertz can cause nanosecond-scale shifts to the pulse delay map, which corresponds to several metres in
the path length. This highlights the importance of requiring mHz-level accuracy in estimating the pulse
repetition frequencies of the pulsed lasers for our approach, otherwise the pulse-delay maps will contain
significant errors. Finally, this range of errors is incorporated into the simulations in Section J to evaluate
the robustness of the geometric optimization.

F.3 Opportunistic ToF over room-scale scenes with shadows & occlusions

Metrics for assessing 3D geometry recovery: Since we did not have access to ground truth geometry
measurements, we evaluated the accuracy of the 3D reconstruction with other well-established geometric
primitives. Specifically, we fit planes to the top and right walls in the scene by segmenting pixels based
on their estimated depths. Pixels with depths greater than 3 meters in the left portion of the scene are
extracted to represent the front wall. Similarly, pixels with depths greater than 2.1 meters in the right
portion of the scene are extracted to represent the right wall. The top wall and right wall contain 66,827
and 22,442 segmented pixels, respectively (Figure F.10). We apply RANSAC [8] with an inlier threshold
of 1 cm and a maximum of 1000 iterations to both sets of segmented pixels to compute the inlier ratio
and plane-fitting RMSE. The angle between the two walls is calculated as the dot product of the normals
of the fitted planes.



Figure F.6: Post capture laser separation. Left: Transient images without separated pulsed laser contri-

butions from our approach. Right: Transient images with separated pulsed laser contributions from our

approach.
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Figure F.7: Computational Sync-Lock. Row 1: Sync-locked to laser 1 (“magenta"), freezing its pulse

in time while the other two lasers propagate forward. Row 2: Sync-locked to laser 2 (“green"), causing

the "magenta" pulse to appear as though it is moving backward due to its longer period. Row 3: Sync-

locked to laser 3 (“yellow"), making the other two lasers appear to move backward because of their

longer periods.
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Figure F.8: Pulse-delay error for varying frequency estimation errors for three different frequencies.



Frequency error vs mean pulse delay error

δ
τ

[p
s]

δ f [mHz]

laser 1

laser 2

laser 3

100 101 102 103 104
101

102

103

104

105 Frequency error vs median pulse delay error

δ f [mHz]

laser 1

laser 2

laser 3

100 101 102 103 104
100

101

102

103

104

105
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Figure F.10: Left: Intensity image of the scene, gamma-corrected. Middle: Estimated depth map from

our approach. Right: Wall segmentation using depth-based thresholding.



Figure G.11: From left to right, the first four staircases have step sizes 10 cm, 5 cm, 3 cm and 1 cm

respectively. The last one has steps of 3 cm, 2 cm, 1 cm, 8 mm, 6 mm, 4 mm, and 2 mm.

G Experiments II: Quantitative Evaluation of Opportunistic ToF over Room-Scale
Scenes

G.1 3D-printed scene

Ground truth 3D objects: We 3D-printed four staircases with equal step sizes of 10 cm, 5 cm, 3 cm,
and 1 cm. Each camera-facing staircase face measures 20 cm x 7.5 cm. Additionally, we printed another
staircase with step sizes of 3 cm, 2 cm, 1 cm, 8 mm, 6 mm, 4 mm, and 2 mm, with camera-facing faces
measuring 20 cm x 3 cm. Figure G.11 shows the printed objects. The 3D printer had a precision of 0.2
mm.

Scene: The scene is shown in Figure 7 (row 3, top). It consists of five 3D printed models side-by-side at
approximately 3 meters away from the SPAD. We scanned 114×407 points with texp = 0.1 s.

