Volumetric Michell Trusses for Parametric Design & Fabrication

Rahul Arora, University of Toronto

with

Alec Jacobson, Timothy R Langlois, Yijiang Huang, Caitlin Mueller, Wojciech Matusik, Ariel Shamir, Karan Singh, David IW Levin
Structural Optimization

The design of *optimal* load-carrying structures

Fixed Boundary

Load

Structural optimization algorithm

Engineer image by GraphicMama-team from Pixabay.
Topology Optimization

Structural optimization methods that can introduce topological changes
A user-centric approach to structural optimization.

By generating a parametrized output, our method generates structures that can be easily controlled and edited a posteriori.
Background
[A.G.M. Michell. 1904. The limits of economy of material in frame-structures.]
Position material along the directions of **principal stresses**
Stress magnitude visualization
\[\sigma \equiv d \times d \text{ symmetric matrix} \]

\[d = 2 \text{ in 2D, } d = 3 \text{ in 3D} \]
Eigendecomposition of a stress matrix

\[\sigma = Q \tilde{\Lambda} Q^T \]
\[\sigma = Q \Lambda Q^T \]

Stress (Symmetric matrix)

Orientation (rotation matrix)

Scaling (diagonal matrix)

Eigendecomposition of a stress matrix

Principal stress directions

Computed eigenvectors

\(v_1 \)

\(v_2 \)
Computed eigenvectors

ν_1 ν_2
Cross-field symmetry

Computed eigenvectors

\(\mathbf{v}_1 \)

\(\mathbf{v}_2 \)
Cross-field symmetry

Computed eigenvectors
Cross-field symmetry

Computed eigenvectors
Isotropic stress tensor
(tensor field singularity)
Method
Algorithm: Overview

Step 0: Problem Specification

Step 1: Stress-field

Step 2: Stress-aligned frame-field

Step 3: Texture parametrization

Step 4: Truss layout

Finally: Editing & fabrication

Later...
1. Stress Field Computation

Problem description → Stress field
2. Stress-Aligned Frame-Field Generation

Stress field ➔ Smooth frame field
\[R = \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} \]

Frame (\(d \times d\) rotation matrix)

\(r_1, r_2, r_3\) are unit vectors
\(\sigma = Q \tilde{\Lambda} Q^T \)

\(\sigma_+ = Q \Lambda Q^T \)

- **Stress** (Symmetric matrix)
- **Orientation** (rotation matrix)
- **Scaling** (diagonal matrix)
- **Positive-definite matrix**
\[R = \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} \]

Frame (d×d rotation matrix)

\[r_1, r_2, r_3 \text{ are unit vectors} \]

\[E_{align}(R) = (r_1^T \sigma r_1)^{1/2} + (r_2^T \sigma r_2)^{1/2} + (r_3^T \sigma r_3)^{1/2} \]
\[\lambda_1 \neq \lambda_2 \neq \lambda_3 \]
\[\lambda_1 = \lambda_2 \neq \lambda_3 \]

or

\[\lambda_1 \neq \lambda_2 = \lambda_3 \]
$\lambda_1 = \lambda_2 \neq \lambda_3$

or

$\lambda_1 \neq \lambda_2 = \lambda_3$
\[\lambda_1 = \lambda_2 = \lambda_3 \]
\[E = \sum_{i=1}^{\lvert T \rvert} E_{\text{align}}^i + \alpha E_{\text{smooth}} \]

Summed over all tets

Laplacian-based smoothness cost
3. Texture Parametrization

Frame field → Frame-aligned parametrization
\[\phi : M \rightarrow \mathbb{R}^d \]

\[\nabla \phi = R \]
4. Truss Layout Extraction

Global parametrization → Truss layout
Results
— d orthogonal families of smooth end-to-end curves
— Curves in each family are identified with a pair of integers
— Each curve itself is parametrized
— d orthogonal families of smooth end-to-end curves
— Curves in each family are identified with $d - 1$ integers
— Each curve itself is parametrized
Mars lander problem

Dense truss

Sparser variations
RodSteward: A Design-to-Assembly System for Fabrication using 3D-Printed Joints and Precision-Cut Rods

Alec Jacobson
jacobson@cs.toronto.edu
University of Toronto
Kindly presented by Rahul Arora
— d orthogonal families of smooth end-to-end curves
— Curves in each family are identified with a pair of integers
— Each curve itself is parametrized
Entasis (Greek/Roman architecture)

(a) Selecting a curve family
(b) Exploring the entasis parameter
(c) Final structure with entasis

Structural Tests
Testing the cantilever beam

Ours

Regular grid (unoptimized)

GRAND3
[Zegard and Paulino 2015]
Human: 93 kg (205 lbs)

Bridge: 140 grams
Limitations and Future Work

— Manufacturing constraints not accounted for
 — Wire-bend each curve
 — Generate construction sequences for dowel assembly

— Sizing optimization
Acknowledgements

We thank Lawson Fulton and Sarah Kushner for their immense help with rendering the results, Peter Hamilton for narrating the video, and other members of the DGP lab for helping with the structural tests.

This research was funded in part by NSERC Discovery (RGPIN-2017-05524, RGPIN-2017-05235, RGPAS-2017-507938), NSERC Accelerator (RGPAS-2017-507909), New Frontiers in Research Fund (NFRFE–201), UofT Connaught Fund 03114, Canadian Foundation for Innovations John Evans Leadership Fund, the Ontario Early Research Award program, the Canada Research Chairs program, the Fields Centre for Quantitative Analysis and Modelling, the Adobe Research Fellowship program, and gifts by Adobe Systems, Autodesk and MESH Inc.
Open-source! (MIT License)

https://github.com/rarora7777/VolumetricTruss
Volumetric Michell Trusses for Parametric Design & Fabrication

Rahul Arora, Alec Jacobson, Timothy R. Langlois, Yijiang Huang, Caitlin Mueller, Wojciech Matusik, Ariel Shamir, Karan Singh, David I.W. Levin

Project page https://www.dgp.toronto.edu/projects/michell
Code https://github.com/rarora7777/VolumetricTruss
Contact arorar@dgp.toronto.edu