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Fig. 1. Our new mixed finite element method (MFEM) can produce simulations of elastica with wildly different materials (including rigid) both accurately and
quickly. Our key contribution is that our method is both capable of converging to an accurate solution, matching that of a Newton’s method, as well as
generate visually plausible results when stopped early. This makes it ideal for a plethora of engineering and graphics applications.

We propose and explore a new method for the implicit time integration of
elastica. Key to our approach is the use of a mixed variational principle.
In turn, its finite element discretization leads to an efficient and accurate
sequential quadratic programming solver with a superset of the desirable
properties of many previous integration strategies. This framework fits a
range of elastic constitutive models and remains stable across a wide span
of time step sizes and material parameters (including problems that are
approximately rigid). Our method exhibits convergence on par with full
Newton type solvers and also generates visually plausible results in just a
few iterations comparable to recent fast simulation methods that do not con-
verge. These properties make it suitable for both offline accurate simulation
and performant applications with expressive physics. We demonstrate the
efficacy of our approach on a number of simulated examples.
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1 INTRODUCTION
In this paper we explore the use of a mixed variational principle to
build an efficient and general-purpose simulation algorithm for the
physics-based animation of elastica.

Standard approaches for the implicit time integration of continua
discretize with finite differences in time and finite elements in space.
Recent methods often leverage the observation that, for these im-
plicit time integration choices, each individual time step solve can
then be cast as a minimization problem. In turn, the applied strategy
for solving these optimization problems then leads to a wide range
of well-known simulation algorithms [Li et al. 2019]. For example,
a “standard” finite element approach involves minimizing an im-
plicit integration energy via Newton’s method while solving the
bottleneck of inner linear-systems solves either via direct or itera-
tive methods. Extended Position-Based Dynamics replaces standard
direct or iterative solvers with iterations (e.g., GS, Jacobi, and/or
SOR) acting on the dual variables (constraint forces) while Projective
Dynamics and its more recent generalizations apply various forms
of ADMM-type solvers to split, augmented Lagrangian forms.

Despite their common variational origin, implicit solvers for elas-
tica exhibit a wide range of features and limitations, and so tradeoffs.
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Standard Newton-type approaches and ADMM-based methods (in-
cluding Projective Dynamics) exhibit various difficulties simulating
stiff materials. On the other hand, Position-Based Dynamics, while
fast and stable (even at high stiffness), lacks a direct correspondence
to a discretization model and underlying PDE – it is then often
unclear how to convert general material moduli and models to fit
its constraint-based formulation. Furthermore some algorithms de-
liver visually compelling results early in their iteration sequences,
making them ideal for interactive applications. However these same
methods are generally unable to converge [Li et al. 2019] making
them unsuitable for applications requiring accurate simulation so-
lutions. In stark counterpoint gold-standard Newton-type methods
generally converge well but are slow to do so. Likewise their early
iterations are generally polluted by artifacts so that they are often
unsuitable for fast applications. This bifurcated feature landscape
means that practitioners of physical simulation and physics-based
animation require a quiver of solvers to handle the multitude of
materials, time steps and varying accuracy and speed requirements
one might encounter.

Arguably an implicit time integrator for physics-based animation
should

• support a full range of elastic constitutive models;
• be robust to large deformations;
• offer stability for a wide range of materials including those
stiff enough to be effectively rigid;
• remain stable for large, frame-rate sized time steps;
• provide efficient solutions of every time step;
• produce visually plausible results at interactive or near-interactive
rates; and
• given a practical time frame, converge to a consistent and
accurate solution.

Existing popular methods, as covered briefly here and below,
are often custom-specialized to a small subset of these properties
and cases. In this paper we show that a mixed variational finite-
element model, coupled with an appropriate optimization algorithm
yields a method that aims to cover the full spread of the above
target properties. In turn this provides a solver that is at home
across the range of both interactive and slower applications for
deformable-object simulation. At the same time, this solver is also
able to converge to the same solutions that would be obtained by a
converging Newton’s method solver.