3D accuracy metrics: We segment each individual staircase based on the photon count image of the
scene. We then register the reconstructed point cloud for each staircase with the ground truth staircase
point clouds. The ground-truth point clouds are sampled from the CAD model of the staircases and
contain the same number of points as the reconstructed staircases. Registration is performed using ICP
with maximum correspondence distance of 0.01, voxel size of 0.001, initialization set to the identity
matrix, tolerance of 10−9 and maximum number of iterations set to 5000. We summarize the overall
inlier ratio and RMSE of 5 staircase registrations from 3 to 8 light sources in Table G.1. We show
pixel-wise RMSE error maps in Figure G.12. Our reconstructions consistently achieve millimeter-level
accuracy, regardless of the number of light sources used.

Additional results: We captured the same scene using a Kinect Azure [3]. Figure G.13 shows the re-
constructed point cloud from Kinect, which is unable to accurately reconstruct the staircase with varying
step sizes. Our method consistently outperforms the Kinect at both SBR levels (Figure 7 row 3).

G.2 Accuracy versus number of lasers for Figure 1 scene

We performed an additional experiment in which we add two more pulsed lasers to the scene with
repetition frequencies of 9.996 MHz and 9.997 MHz. Using these, we perform frequency detection
(Algorithms 1—6), pulse-delay estimation (Algorithm 7), and geometric optimization (Section B.2) to
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Figure G.12: Pixel-wise depth error maps for 3 to 8 light sources.

10cm block 5cm block 3cm block 1cm block mixed block overall

3 pulsed lasers 2.8mm 2.5mm 2.4mm 2.1mm 2.5mm 2.3mm

4 pulsed lasers 2.0mm 2.1mm 2.0mm 1.9mm 2.2mm 2.1mm

5 pulsed lasers 2.0mm 2.0mm 1.9mm 1.8mm 2.1mm 2.0mm

6 pulsed lasers 2.2mm 2.0mm 1.9mm 1.7mm 2.1mm 2.0mm

7 pulsed lasers 1.8mm 1.8mm 1.8mm 1.7mm 2.0mm 1.9mm

8 pulsed lasers 1.7mm 1.8mm 1.8mm 1.6mm 2.0mm 1.8mm

Table G.1: RMSE of 5 staircase registrations from 3 to 8 light sources.

# of pulsed lasers Top wall plane fitting Right wall plane fitting Angle between fitted planes [◦]

RMSE [mm] %Inlier RMSE [mm] %Inlier

3 3.4 93.2 3.6 93.2 90.42

4 3.0 89.1 3.4 89.4 90.20

5 3.0 87.8 2.7 89.4 90.20

Table G.2: Geometry reconstruction accuracy under different number of light sources evaluated with

plane fitting.

recover depth, 3D locations of the pulsed lasers, and clock offsets.

We report quantitative metrics for plane fitting and the angle between fitted planes with varying
numbers of pulsed lasers in Table G.2. As the number of pulsed lasers increases, the RMSE values for
the top wall and right wall show slight improvement, particularly for the right wall, where the RMSE
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Figure G.13: 3D reconstruction from Kinect Azure [3] for the scene in Figure 7 (row 3).

decreases from 3.6 mm to 2.7 mm. The angle between the fitted planes remains consistent across all
configurations, maintaining a value close to 90.2 degrees.

Optimization fails with only two light sources because occlusions result in an insufficient number of
pixels observing both light sources (Figure G.14). Figure G.15 shows the quality of the reconstructed
point cloud under varying numbers of pulsed lasers in the scene. Table G.3 shows the RMSE values
for registering the reconstructed point clouds. Overall, our reconstructions remain consistent even with
one-tenth of the exposure time. For comparison, Figure G.16 (right) shows the point cloud captured by a
Kinect Azure from a slightly different viewpoint, but at approximately the same distance from the scene
(Figure G.16 (left)).



Figure G.14: Optimization fails to converge with two pulsed lasers, as shown by the estimated pulsed

lasers being too close in 3D space and the background surfaces appearing curved.

