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Structural Optimization

The design of optimal load-carrying structures
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Engineer image by GraphicMama-team from Pixabay.
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Topology Optimization

Structural optimization methods that can introduce topological changes
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A user-centric approach to structural optimization.

By generating a parametrized output, our method 
generates structures that can be easily controlled 
and edited a posteriori.
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Background

13



14

[A.G.M. Michell. 1904. The limits of economy of material 
in frame-structures.]
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[A.G.M. Michell. 1904. The limits of economy of material 
in frame-structures.]

Position material along the directions of principal stresses
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Stress magnitude visualization
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𝜎 ≡ 𝑑×𝑑 symmetric matrix
Stress 𝑑 = 2 in 2D, 𝑑 = 3 in 3D



18

𝜎 = 𝑄)Λ𝑄+
Stress (Symmetric matrix)

Orientation
(rotation matrix)

Scaling (diagonal matrix)

Eigendecomposition of a stress matrix
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𝜎 = 𝑄)Λ𝑄+
Stress (Symmetric matrix)

Orientation
(rotation matrix)

Scaling (diagonal matrix)

Eigendecomposition of a stress matrix

Principal stress directions

𝒗𝟏
𝒗𝟐

Computed eigenvectors
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𝒗𝟏
𝒗𝟐

Computed eigenvectors
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Cross-field symmetry

𝒗𝟐

𝒗𝟏

Computed eigenvectors
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Cross-field symmetry

𝒗𝟏

𝒗𝟐

Computed eigenvectors
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Cross-field symmetry

𝒗𝟏

𝒗𝟐

Computed eigenvectors
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𝒗𝟐

𝒗𝟏

Isotropic stress tensor
(tensor field singularity)



Method
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Algorithm: Overview
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Step 0: Problem Specification Step 1: Stress-field Step 2: Stress-aligned frame-field

Step 3: Texture parametrization Step 4: Truss layout Finally: Editing & fabrication

Later…



1. Stress Field Computation
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Problem description Stress field



2. Stress-Aligned Frame-Field Generation
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Stress field Smooth frame field
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𝑅 =
| | |
𝒓𝟏 𝒓𝟐 𝒓𝟑
| | | 3×3Frame

(𝑑×𝑑 rotation matrix)

𝒓𝟏, 𝒓𝟐, 𝒓𝟑 are unit vectors



34

𝜎 = 𝑄)Λ𝑄+
Stress (Symmetric matrix)

𝜎5 = 𝑄Λ𝑄+
Orientation

(rotation matrix)

Scaling (diagonal matrix)

Positive-definite matrix
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𝑅 =
| | |
𝒓𝟏 𝒓𝟐 𝒓𝟑
| | | 3×3

Frame
(𝑑×𝑑 rotation matrix)

𝒓𝟏, 𝒓𝟐, 𝒓𝟑 are unit vectors

𝐸789:; 𝑅 = (𝒓𝟏+𝜎5𝒓𝟏) ⁄? @ + (𝒓𝟐+𝜎5𝒓𝟐) ⁄? @ + (𝒓𝟑+𝜎5𝒓𝟑) ⁄? @
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𝜆? ≠ 𝜆@ ≠ 𝜆D



𝜆? = 𝜆@ ≠ 𝜆D
or

𝜆? ≠ 𝜆@ = 𝜆D 37



𝜆? = 𝜆@ ≠ 𝜆D
or

𝜆? ≠ 𝜆@ = 𝜆D 38
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𝜆? = 𝜆@ = 𝜆D
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𝐸 = E
9F?

T

𝐸GHIJK
9 + 𝛼𝐸MNOOPQ

Summed over all tets

Laplacian-based smoothness cost

𝛼



3. Texture Parametrization
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Frame field Frame-aligned parametrization



42

𝜙:M → ℝ3
ℝ3-valued

parametrization

∇𝜙 = 𝑅



4. Truss Layout Extraction
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Global parametrization Truss layout



Results
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— 𝑑 orthogonal families of smooth end-to-end curves
—Curves in each family are identified with a pair of integers
—Each curve itself is parametrized
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— 𝑑 orthogonal families of smooth end-to-end curves
—Curves in each family are identified with 𝑑 − 1 integers
—Each curve itself is parametrized
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— 𝑑 orthogonal families of smooth end-to-end curves
—Curves in each family are identified with a pair of integers
—Each curve itself is parametrized
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Image Source: William Dwight Whitney The Century 

Dictionary: An Encyclopedic Lexicon of the English 
Language (New York, NY: The Century Co., 1911)

Entasis 
(Greek/Roman architecture)



Structural Tests
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Testing the cantilever beam

Ours

Regular grid
(unoptimized)

GRAND3
[Zegard and 
Paulino 2015]
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Limitations and Future Work

—Manufacturing constraints not accounted for
—Wire-bend each curve
—Generate construction sequences for dowel assembly

—Sizing optimization
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Open-source! (MIT License)
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https://github.com/rarora7777/VolumetricTruss



Project page https://www.dgp.toronto.edu/projects/michell
Code https://github.com/rarora7777/VolumetricTruss
Contact arorar@dgp.toronto.edu
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