2 RELATED WORK
Implicit time integrators, especially backwards Euler, are ubiqui-
tous tools in simulating elastica. In computer graphics, implicit
integration steps are often solved via Newton’s method [Terzopou-
los and Qin 1994] or else via a single-iteration, linearly implicit
approximation [Baraff and Witkin 1998]. A range of applied forces
can, in turn, be derived variationally from distortion metrics [Ter-
zopoulos and Qin 1994] and mechanical conditions on the simulated
objects [Baraff and Witkin 1998]. More recent approaches often
derive and implement implicit time integration from a variational
perspective [Gast et al. 2015; Hahn et al. 2012; Hairer and Lubich
2014; Martin et al. 2011] which, once fully discretized in time (via
finite differences), and space (via finite elements), yields a nonlinear

minimization which is solved to update each forward time step in
a simulation. Efficient, robust, and accurate solution of this opti-
mization problem now lies at the heart of recent, physics-based
animation research.
A default solution approach is to apply Newton’s method with

a direct solver to handle the resulting per-iteration sequence of
linear systems solves. In turn iterative linear solvers [Smith et al.
2018; Wang and Yang 2016; Xian et al. 2019] can offer better linear
solve performance and memory usage with the trade-off of overall
slowing convergence for stiffer material models. Avoiding the direct
solve via Quasi-Newton approaches can also lead to performance
improvements [Liu et al. 2017]. An exceedingly efficient alternative
approach is to apply primal-dual solver strategies which model elas-
tic forces as constraints. Resulting dual optimization problems are
then (approximately) solved to compute each forward time step. An
extremely successful and effective application of this strategy is the
Position Based Dynamics (PBD) algorithm [Muller et al. 2007] which
acts on compliant constraints (similar to the condition energies from
Baraff and Witkin [1998]), with fast, local iterative updates to gen-
erate approximating solutions for the dynamics. Extended Position
Based Dynamics (XPBD) extends PBD with a quadratic compliant
formulation [Servin et al. 2006] to establish a relationship between
PBD constraints and some material models [Macklin et al. 2016] and
enables the simulation of both rigid and quasi-rigid bodies [Müller
et al. 2020]. However the local nature of the PBD updates, and its
constitutive behavior dependence on iteration tuning often neces-
sitates additional complexity in achieving desired results in high
resolution meshes and large domains [Müller et al. 2017]. XPBD
type solves also arise as intermediate steps in non-smooth Newton’s
Methods for contact and friction [Macklin et al. 2019].

Projective Dynamics (PD) [Bouaziz et al. 2014] applies an ADMM-
type algorithm [Overby et al. 2017] to minimize the integration
energy of a subset of deformation energies. This strategy has since
been fully generalized by Overby et al. [2017] to a full ADMMmodel
covering a complete range of hyperelastic energies. These methods
incorporate a highly effective global projection step which helps bal-
ance locally solved forces across an entire meshed domain and lead
to exceedingly stable behavior when simulating nonlinear elastica.
However, this comes with a trade-off. When simulating nonlinear
materials these ADMM strategies suffer from slow and even noncon-
vergence [Li et al. 2019]. This brings algorithmic parameter tuning
questions and challenges when it comes to simulating stiffer ma-
terials. Brown and Narain [2021] use the splitting inherent in the
ADMM formulation to introduce separate rotation and deforma-
tion variables (along with traditional positional degrees-of-freedom).
While increasing the number of variables and the complexity of
the global and local update steps, this approach shows improved
convergence rates over previous methods – especially for examples
exhibiting large rotational motions. Unfortunately, as we demon-
strate, this does not alleviate ADMM’s inability to converge to the
FE solution, leaving these solvers inapplicable to accuracy-focused
tasks.

In this work we present an algorithm for implicit integration that
is convergent and consistent, while also able to produce compelling
visual results in compute-time-limited scenarios such as interactive
simulation. This solver can thus, unlike recent popular methods
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discussed, be used both in applications that require accuracy and
applications that require fast visual updates. Our method has a host
of additional features including being performant for a wide range
of extreme material parameters (including effectively rigid bodies),
robustness to large deformations, and is agnostic to material energy.
Our key insight is that, while recent work has rapidly explored