Source point cloud Target point cloud %Inlier RMSE[mm]

3 pulsed lasers, 0.01s exposure 3 pulsed lasers, 0.1s exposure 95.52 2.6

4 pulsed lasers, 0.1s exposure 3 pulsed lasers, 0.1s exposure 91.9 3.6

5 pulsed lasers, 0.1s exposure 3 pulsed lasers, 0.1s exposure 90.1 3.0

5 pulsed lasers, 0.1s exposure 4 pulsed lasers, 0.1s exposure 93.1 2.6

Table G.3: Registration of reconstructed point clouds under varying number of light sources and expo-

sures using ICP algorithm.
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Figure G.15: 3D reconstruction with a varying number of pulsed lasers. The fitted top wall is shown in
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Figure G.16: 3D reconstruction by Kinect Azure [3] for the scene in Figure 1.



H Experiments III: Opportunistic ToF under Strong Ambient Light

H.1 Emulating ambient light

SBR calculation: We define the SBR β to be the ratio of the number of signal photons to background
photons. For the case of three lasers and no ambient light, the SBR is 0.5. When emulating ambient
light, we report the desired SBR level (i.e., the incident flux) rather than the actual SBR, as SPAD dead
time can introduce non-linear effects that may slightly impact the final SBR level. Such effects were
minor in our experiments: a desired SBR level of 0.01 resulted in an average SBR of 0.0103.

Controlled low-SBR conditions: In order to evaluate performance under many levels of ambient light
for low SBR and dead-time impacted conditions, we combined experimentally-acquired timestamp data
with simulated timestamps from ambient light photons. Instead of capturing ambient photons with
ceiling lights turned on, we simulate ambient light corresponding to a DC point light source in the

scene. Specifically, to simulate a desired SBR level of β , we compute the average flux 1
L ∑

L
l=1 φl(q) at

each pixel, i.e., the per-pixel laser photon count divided by the exposure time. We simulate ambient

timestamps from a homogeneous Poisson process with rate function
β
L ∑

L
l=1 φl(q). We then superimpose

the laser photon stream with the ambient photon stream and enforce a dead time of 231 ns. By default,
the laser photons have an SBR of around 0.5 without the inclusion of ambient photons. Our results are
expressed in terms of the average SBR across all pixels.

H.2 Precision of frequency localization as a function of SBR

We conduct an experiment in which we assess the effect of signal-background ratio (SBR) on our detec-
tion method (Algorithms 1–6).

Laser details: The laser frequencies are 9,998 MHz, 9,999 MHz, and 10.000 MHz. Our exposure time
texp was 100 milliseconds.

Experimental procedure: We randomly select 30 pixels from the scene of Figure 1 and aggregate
timestamps from a 10-by-10 neighbourhood at each pixel. For each neighbourhood, we evaluate our
ability to detect the laser frequencies for SBR levels of 0.5, 0.1, 0.01, and 0.003, resulting in 120 ran-
dom trials in total. For each trial, we ran our detection method (Algorithms 1–6) and consider a laser
frequency to be successfully detected if our method returns a frequency within a conservative bound of
500 Hz of the laser’s frequency.

Discussion: We report the percentage of trials for which the laser frequencies were estimated within
1 mHz, 10 mHz, and 100 mHz in Table H.1 for each light source. We observe that in high-SBR scenarios
(0.5 and 0.1), we are able to estimate the laser frequencies to within sub-mHz for a majority of the trials,
with at least 80% of the trials achieving mHz precision. In the low-SBR case, the accuracy suffered,
but the majority of trials still returned mHz-precise frequency estimates. No spurious frequencies were
returned by our method in any of the 120 trials.

H.3 mm-accurate 3D reconstruction under strong ambient light

We evaluate our method’s 3D recovery accuracy in 0.01 SBR level. We emulated ambient photons for
the scene in Figure 7 (row 3) according to Section H.1. Figure H.17 shows the percentage of pixels with
depth error less than 1, 2, and 3 mm respectively. Our method consistently reconstructs the same number
of points with an error of less than 3 mm, even when the SBR is reduced by a factor of 50.



