
Volumetric Michell Trusses for Parametric Design & Fabrication:
Supplemental Material

Rahul Arora
University of Toronto
Toronto, ON, Canada

arorar@dgp.toronto.edu

Alec Jacobson
University of Toronto
Toronto, ON, Canada

jacobson@cs.toronto.edu

Timothy R. Langlois
Adobe Research
Seattle, WA, USA

tlangloi@adobe.com

Yijiang Huang
Massachusetts Institute of Technology

Cambridge, MA, USA
yijiangh@mit.edu

Caitlin Mueller
Massachusetts Institute of Technology

Cambridge, MA, USA
caitlinm@mit.edu

Wojciech Matusik
MIT CSAIL

Cambridge, MA, USA
wojciech@csail.mit.edu

Ariel Shamir
The Interdisciplinary Center

Hertsliya, Israel
arik@idc.ac.il

Karan Singh
University of Toronto
Toronto, ON, Canada

karan@dgp.toronto.edu

David I.W. Levin
University of Toronto
Toronto, ON, Canada

diwlevin@cs.toronto.edu

1 SYMMETRIC FIELD REPRESENTATIONS
While we aim to solve a physical problem as described above, our
algorithm is inspired by geometry processing work on field-aligned
meshing. Numerous quad-meshing and hex-meshing methods (e.g.,
[Jakob et al. 2015; Nieser et al. 2011; Solomon et al. 2017]) aim to
generate meshes whose elements follow certain “direction lines”.
Formally, these directions are represented using generalizations
of classical vector fields to fields with rotational symmetry. For
example, in 2D, a 4-rotationally symmetric (4-RoSy) field defines a
set of four orthonormal vectors at each point on a manifold.

Solomon et al. [2017] refer to the corresponding 3D representa-
tion as an octahedral field. An octahedral fieldO : M → {±v1,±v2,±v3}
assigns a set of six orthogonal unit vectors to each point, where
vi ∈ R

3 are mutually orthogonal unit vectors. An equivalent rep-
resentation, referred to as a frame field in literature [Nieser et al.
2011], can be defined by an arbitrary choice of three vectors forming
a right-handed orthogonal frame (that is, (u,v,w = u ×v) ∈ R3×3)
from the octahedral field representation. The frame is then consid-
ered to be invariant to transformations under the chiral cubical sym-
metry group. We refer the interested reader to CubeCover [Nieser
et al. 2011, Sections 2.1-2.2] and Liu et al. [2018, Section 4] for a
more detailed discussion on these representations. The important
takeaway for our work is that a frame field as defined above can be
represented as a 3 × 3 orthonormal matrix, that is, a 3D-rotation
matrix R ∈ SO(3). However, the equivalence under chiral cubical
symmetry transformations implies that the matrix R is not unique,
and 24 different rotation matrices represent the same frame.

To construct a Michell Truss structure, we want to align truss
members to the eigenvectors of a stress tensor matrix. This being a
real symmetric—and thus diagonalizable—matrix guarantees that
an orthonormal 3D frame can be defined by its eigenvectors. Since
eigenvectors are unsigned and have no canonical ordering, they
require the same symmetric considerations of frame fields utilized in
hex-meshing techniques. While this suggests that a frame-aligned
meshing method could be adapted to work for computing stress-
aligned frames, a careful examination of eigenspaces of matrices

reveals that this is not always true. Consider a tensor σ ∈ R3×3

with eigenvalues λ1 ≥ λ2 ≥ λ3. The eigenspace associated with an
eigenvalue λ of σ is defined as

E(σ , λ) = {v : σv = λv}. (1)

For tensors with all distinct eigenvalues, the eigenspaces E(σ , λi )
are one-dimensional subspaces of R3 (lines), and the choice of a
unit vector from each of the three distinct eigenspaces is guaran-
teed to give a unique frame (up to sign and ordering). However, at
degenerate points of the stress tensor field [Hesselink et al. 1997;
Palacios et al. 2017], that is, the points where the eigenvalues ex-
hibit multiplicity1, the eigenspaces do not form one-dimensional
subspaces of R3. Instead, the eigenspace corresponding to the re-
peated eigenvalue forms a two-dimensional subspace when the
multiplicity is two and spans all of R3 when multiplicity is 3. Thus,
for degenerate points of the stress tensor field, the frame defined by
the three orthogonal eigenvectors is not unique. As a consequence,
we chose to work directly with the stress tensor field instead of
converting to a frame field representation and adapting existing
hex-meshing methods for our task. Figure 1 illustrates why this is
the suitable choice for our problem.