improvements and tradeoffs at the solver level (and occasionally in
choice of time-discretization), the underlying variational energies
being optimization have largely remained the same. Rather, we set
off from a mixed variational perspective to arrive at a new, efficient,
accurate, sequential quadratic programming method [Wright and
Nocedal 1999]. Mixed principles are not new to graphics, for in-
stance the Hamilton-Pontryagin principle [Kharevych et al. 2006]
has been applied to resolve position and displacement as indepen-
dent discrete time-stepped variables coupled via constraints, in order
to derive discrete variational time integrators. Here we are rather
motivated by Reissner’s [1985] approach, which decouples deforma-
tion and displacements. We, however, depart from this approeach
to a new mixed variational principle design which naturally leads
us to an efficient elastodynamics solver that exhibits a superset of
features currently available in physics-based methods. These in-
clude convergence and consistency with a gold-standard Newton’s
methods, compatibility with general elastic constitutive models and
stability for a wide range of time step sizes and material parame-
ters. We demonstrate the accuracy of our method with comparisons
to Newton’s method and the state-of-the-art WRAPD [Brown and
Narain 2021] solver, as well as demonstrate our methods efficacy
on a number of examples simulated at interactive rates.

3 METHODS

3.1 Notation
Our mixed finite element time stepping scheme (Alg. 1) results from
applying sequential quadratic programming to a mixed finite ele-
ment variational form. Like much previous work, our algorithm in-
volves both global and local updates, but it will demonstrate several
advantages of other methods (e.g. ADMM or local-global splitting)
that result in similar computational loops.
Going forward, we denote vectors and matrices respectively in

bold lower and upper case, and scalars in lower case, for FE systems
with 𝑛 nodes and𝑚 elements.

3.2 Continuous Problem
Our central focus is the time integration of nonlinear elastodynamics.
For a domain Ω ∈ R𝑑 with reference coordinates X ∈ R𝑑 , and
corresponding world-space positions x(X) ∈ R𝑑 , an elastodynamic
system extremizes the action

𝑆 (X) =
∫ 𝑇

0

(∫
Ω

𝜌

2
| | ¤x(X) | |2 − Ψ(X) + x(X)𝑇 fext (X)

)
𝑑Ω𝑑𝑡, (1)

where Ψ(X) is the hyper-elastic deformation energy, fext the exter-
nal forces, and 𝜌 density. We write each value as a function of X to
emphasize these values spatially vary.
Discretizing in time, there are many potential integration meth-

ods, but we primarily focus for clarity on implicit Euler integration
via the minimization of the incremental potential (IP) [Kane et al.

2000]. We define a finite element discretization with a set of el-
ements T ∈ Ω𝑑 where from now on we assume elements to be
tetrahedra and 𝑑 = 3. Standard displacement-based FEM takes the
nodal positions x ∈ R3𝑛 to be the degrees of freedom, and using the
IP time integrator with positions, x𝑡 , and velocities, ¤x𝑡 , at time 𝑡 ,
we find the nodal positions for the next time step by solving

x𝑡+1 = argmin
x

1
2
(x − x̃)𝑇𝑀 (x − x̃) + ℎ2

∑
𝐾 ∈T

Ψ𝐾 (x)𝑤𝐾 , (2)

where ℎ is the timsetep, 𝑀 is the finite element mass matrix, x̃ =

x𝑡 + ℎ ¤x𝑡 + ℎ2𝑀−1fext, and𝑤𝐾 is the per-element volume. This ap-
proach yields the standard implicit Euler, displacement-based Finite
Element Method, but we depart from this in our mixed formulation.

Returning to the spatially continuous setting, we define a contin-
uous mixed energy

𝑈 =

∫
Ω
Ψ(𝑆 (X)) − Λ(X) : (𝑆 (𝐹 (X)) − 𝑆 (X))𝑑Ω (3)

where 𝐹 (X) = 𝜕x(X)
𝜕X ∈ R3×3 is the deformation gradient. 𝑆 (X) ∈

R3×3 is a symmetric deformation matrix, and lastly Λ(X) ∈ R3×3 is
a symmetric matrix of Lagrange multipliers. 𝑆 (𝐹 (X)) = 𝑅(X)𝑇 𝐹 (X)
is used to couple 𝑆 (X) and 𝐹 (X) via polar decomposition, and the
Lagrange multipliers represent stresses enforcing the constraint.
Measuring elastic deformation strictly with the symmetric 𝑆 (X)
simplifies energy evaluation (hyperelastic constitutive models are
easily defined in terms of 𝑆 [Sifakis and Barbic 2012]), but the key
benefit of this formulation is that rotations are implicitly included
in the 𝑆 (𝐹 (X)) term, allowing our solver to track local rigid motions
more efficiently, improving convergence [Brown and Narain 2021].