SBR %<1 mHz %<10 mHz %<100 mHz % detected

L
as

er
1 0.5 63.3 80 100 100

0.1 56.7 93.3 96.7 100

0.01 36.7 66.7 83.3 86.7

0.003 33.3 60 66.7 66.7

L
as

er
2 0.5 96.7 100 100 100

0.1 90.0 100 100 100

0.01 50 100 100 100

0.003 36.7 90 100 100

L
as

er
3 0.5 73.3 86.7 100 100

0.1 46.7 86.7 100 100

0.01 16.7 53.3 70 80

0.003 6.7 20 40 46.7

Table H.1: Frequency estimation accuracy across different SBR levels for the scene in Figure 1. Our

method consistently detects the pulse repetition frequencies of the pulsed lasers with mHz precision even

in 0.003 SBR.
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Figure H.17: Pixel-wise depth error maps for 0.01 and 0.5 SBR with thresholds 1 mm, 2 mm and 3 mm.

H.4 Low-SBR experiment for scene in Figure 1

We additionally apply our method to the scene in Figure 1 under low SBR settings.

Scene and illumination: We use the same scene and illumination conditions outlined in Section F.1.

Timestamp stream generation: We use the procedure outlined in Section H.1 to generate timestamps
of the Figure 1 scene with a desired SBR of 0.01. The average photon count at every pixel after adding
ambient photons was 175384 photons, which is about 40.5% of the maximum photon count for a dead
time of 231 ns. The average laser photon count per pixel was 5264. Compared to the high-SBR case,
our timestamp streams contained on average 17 times more photons in total—but half as many laser
photons, due to SPAD dead time effects.



Frequency scanning and detection: We aggregate timestamps from a single 10×10 patch and run our
frequency detection method (Algorithms 1–6) on the aggregated timestamp stream. 80 candidate fre-
quencies were above the CFAR bound and three laser frequencies passed the CFAR sinc comb detector.
The whole process from frequency scanning to detection takes 10.3 hours.3

Pulse-delay map estimation: We use the pulse-delay map estimation method (Algorithm 7) to recover
the pulse delay per-pixel for each laser. For efficiency, we thin our timestamp data by culling 90% of the
photons, resulting in average photon count of 17.5k during harmonic probing. Additionally, we recover
the photon count images from the recovered pulse trains.

Figure H.18 shows the photon count images and the pulse-delay maps.

Discussion: We observe that the low-SBR photon count images (Figure H.18 (row 1)) depict good sepa-
ration of the laser photon counts, similar to the ones shown in Figure 1 in the main paper. However, these
images are noisier as a result of the increased ambient light level, and we also observe some artifacts re-
sulting from the ambient photons bleeding into the photon count images, highlighted in Figure H.18 (top
row, red ellipses). Since the laser frequencies are well-estimated within a few mHz even at an SBR of
0.01 (Table J.4), we observe that the pulse-delay maps (Figure H.18 (row 2)) are estimated with high ac-
curacy, differing from the high-SBR pulse-delay maps by just tens of picoseconds (Figure H.18 (row 3))
in well-lit regions. We do observe that low-flux regions as well as shadowed regions have significantly
larger pulse delay errors (> 3 ns), likely due to the reduction in signal photons in those areas.

Please refer to the supplementary video for a fly-by of the scene in Figure 1 captured under low-sbr
conditions.

3The increase in processing time compared to our experiment in Section F is due to the much larger number of photons

detected.
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Figure H.18: Figure 1 scene under SBR of 0.01. Row 1: Photon count images corresponding to each
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and low-SBR pulse delays (log-scale).



I Experiments IV: Dynamic Acquisition

In this section, we provide additional details and results for the experiment shown in Figure 7 (row 4)
where both the camera and the laser sources change position from one snapshot to the next.