2 MINIMIZERS OF EQUATION 3
Here, we prove that the non-truncated energy in Equation 3 (main
document) admits the claimed set of extrema. To simplify the no-
tation, we useM instead of σ+ here. Also, let λ1 ≥ λ2 ≥ λ3 > 0 be
the eigenvalues ofM . TheM-norm of a vector v is given by

∥v∥M =
√
vTMv =

√
vTQΛQT v

=

√
vTQΛ1/2 (Λ1/2)T QT v =

√(
Λ1/2QT v

)T (
Λ1/2QT v

)
= ∥Λ1/2QT v∥2,

1Since the stress tensor is a diagonalizable matrix, the algebraic and geometric mul-
tiplicities are the same for any eigenvalue. Therefore, we simplify the discussion by
simply using multiplicity everywhere.



Arora, R. et al

[Jakob et al. 2015] OursSynthetic eigenvector field

Figure 1: Degenerate tensors do not define unique (up to
symmetry) frames. As this synthetic example with an ev-
erywhere degenerate tensor field shows, methods utiliz-
ing only the frame field defined by the eigenvectors, such
as [Jakob et al. 2015], produce a highly distorted and non-
smooth truss layout. Our method takes into account the ac-
tual eigenspaces and produces the optimal (constant) frame
field resulting in a smooth truss.

by using the fact that Λ1/2 is symmetric. Also, without loss of
generality, let Q = I3, and therefore

E(R) =
3∑
i=1




Λ1/2ri




2
=

3∑
i=1

√√√ 3∑
j=1

λjr
2
ji

where ri j is the (i, j)th element of R.
Consider the differential ∆E of E when changing the parameter

R by an infinitesimal rotation ∆R. On SO(3), an infinitesimal step
has the form

∆R = I3 + skew([x,y, z]) =


1 0 0
0 1 0
0 0 1

 +

0 −z y
z 0 −x
−y x 0


where x,y, z → 0.

The rotated matrix is given by S = R∆R. Now,
∆E = E(S) − E(R)

=

3∑
i=1

√
Ei (S) −

√
Ei (R)

(
Ei (R) := ∥Λ1/2ri ∥22

)
=

3∑
i=1

∆Ei .
(
∆Ei :=

√
Ei (S) −

√
Ei (R)

)
∆E = 0 implies E(R) = E(S). Squaring this and then using the
Taylor series expansion of square-root while dropping second and
higher-order terms involving x , y, and z gives us

∆E1

(
1 + E2(R)

E1(R)
+
E3(R)
E1(R)

)
+ ∆E2

(
1 + E1(R)

E2(R)
+
E3(R)
E2(R)

)
+ ∆E3

(
1 + E1(R)

E3(R)
+
E2(R)
E3(R)

)
= 0

Since Ei (R) > 0, ∆E is zero iff all ∆Ei are independently zero.
Expanding ∆E1 and dropping higher order terms of x,y, z, we

get (
E1(R) + 2x(λ2 − λ3)r12r13 + 2y(λ3 − λ1)r13r11

+2z(λ1 − λ2)r11r12

)1/2
−

(
E1(R)

)1/2
= 0.

Since x,y, z are arbitrary, this implies (λ2 − λ3)r12r13 = (λ3 −

λ1)r13r11 = (λ1 −λ2)r11r12 = 0. After analyzing E2 and E3 similarly,
we get the following condition for characterizing the extrema of
Equation 3 (main document).

∀i, (λ2 − λ3)ri2ri3 = (λ3 − λ1)ri3ri1 = (λ1 − λ2)ri1ri2 = 0. (2)

If the eigenvalues are all equal, this condition always holds and
thus every R ∈ SO(3) is an extremum. If all eigenvalues are distinct,
then the condition simplifies to

∀i, ∃j,k (j , k), s.t. ri j , rik = 0

This gives us 48 O(3) matrices which have three entries ±1 and
the rest zeroes. Taking into account that the determinant of SO(3)
matrices is +1, we get 24 solutions, which is exactly the set of
matrices given by the chiral cubical symmetry group acting on I3.

The last case occurs when two eigenvalues are the same and the
third is distinct. For the subcase λ1 = λ2 , λ3, we get

∀i (ri3 = 0 or ri1 = ri2 = 0) . (3)
The orthonormality of R implies that we must enforce the condition
ri3 = 0 to two of its rows, and ri1 = ri2 = 0 to the remaining row.
This gives us the set of matrices where r3 = ±ei . That is, the
3rd column of R is one of the coordinate bases, with sign. This
represents the set of frames where one of the axes is always aligned
with the ±Z-axis, while the other two are any orthogonal pair in
the XY-plane such that the right-hand the frame is right-handed.
The other subcase when λ1 , λ2 = λ3 is symmetric and gives the
expected set of extrema—set of right-handed frames with one axis
aligned with the ±X-axis.