Algorithm 1: Mixed SQP Solver
1 Algorithm SimulationStep(x𝑡 , ¤x𝑡 , s𝑡 , max_iters)
2 x← x𝑡 , s← s𝑡 , _ ← 0
3 iter← 0
4 do

// Compute gradients and hessians

5 gx ← nodal_derivatives(x, x𝑡 , ¤x𝑡 )
6 [𝐺x,𝐺s, c] ← constraints(x, s) // Eq. (12)
7 [𝐻s, gs] ← deformation_derivatives(s)
8 [𝐻_, g_] ← lambda_derivatives // Eq. (18)
9

// Setup system and solve for 𝛿x
10 [𝐻, g] ← assemble_system // Eq. (20)
11 𝛿x = 𝐻−1g
12

// Local solves for _,𝛿s
13 _ ← update_lambdas // Eq. (19)
14 𝛿s← update_s // Eq. (15)
15 x, s← backtracking linesearch
16 iter← iter +1
17 while not converged or iter < max_iters
18 ¤x← (x − x𝑡 )/ℎ
19 return x, ¤x, s, _
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3.3 Discretized Mixed Energy
Now we return to the spatially discrete setting and construct a
mixed potential on a finite element mesh. To simplify this discretiza-
tion we make the assumption that the shape function for positions,
x(X), are linear, making the deformation gradients, 𝐹 , constant over
each element. Consequently, we make 𝑆 (X) and Λ(X) element-wise
constant. Furthermore, we write 𝐹𝐾 (x) to denote the deformation
gradient for the 𝐾-th element and that it is a function of the nodal
degrees of freedom x ∈ R3𝑛 . In this discrete setting, our mixed
energy is

𝑈 ≈ �̃� =
∑
𝐾 ∈T
(Ψ(𝑆𝐾 ) − Λ𝐾 : (𝑆 (𝐹𝐾 (x)) − 𝑆𝐾 ))𝑤𝐾 , (4)

where𝑤𝐾 is the 𝐾-th element’s volume. Next considering that Λ𝐾
and 𝑆𝐾 are 3 × 3 symmetric matrices, we represent them each by
6 × 1 vectors _𝐾 and s𝐾 , respectively.
Using these simplifications, we can rewrite our discrete energy

equivalently as

�̃� (x, s, _) =
∑
𝐾 ∈T

(
Ψ(s𝐾 ) − _𝑇𝐾 c𝐾 (x, s)

)
𝑤𝐾 , (5)

where

c𝐾 (x, s) = Sym(s(𝐹𝐾 (x)) − s𝐾 ) ∈ R6, (6)
and Sym = 𝑑𝑖𝑎𝑔(

[
1 1 1 2 2 2

]
) is a 6×6 diagonal matrix

that ensures Λ𝐾 : (𝑆 (𝐹𝐾 (x)) − 𝑆𝐾 ) = _𝑇𝐾Sym(s(𝐹𝐾 (x)) − s𝐾 ).
With our new discrete potential energy, we seek to build an

implicit time integrator in the same fashion as the previously men-
tioned displacement-based FEM. We write our IP energy as the
Lagrangian

L(x, s, _) = 1
2
| |x − x̃| |2𝑀 + ℎ

2�̃� (x, s, _) (7)

where | | · | |𝑀 is the energy norm with the nodal mass matrix. With
this Lagrangian, our IP-based implicit Euler update becomes the
saddlepoint problem

x𝑡+1, s𝑡+1, _𝑡+1 = argmin
x,s

(
argmax

_

L(x, s, _)
)

(8)

where x ∈ R3𝑛 , s ∈ R6𝑚 , and _ ∈ R6𝑚 .