Scene: The scene is shown in Figure 7 (row 4, left) and includes a mannequin wearing a jacket with
millimeter-scale surface features, a figure holding a bowl, and 3D-printed staircases with step sizes 1 cm
and 3 cm. We captured six different snapshots following the acquisition procedure described in Section
E.3. The camera moved approximately 0.3 meters between snapshots, and the pulsed lasers changed
positions across snapshots as well.

Accuracy assessment: Since we have access to the ground truth staircase models, we register the re-
constructed point cloud of each staircase in each view with the corresponding ground truth shape as
described in Section G.1. The average registration RMSE error for the 1 cm and 3 cm staircase models
is 2.6 mm and 2.0 mm respectively, across all views. The average distance between estimated camera
positions from ICP is 32.7 cm.



J Simulation-Based Evaluation of Opportunistic ToF

In this section we use simulated scenes to evaluate the performance of individual components of oppor-
tunistic ToF against known ground truth.

J.1 Simulation details

Simulation scenes and renderings: Our simulations used 6 different room-scale scenes in the Mitsuba
format from the collection of Bitterli [5], shown in Figure J.19.4 The depth range of the scenes varied
from 4 m to 15 m. We use Mitsuba version 3.1.1 to extract the ground-truth 3D positions of each pixel,
camera calibration parameters, depth maps, and pulse-delay maps for various randomly-sampled three-
laser configurations in each scene. To these pulse-delay maps, we manually add random clock offsets
for each light source, with the offsets uniformly sampled from the range [0, maximum pulse delay at
each source]. Unless otherwise stated, we use 128×128 pixels and texp = 0.1 s.

Photon timestamp generation of 2D room scenes: For realistic rendering of the 2D room scenes, we
convert the Mitsuba 3 files into a Mitsuba-2-compatible format and use a transient renderer [14] for
Mitsuba 2 to render a 4,000 bin histogram at every pixel for each laser. For each pixel, we then use
the histogram to sample a timestamp stream for each laser using the thinning method [11]. We set the
average flux to be 10 kilophotons per second, similar to the lighting conditions of our real experiments.
We combine the timestamp stream of each pulsed laser and enforce a dead time of 231 ns to remove
timestamps that arrive during the SPAD’s dead time period. The remaining timestamps are quantized to
a resolution of four picoseconds.

Pulsed laser model from [14]: We set the laser pulse profile from [14] to a FWHM of 235 ps. The
laser pulse profile is approximately Gaussian, but our use of the transient renderer enables us to capture
multi-path transients. In our room-scene simulations, we use 7.499, 7.5, and 7.501 MHz as the pulse
repetition frequencies of the three lasers, respectively.

Photon timestamp generation for simulations involving a single pixel: In the simulations of Sec-
tion J.3, which involve timestamps collected at a single pixel, we model a laser pulse pulse as a Gaussian
with a desired FWHM. Since we have an analytical expression for the pulse, we use Cinlar’s method
[6] to simulate the timestamps for greater efficiency. To simulate timestamps for L lasers, we generate
timestamps for each laser pulse train separately and then combine them into a single stream. We apply
a dead time of 231 ns, the nominal dead time of our system, to remove photons that arrive within the
SPAD’s dead time period. We then apply a timing jitter of 8 ps and quantize the timestamps to 1 ps to
match the nominal specs of our experimental time-to-digital converter.