Lastly, to obtain the set of solutions for a general Q , I3, we
can simply premultiply by Q . That is, if RI is the set of extrema
when the eigenvector matrix is I3, then the set of extrema for the
eigenvector matrix being Q is simply {QR : R ∈ RI}.

�

3 TRUSS LAYOUT EXTRACTION DETAILS
Our stress fields are divergence-free in the interior of the domain
since forces are only applied at the boundary. This implies that the
principal stress lines must end at the boundary, and cannot end
abruptly or form closed surfaces inside the domain. Since the first
three steps of the algorithm ensure that the isocurves of ϕ̃ follow
the principal stress lines, we make the assumption that they do not
form internal closed surfaces as well.

Further, for ease of exposition, we will start by describing a
2D truss layout extraction algorithm. The boundary force only
assumption in the 2D case implies that all isocurves of ϕ̃ do not
form closed curves. Therefore, for tracing these isocurves, we start
at their end points on the boundary, and trace until we hit the
boundary again.

We use Γi to refer to the set of end-to-end integer isocurves of
ϕ̃i , and γi to refer to an arbitrary curve from this set. Note that
ϕ̃ is a piecewise linear field stored at the vertices, and its value
at arbitrary x ∈ Ω can be found using Barycentric interpolation.
However, Barycentric interpolation on a triangle is equivalent to
linear interpolation along edges followed by interpolating across



Volumetric Michell Trusses for Parametric Design & Fabrication: Supplemental Material

Table 1: Notation for the truss layout extraction procedure
described in §3.

Both 2D and 3D

∂Ω Boundary of the input domain
∂M The triangle mesh boundingM
N Points on the integer grid defined by ϕ̃ (the set of

nodes of the truss layout)
E The set of elements of the truss layout

2D

γi An integer isocurve of ϕ̃i
Γi The set of all γi
NEi Intersection points b/w curves in Γi and all edges of

M

NE Disjoint union of NE1 and NE2
Ne Points in NE lying on a particular edge e
Nf ,γi Points on the integer grid, lying on the intersection

b/w γi and a particular face f

NF Union of Nf ,γ1 and Nf ,γ2 over all faces ofM
Ei Set of all elements tracing integer isocurves of ϕ̃i

3D

Si An integer isosurface of ϕ̃i
γi j An integer isocurve of (ϕ̃i , ϕ̃ j )
NF Points of intersections between all {γi j } and faces of

M

NE Points of intersections between all {γi j } and edges of
∂M

a line segment between two edges. We utilize this series of linear
interpolations to trace out the integer isocurves of our parametriza-
tion.

(a) (b) (c)

Figure 2: An integer isocurve γi can intersect a face f either
on a single vertex (a), on an edge (b), or go through its inte-
rior (c). We perturb the parametrization by an infinitesimal
amount to eliminate the first two cases.

In order to make this approach work, we require that an isocurve
and a face intersect in exactly two points (or do not intersect at
all). The only excluded cases are when an isocurve just touches a
face at a single vertex, or is aligned with one of the edges (Figure 2).
While we never encountered these cases with our paramterizations,

we can easily eliminate the theoretical possibility as well. We find
the parameter values on vertices which are close to integers up to
machine precision, and translate them by −ϵ , where ϵ is a small pos-
itive number (we choose 10−7). If the vertex also has the minimum
parameter value in its 1-ring neighbourhood, we translate by +ϵ
instead, ensuring that we do not remove part of an integer isocurve.
This ensures that no γi passes through a vertex, eliminating both
the problematic cases.

Starting from the parameter values stored at the vertices, we use
linear interpolation along edges to find the intersections of curves
from Γ1 and Γ2 with the edges to form the sets of nodes NE1 and
NE2, respectively (Figure 3a). These nodes are then used to find
nodes in the interior of faces, and their connectivity, as described
below.

Consider a face f and an isocurve γ1 ∈ Γ1 intersecting with it.
Let x0, x1 ∈ NE1 be the end points of the line of intersection. We
linearly interpolate the values of ϕ̃1 on x0 and x1 to find the points
of intersection of this isoline with all γ2 ∈ Γ2:

Nf ,γ1 =
{
y ∈ f ∩ γ1 | ϕ̃2(y) ∈ Z ∩

(
ϕ̃2(x0), ϕ̃2(x1)

)}
, (4)

where ϕ̃2(x0) ≤ ϕ̃2(x1) wlog. Nf ,γ1 is then sorted by ϕ̃2, the two
extrema are connected to x0 and x1, and consecutive points in the
ordered set are connected to each other. Doing this for all admissible
pairs (f ,γ1) gives the set NF of nodes lying on the intersections
between all pairs (γ1,γ2), and the set of elements E1 tracing all
γ1 ∈ Γ1 (Figure 3b–c).