3.4 Sequential Quadratic Programming
The saddlepoint problem in (8) is equivalent to the equality-constrained
minimization:

min
x,s

𝑓 (x, s)

s.t. c(x, s) = 0,
(9)

where 𝑓 (x, s) = 1
2 | |x − x̃| |

2
𝑀
+ ℎ2Ψ(s), and c(x, s) ∈ R6𝑚 consists of

the c𝐾 (x, s) functions for all 𝐾 ∈ T .
Nonlinearity in this constraint arises from the s(𝐹𝐾 (x)) term,

which extracts the symmetric components from the polar decom-
position of the deformation gradient, 𝐹 . This motivates our use of
sequential quadratic programming (SQP), which generates steps by
solving a sequence of quadratic subproblems, and addresses the non-
linearity of the constraints by linearly approximating them in each
iteration. The generality of this approach gives us a broad range of

options for numerical methods to solve this SQP, but we find that
characteristics of our mixed formulation can be exploited to arrive
at a particularly stable and easy-to-solve Newton-like method.
SQP can be understood simply as an application of Newton’s

method to the first-order KKT conditions of equality constrained
problem in (9):

©«
∇x 𝑓 (x, s) +𝐺x (x)𝑇 _
∇s 𝑓 (x, s) +𝐺s (s)𝑇 _

c(x, s)

ª®¬ = 0, (10)

where 𝐺x (x) ∈ R6𝑚×3𝑛 and 𝐺s (s) ∈ R6𝑚×6𝑚 are the constraint
Jacobians:

𝐺x (x) = −
[
∇xc1 (x, s),∇xc2 (x, s), · · · ,∇xc𝑚 (x, s)

]𝑇 (11)

𝐺s (s) = −
[
∇sc1 (x, s),∇sc2 (x, s), · · · ,∇sc𝑚 (x, s)

]𝑇
. (12)

It is important to note that𝐺x has the same structure as the standard
gradient operator in FEM, but with the addition of derivatives of
s(𝐹 (x)) with respect to x. These derivatives give our method a first
order awareness of rotational motion which we demonstrate helps
improve its convergence.

In SQP, Newton’s method is typically used to solve (10), which in
the 𝑘-th iteration gives us a linear system:

©«
∇2xxL 0 𝐺𝑇x
0 ∇2ssL 𝐺𝑇s
𝐺x 𝐺s 0

ª®¬ ©«
𝛿x
𝛿s
_𝑘+1

ª®¬ =
©«
−∇x 𝑓
−∇s 𝑓

c(x𝑘 , s𝑘 )

ª®¬ , (13)

where all the above gradients and Jacobians are evaluated at (x𝑘 , s𝑘 ),
and we have that x𝑘+1 = x𝑘 + 𝛿x and s𝑘+1 = s𝑘 + 𝛿s .

3.5 A Positive Definite SQP Solver
Here the LHS in (13) is indefinite and difficult to solve, requiring
specialized factorizations or iterative methods to solve [Cheshmi
et al. 2020]. Instead, we reformulate our system into a symmetric
positive definite (SPD) form, enabling us to apply stable and efficient
SPD-based solvers.
First, to simplify the notation, let gs = ∇s 𝑓 , gx = ∇x 𝑓 , and

𝐻s = ∇2ssL. The latter has block diagonal structure where the 𝐾-th
block equals 𝜕

2Ψ(s𝐾 )
𝜕s2
𝐾

. Then, to improve computation we swap the

mass matrix 𝑀 for the ∇2xxL block, which amounts to neglecting
the second derivative of the constraint function with respect to x.
This gives us the new linear system for the (𝑘 + 1)-th iteration:

©«
𝑀 0 𝐺𝑇x
0 𝐻s 𝐺𝑇s
𝐺x 𝐺s 0

ª®¬ ©«
𝛿x
𝛿s
_𝑘+1

ª®¬ =
©«
−gx
−gs
c

ª®¬ , (14)

where c = c(x𝑘 , s𝑘 ), and we reiterate that all the derivatives are
computed using variables from the 𝑘-th iteration.
To arrive at a reduced SPD matrix we perform two Schur com-

plements to eliminate variables from the solve. This is a frequent
strategy in mixed FEM formulations, and is commonly referred to as
static condensation in the FEM community. Eliminating the 𝛿s, and _
from (14) enables us to perform an SPD global solve for 𝛿x, followed
by parallel local solves for 𝛿s and _. First, for the 𝛿s variables we
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have
𝛿s = −𝐻−1s (𝐺s_