J.2 3D reconstruction and localization consistency

We evaluate the consistency of opportunistic ToF by generating timestamps for 50 trials per simulated
scene for a total of 300 trials. In each trial, we vary the pulsed laser positions and clock offsets while
keeping the pulse repetition frequency and average photon flux constant. We then use opportunistic ToF
to detect frequencies (Algorithms 1–6), estimate pulse-delay maps (Algorithm 7), and estimate depth,
laser 3D coordinates, and clock offsets (Section 6). Table J.1 reports the success rate of trials where
our method converged, as well as the average error and standard deviation for the estimated variables in

4The scenes we use are “bathroom1” (Contemporary Bathroom by Mareck), “livingroom1” (The White Room by Jay-

Artist), “livingroom2” (The Modern Living Room by Wig42), “bedroom” (Bedroom by SlykDrako), “dining” (The Breakfast

Room by Wig42), and “greywhiteroom” (The Grey & White Room by Wig42).



bathroom1 livingroom1 livingroom2

bedroom dining greywhiteroom

Figure J.19: Blender scenes used in simulations.

those cases. We observe that the method succeeds in roughly 94% of all trials. Failure cases occur when
the lasers are positioned in locations that create significant occlusions and shadows.

% Success cases Depth error Pulsed laser localization error Clock offset error

Average [mm] Std. [mm] Average [mm] Std. [mm] Average [mm] std. [mm]

93.67 3.5 4.3 16.2 11.2 9.4 8.9

Table J.1: Simulation success rate and accuracy.

J.3 Frequency localization & laser detection accuracy

J.3.1 Accuracy as a function of signal strength

We assess the performance of frequency detection and estimation across different flux levels in two
simulated scenes. Keeping texp = 0.1 s constant, we vary the average flux levels from 500 photons per
second to 100 kphotons per second. Frequency detection (described in Algorithms 1–6) is performed on
three distinct "superpixels" in each scene. Table J.2 shows the frequency estimation errors for the three
pulsed lasers in these scenes.

J.3.2 Accuracy as a function of exposure time

As described in Section 3 of the main paper, reducing the exposure time causes blurring of each har-
monic, which in turn reduces the accuracy of frequency estimation. To analyze the effect of exposure



Photons per sec. Bathroom1 scene

Laser 1 error [Hz] Laser 2 error [Hz] Laser 3 error [Hz] % Freq. detected

100K 0.001 0.005 (two patch detected) 0.004 88.9

50K 0.001 0.001 (two patch detected) 0.001 88.9

10K 0.005 0.019 0.004 100

5K 0.041 0.021 0.004 100

1K 0.671 0.094 0.063 100

0.5K 0.06 0.12 0.069 100

Photons per sec. Livingroom2 scene

Laser 1 error [Hz] Laser 2 error [Hz] Laser 3 error [Hz] % Freq. detected

100K 0.004 6e-4 3e-4 100

50K 0.003 0.002 0.003 100

10K 0.003 0.001 0.004 100

5K 0.011 0.002 0.004 100

1K 0.027 0.025 0.048 100

0.5K 0.060 0.084 0.162 100

Table J.2: Effects of varying light levels in frequency detection and estimation.

time on repetition frequency detection and estimation, we simulate a scene with three distinct pulsed
lasers. Timestamps are generated following the procedure in Section J.1 for texp = 0.1 s. Shorter ex-
posure times are simulated by cropping the timestamps. Frequency detection and estimation (Algo-
rithms 1–6) is then performed on each set of timestamps. Table J.3 summarizes the frequency estimation
errors for the repetition frequencies of the different pulsed lasers. Extremely short exposure times im-
pact the detection rate of our approach. However, when a frequency is successfully detected, even at
texp = 1 ms, the frequency error remains as low as 0.3 Hz. For reference, the expected blur of each
harmonic at this exposure is 600 Hz.

J.3.3 Two-laser detection test

We perform simulations to determine the minimum separation between resolvable laser pulse repetition
frequencies.

Flux function: We define the flux function to be the sum of two laser pulse trains with pulse repetition
frequencies of 10 MHz and 10+∆ f MHz, respectively. We model the laser pulse as a Gaussian with
110 ps FWHM and set the amplitude of each laser pulse to be 10 kilophotons per second. The pulse
delay of each laser pulse train was sampled uniformly randomly from [0,1/ f ] where f is its pulse
repetition frequency. We use the photon timestamp generation of pulsed laser trains procedure described
in Section J.1 to generate timestamp streams.

Experimental procedure: We vary the frequency separation ∆ f from 0.2/texp to 4/texp in increments of
0.2/texp and use exposure times texp of 1 second, 100 milliseconds, and 10 milliseonds. For each ∆ f and
texp, we generated 50 timestamp streams, resulting in 1000 random trials in total. We run our detection
method (Algorithms 1–6) on each timestamp stream and consider a repetition frequency to be success-
fully detected if the method estimates a frequency within 0.01/texp of the corresponding frequency. For



Exposure time Bedroom scene

Laser 1 error [Hz] Laser 2 error [Hz] Laser 3 error [Hz] % Freq. detected

100ms 3e-4 0.001 0.003 100

50ms 0.003 0.003 0.003 100

10ms 0.024 0.020 0.020 100

5 ms 0.025 0.173 0.068 100

1 ms 4.90 (two patch detected) No patch detected 400 (one patch detected) 33.33

0.5ms 4.00 (one patch detected) No patch detected No patch detected 11.11

Exposure time Livingroom1 scene

Laser 1 error [Hz] Laser 2 error [Hz] Laser 3 error [Hz] % Freq. detected

100ms 0.001 0.003 3e-4 100

50ms 0.002 0.004 0.001 100

10ms 0.018 0.014 (two patch detected) 0.029 88.9

5 ms 0.073 0.060 (two patch detected) 0.029 (two patch detected) 77.8

1 ms No patch detected 0.069 (two patch detected) 0.277 (one patch detected) 33.3

0.5ms No patch detected 2.491 (one patch detected) No patch detected 11.11

Table J.3: Effects of exposure time in frequency detection and estimation.

each ∆ f and texp, we compute the two-frequency detection probability across all trials.

Figure J.20 shows the simulation results.

Discussion: We observe that when the frequency separation is less than or equal to 1.4/texp, our method
consistently fails to detect both frequencies. Additionally, our simulations suggest that there is a phase
transition where the detection probability goes from 0% to 100% and the duration of this phase transition
decreases as the exposure time increases, likely due to the increased accuracy in the CFAR frequency
detector as photon counts increase. These observations suggest that our frequency detection method has
a minimum two-frequency resolution between 1.4/texp to 1.6/texp as we vary ∆ f in steps of 0.2/texp.

We also corroborate this limit using the Rayleigh criterion limit [13]. Since the Rayleigh criterion
is defined for Airy disks and not a sinc, we fit a sinc to the Airy disk by matching the FWHMs of both
functions.5 Doing so yielded a minimum frequency separation of 1.43/texp, which is consistent with our
observed limit of 1.4/texp to 1.6/texp.

We also observe that our detection method has an increased probability of detecting one of the two
laser frequencies when the frequency separation is at most 0.4/texp. For frequency separations less than
1/texp, the two sinc lobes of the laser frequency merge into one sinc lobe centred at 10+∆ f/2, e.g., the
mean of the two laser frequencies. In this case, while we are able to localize laser frequencies, they will
be roughly ∆ f/2 away from the peak of the sinc lobe and therefore removed by our frequency detection
method. However as ∆ f → 0, the laser frequencies get closer to the peak of the sinc lobe, allowing our
method to detect them, which explains the increase in successful trials.

5We found that the Airy disk (2kJ1(x/k)/x)2 ≈ sinc(x/texp) around their lobes when k = 3.733 and texp = 0.1; J1 is the

Bessel function of the first kind of order one. Under Rayleigh criterion, ∆ f ≈ 3.8317k = 1.43/texp since 3.832 is the location

of the first zero of J1.



Detection probability vs. frequency difference
exposure: 1 sec

%
su

cc
es

sf
u
l

tr
ia

ls

f1− f2 [Hz]

f1 detected

f2 detected

f1& f2 detected

0 41.4 1.8
0%

100%
exposure: 100 msec

f1− f2 [Hz]
14 200 40

exposure: 10 msec

f1− f2 [Hz]
140 2600 400

Figure J.20: Two-laser detection probability versus difference of their repetition frequencies for three

exposure times.