𝑘+1 + gs), (15)
which we substitute into (14) to get(

𝑀 𝐺𝑇x
𝐺x −𝐺s𝐻

−1
s 𝐺s

) (
𝛿x
_𝑘+1

)
=

(
−gx

c(x𝑘 , s𝑘 ) +𝐺s𝐻
−1
s gs

)
, (16)

and we reiterate that 𝐺s is diagonal so we safely omit transposes.
This system still has no guarantees of being SPD, so we perform
another Schur complement to eliminate _𝑘+1. To further simplify
things we define

g_ = c(x𝑘 , s𝑘 ) +𝐺s𝐻
−1
s gs, (17)

𝐻_ = (𝐺s𝐻
−1
s 𝐺s)−1 = 𝐺−1s 𝐻s𝐺

−1
s , (18)

so that the equation for _𝑘+1 becomes

_𝑘+1 = −𝐻_ (g_ −𝐺x𝛿x) . (19)

Substituting into (16), we get an equation only in terms of 𝛿x:

(𝑀 +𝐺𝑇x𝐻_𝐺x)︸             ︷︷             ︸
𝐻

𝛿x = 𝐺𝑇x𝐻_g_ − gx︸           ︷︷           ︸
g

. (20)

This resulting system now directly solves for nodal DOF as in stan-
dard FEM, however, our stiffness matrix incorporates deformation
Hessians as a function of the independent s variables. For hyperelas-
tic material models, it is common for𝐻s to become indefinite, which
we address in the standard way by applying a positive semi-definite
(PSD) fix to the per-element Hessians [Wright and Nocedal 1999] to
project them to PSD matrices. With these modifications we obtain
nodal solutions to the FE elastodynamic problem with, as we will
demonstrate, in many cases superior convergence and performance
to directly solving via standard FE solved via a direct Newton solver.

3.6 The final algorithm
After we the solve for 𝛿x we perform the local updates for 𝛿s and
_𝑘+1 (Eq. (19) and (15)). The asymptotic performance in our algo-
rithm is dominated by the global 𝛿x variable solve, so the per-step
cost is effectively equivalent to standard FEM solved via Newton’s
method. The variables 𝛿x and 𝛿s represent search directions for
a single substep in our SQP problem, and the final x𝑘+1 and s𝑘+1

updates are computed with backtracking linesearch. See Alg. 1 for
an outline of our algorithm. As in previous work, we make the
performance of our algorithm scalable by solving Eq. 20 iteratively.
Specifically, we exploit the positive definiteness of our system to
employ the preconditioned conjugate gradient method, precondi-
tioned with the ARAP-like Hessian from Liu et al. [2017]. We warm
start the solver with an initial reduced direct solve performed in
an affine deformation space [Lan et al. 2022]. By simply controlling
the number of allowed iterations this provides controllable perfor-
mance ranging from slow but convergent and consistent behavior
to visually plausible, interactive time stepping.

4 RESULTS AND DISCUSSION
All our expreiments were performed on a desktop computer with
an AMD Ryzen 7 5800X 8-Core Processor and 16GB of RAM. We
implemented our method using Eigen [Guennebaud et al. 2010] for
linear algebra routines, SuiteSparse for direct linear solves [Davis
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Fig. 2. Convergence of Newton’s method, WRAPD and our solver (MFEM)
on a single step. Error is measured using the Newton Decrement and both
Newton’s method and our method converge to within numerical error.
WRAPD fails to converge even after a thousand iterations.

2006], libigl [Jacobson et al. 2018] for geometry processing, Bar-
tels [Levin 2020] for physics utility code and Polyscope [Sharp et al.
2019] for display. All our simulations are run with a timestep of
0.0333 seconds (30 fps). All timings are CPU only with the minimal
optimization afforded by parallelization via OpenMP.

We begin by demonstrating the efficacy of our mixed FEM solver
(MFEM) via comparison to both a standard, Newton-based implicit
integrator (using backtracking line search) and the WRAPD algo-
rithm [Brown and Narain 2021]. WRAPD uses an identical rota-
tion/deformation splitting to our method but both derives it with
and applies it to an ADMM-based optimization solver. In turn, this
means that differences in method convergence and performance can
be largely attributed to algorithmic differences and will elucidate
the relative advantages of the SQP and ADMM approaches.

Next we perform a convergence test using a single time step opti-
mization problem from the simulation of a rubber toy boat (Fig. 2).
Error is measured via the Newton Decrement [Wright and Nocedal
1999], a standard stopping criteria for gradient-based optimization
schemes. MFEM converges at a rate comparable to the standard
Newton solver whereas WRAPD fails to converge after a thousand
iterations. This shows one immediate advantage of our approach
over ADMM type solvers - that it can converge to the correct (New-
ton) solution of our optimization problem.

0 100 150 200 250 300
Iterations

10-3

10-2

10-1

100

L-Infinity Error

MFEM
WRAPD

Newton WRAPDMFEM

T = 10 seconds

Fig. 3. Small per-time step errors accumulate to cause large trajectory
differences in these bunny simulations.
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Table 1. Simulation statistics for all examples. Material parameters of density (𝜌), Young’s Modulus, (E), Poisson’s ratio (a), and material model(Model)
options, stable neo-Hookean (SNH), neo-Hookean (NH), corotational (Corot), Fung or ARAP, specified per example. The density parameter is set to 𝜌 = 1𝑒3
(kg/m3) and Poisson’s ratio is set to a = 0.45 across all examples. We report wall-clock timings in milliseconds (ms) with Iterations as the maximum number
of solver iterations, LS is line search time. Here, the provided timings give the time taken in a single substep. Assembly is the time to assemble the linear
system; Global Solve is the time to solve the linear system; and Local Solve is the time taken to solve for _ and s following the global solve.

Example |𝑉 | |T | Model E(Pa) Iterations Assembly (ms) Global Solve (ms) Local Solve (ms) LS (ms)
Astronaut(soft) 12132 39270 SNH 2𝑒4 3 111.46 222.93 10.57 19.13
Boat 3674 11295 SNH 1𝑒5 50 31.66 36.17 3.17 4.91
Gummy Bear 5701 24393 SNH 6𝑒4, 1𝑒14 5 32.11 218.57 3.68 39.34
Bunny 699 2274 SNH 3𝑒4 50 5.23 12.23 0.31 1.17
Gecko 5929 11552 SNH 1𝑒12 10 42.68 46.23 4.09 6.46
Virus 4593 13342 Corot 1𝑒6 5 32.77 37.46 2.90 5.32
Beam Twist 20000 100793 Corot 1𝑒6 5 248.834 976.70 21.13 33.93
Beam Stretch (SNH) 5000 23701 SNH 1𝑒6 10 71.60 127.59 5.97 8.97
Dragon (BDF1,BDF2) 29229 120045 SNH 1𝑒5 5 286.55 828.36 29.50 41.52

MFEM E=1e12 Newton E=1e12 Newton E=1e8Newton E=1e10

100 200 300Iteration

3

4

K
E

MFEM 1e12
Newton 1e8
Newton 1e10
Newton 1e12

0

Fig. 4. Swinging Geckos with a range of stiffnesses are simulated using our
method and Newton’s method with both algorithms capped at a maximum
of 10 iterations per time step. Note that in this limited compute time scenario
our method produces more natural motions with less damping.

The per-time step differences between algorithms may initially
be small, but they accumulate to large trajectory errors over whole
simulation runs. Fig. 3 shows a swinging bunny simulation exe-
cuted by all three algorithms (same initial conditions). Here, the
WRAPD output deviates significantly from that of our method and
the Newton-based integrator.

Next, when comparing to the Newton-based solver the advantage
of our rotation-deformation splitting is that it produces significantly
better results when stopped early for performant applications. Fig 4
shows simulations of a gecko mesh at three different stiffnesses,
ranging from effectively rigid to stiff rubber. We compare MFEM
to Newton’s under the conditions of a per-timestep iteration cap
of ten per method. Our method produces results with significantly
less damping. This damping is a consequence of “under integrating”
via early termination of the Newton solver’s iterations. While our
results are visually plausible, the results from Newton’s method are
too damped to provide useful animation. This is a key advantage of
our approach over standard Newton’s method: that it can be stopped

ARAP

Corot

Fung

NH

SNH
Rest Shape T=10 seconds

Fig. 5. Simulated beams with a variety of hyperelastic material models

MFEM

Newton
Hard inside
(E=1e14 Pa)

Soft outside
(E=6e4 Pa)

Fig. 6. A heterogeneous gummy bear composed of a hard interior and a layer
of soft material on the exterior is simulated with MFEM and Newton solvers.
We cap both solvers at 5 iterations per-time step and observe that rotations
are well preserved in our method and severely damped in Newton’s.

very early and still produce expressive deformations as output for a
wide range of material properties.