J.4 Pulse delay error as a function of frequency error

Accurate frequency estimation is a key contribution of our approach, essential for reconstructing pulsed
laser trains, estimating delay maps, and enabling passive 3D imaging. To evaluate the effect of frequency
estimation errors, we set the repetition rate of the pulsed laser to 7.5 MHz and reconstruct the pulse
profile using harmonic probing at each provided frequency for the scenes shown in Figure J.21. Table J.4
shows the average errors across three different scenes for repetition frequency errors ranging from 0 Hz
to 1 Hz. As the error in the repetition frequency increases, the pulse FWHM becomes larger, indicating
that the pulse is increasingly blurred, and the pulse-delay shifts. This occurs because even a small error
in the repetition frequency introduces a shift of tens of Hz in the higher harmonics, causing them to
misalign. Consequently, the harmonic components fail to “line up" properly, leading to distortions in the
reconstructed pulse profile and delay map.

Freq. estimation error
Pulse FWHM [ps] Avg. pulse-delay error ×c [mm]

livingroom2 greywhiteroom dining livingroom2 greywhiteroom dining

0 252 251 272 8.8 9.0 11.5

100 µHz 252 254 273 8.8 9.0 11.5

500 µHz 255 255 275 9.0 9.0 13.5

1 mHz 256 256 276 9.4 9.2 13.4

5 mHz 264 278 302 13.0 12.7 18.8

10 mHz 278 333 340 17.4 15.5 23.6

50 mHz 501 755 554 58.9 58.9 69.2

100mHz 1351 1753 1256 115 110 132

500mHz 16140 19981 9535 794 569 664

1Hz 28733 38349 21368 1715 1079 1328

Table J.4: Pulse FWHM and pulse-delay map error for varying pulse repetition frequency errors for

three different scenes.
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Figure J.21: Path length estimation errors in livingroom2, greywhiteroom and dining room scenes. Top:

Intensity images (gamma-corrected). Middle: Ground-truth path lengths from rendering. Bottom: Path

length estimation error against ground truth.

J.5 3D reconstruction accuracy

We assess the impact of pulse-delay errors on 3D reconstruction, pulsed laser localization, and clock off-
set accuracy. To do this, we perturb the ground truth simulated pulse-delay maps by adding zero-mean
Gaussian noise with standard deviations ranging from 0 ns to 33 ns, as determined from the analysis in
Section F.2.1, which correspond to depth errors of 0 mm to 1000 mm. Then, we run geometric optimiza-
tion (Section B.2) to recover depth, pulsed laser 3D locations and sync offsets. Table J.5 summarizes the
average depth error, pulsed-laser localization error, and clock offset error across all 8 simulated scenes.
Thanks to the adaptive loss function and the overdetermined nature of our system of equations, our



geometric optimization framework effectively handles significant pulse-delay errors, even those in the
range of hundreds of millimeters. As noted in Section F.2.1, such pulse-delay errors are primarily caused
by frequency estimation errors of hundreds of millihertz. However, as demonstrated in our real-world
experiments (Section 7 of the main paper), our frequency estimation errors are much smaller, ensuring
robust and accurate performance in practical scenarios.

Avg. pulse-delay error × c Avg. depth error Average source localization error Avg. clock offset error × c

0 0.38mm 0.61mm 0.32mm

5mm 1.4mm 2.4mm 1.6mm

1 cm 2.7mm 0.82mm 2.2mm

5 cm 13mm 6.0mm 2.4mm

10 cm 29.8mm 41.7mm 16.7mm

50 cm 304mm 607mm 2153mm

Table J.5: Impact of pulse-delay estimation error in passive 3D reconstruction accuracy.
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