Many algorithms struggle to simulate heterogeneous materi-
als [Modi et al. 2020]. Here in Fig. 6 we simulate a “gummy” bear
composed of a soft exterior and partially stiff interior. Here we see
the Newton solver produces clear rotational damping. In Figures 7
and 8 we provide convergence plots comparing each algorithm’s
behavior as we vary the stiffness of the interior. As the stiffness
increases, the Newton solver’s convergence suffers, whereas our
algorithm converges reliably.
These experiments demonstrate that MFEM generates both an

accurate simulation when allowed to converge, and plausible ani-
mations when terminated early. In both these regimes, our method
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Rest Shape
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Fig. 7. Starting at an initially deformed state, we simulate a single timestep
with each method for 30 iterations and report the final norm of the Newton
gradient. We report this value at a number of stiffness values for the interior
component of the gummy bear (holding the soft outside fixed) and observe
that the Newton-based solver’s performance significantly degrades.
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Fig. 8. For the same experiment from Fig. 7, we plot the gradient norm for
each solver iteration. The line color indicates the stiffness of the interior
component. Here we see Newton’s inability to converge within 30 iterations
as stiffness increases, whereas MFEM converges much more reliably.

T=0 seconds T=1 second

Fig. 9. We randomly place all vertices in this Coronavirus model. Our
method generates a stable simulation from this degenerate initial point.

maintains robust simulation output. Fig. 9 shows a stable simulation
of a Coronavirus model started from a scrambled initial configu-
ration. Similarly, Fig. 10 shows a large deformation generated by
twisting each end of a beam 180 degrees in opposite directions. Our
method generates the correct, evenly spaced set of twists.
Our method supports all hyperelastic material models. Fig. 5

shows a set of stretched beams with ARAP, Neohookean, Fung, Sta-
ble Neohookean and Co-Rotatated Linearly Elastic material models.
In each case we observe the expected behavior (i.e ARAP does not
conserve volume whereas the Neohookean models attempt to).

Rest Shape T=5 seconds T=10 seconds

Fig. 10. This twisted beam example illustrates how our method handles
large deformations in the presence of moving boundary conditions.

BDF2BDF1
(Backwards Euler)

Fig. 11. Two dragons are simulated, one with an Implicit Euler time integra-
tor (BDF1) and the other using BDF2. BDF2 produces a significantly less
damped result.

Because our method is optimization based, we are not limited to
implicit Euler integration. Fig. 11 shows a comparison of our method
using implicit Euler (BDF1), to its second-order relative BDF2.

Last but not least, ourmethod supports contact via penalty springs.
Fig 1 shows three space people with stiffnesses spanning a range of
8 orders-of-magnitude, dropped onto a ground plane and robustly
deformed. Despite these wide ranges of stiffness, MFEM simulates
all of them with same low budget of five iterations (and similarly an
inexpensive five inner-iterations of preconditioned conjugate gradi-
ent to solve each iterate’s linear system). In turn this obtains output
at 3-4fps while our supplemental video similarly demonstrates an
example of a bunny simulated with output generated at 50fps.

5 CONCLUSION AND FUTURE WORK
We have presented a new, rotationally-aware mixed finite element
scheme and have demonstrated that it is convergent, accurate, ro-
bust and versatile. Initial experiments indicate that our Mixed FEM
approach generates solutions consistent with standard Newton algo-
rithms while producing far less “under integration” when stopped
early. These experiments also demonstrate that our method has
significantly better convergence properties than state-of-the-art
local-global approaches. Typically simulation algorithms are di-
vided into those which converge to accurate solutions and those
which can produce plausible output with few iterations. This work
suggests that our solver is capable of both. Our algorithm’s ability to
elegantly handle stiff potentials suggests it would be a good match
to state-of-the art methods for barrier-based collision handling and
other physical systems with stiff constraints (e.g. incompressible
fluids). Further analysis of why our method, structurally quite simi-
lar to previous local global methods, should exhibit such improved
convergence behavior could help improve other simulation methods
as well.
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