Then, for each pair of intersecting face and γ2, we search for the
nodes amongNF lying on the intersection. The nodes lying on each
γ2 are then connected to form the set of elements E2 (Figure 3d).
Define NE to be the disjoint union of NE1 and NE2, and N∂Ω to
be the subset of NE restricted to nodes lying on the boundary. In
the final step of the algorithm, we insert all nodes from N∂Ω into
a queue and trace out the integer isocurves emanating from them,
going through the faces it intersects until we hit the boundary again.
For each traced curve, we remove its endpoints from the queue.

3.0.1 3D Truss Layouts. In 3D we use Si to denote an arbitrary
end-to-end integer isosurface of ϕ̃i , and γi j to denote an arbitrary
end-to-end curve where both ϕ̃i and ϕ̃ j are constant integers. After
perturbing the parametrization, we compute the points of intersec-
tion of isosurfaces of each of the three parameters with the edges.
Then, we compute the intersection points of each γi j with all the
faces of the mesh. Finally, we linearly interpolate ϕ̃k (k , i, j) along
these isolines in each tet, and compute the intersections with all Sk
to find the elements of the truss. Note that while the perturbation
does not guarantee that every γi j passes through the interior of all
tets—it may just touch it at a face—we never encountered this case
in practice.

An additional complication is caused by the presence of closed
isocurves. Note that two open surfaces Si ,Sj can intersect in a
closed curve, and thus our assumption of no closed isosurfaces
does not guarantee that all isocurves are also open. To extract these
curves, we simply search for degree-deficient nodes in N , that is,
nodes with degree below 6. We expect all integer-mapped nodes to
have a degree of 6, since each of those lies on three isocurves, one
for each {i, j} ∈

(3
2
)
. We start by arbitrarily choosing a node (say x)



Arora, R. et al

(a) (b)

(c) (d)

Figure 3: In 2D, the truss extraction process begins by find-
ing all points of intersections between integer isocurves of
ϕ̃ and edges of the input mesh (a). Then, for each face of the
mesh f , and an integer isocurve of ϕ̃1 intersecting with it,
points mapped to the integer grid are located (b). All such
points form the set of nodesN for the truss. Finally, the lin-
ear section of each ϕ̃1 isocurve is cut along these points to
form the elements E1 for the output truss (c), followed by a
similar discretization and tracing process for ϕ̃2 isolines to
form E2 (d). The union of E1 and E2 is the set of elements E
of the truss.

from a list of all degree-deficient nodes, and trace out the missing
isocurve(s) until we hit x again. During this process, we update the
degree of all nodes we encounter. The selection and tracing steps
are then repeated until no degree-deficient nodes are left.

HexEx [Lyon et al. 2016] Ours

Figure 4: Hex-mesh extractionmethods assume a boundary-
aligned parametrization, and therefore, fail to extract truss
members lying on or touching the boundary (left). Our truss
extraction algorithmmanages to extract the complete struc-
ture, including the boundary (right).

3.0.2 Handling the boundary. As noted earlier, existing work on
hex-meshing assumes that the parametrization is defined such that
for all points on the domain boundary, at least one of the parameter

values is an integer. Since this is not true for our parametrizations,
we also have to include additional nodes on the boundary, along
with elements connecting these to each other and to the internal
nodes. Figure 4 shows how HexEx [Lyon et al. 2016]—a state-of-
the-art mesh extraction method—fails to extract the boundary for
our example.

Note that the procedure described above already traces out the
nodes on the boundary, as well the elements which touch it. To
find the elements lying on the boundary, we need to trace the
intersection of each Si with the boundary ∂M, which comes down
to performing the full 2D truss extraction procedure for each pair
of parameters {i, j} ∈

(3
2
)
on the triangle mesh ∂M. A small change

is that these curves are closed, and so we have to keep track of
the (arbitrarily chosen) initial point for each curve and trace the
isocurve until we hit the initial point again.

3.0.3 Simplification. We contract elements of the extracted truss
layout until we have no nodes from NF left, except those on the
boundary. This gives us a graph similar to that in Equations 12–13
in the main document, but with additional nodes and elements on
the boundary.

We can simplify the boundary elements as well by contracting
elements containing the nodes inNE . We perform both these steps
for all our results, but we do not remove boundary nodes which
lie on feature edges. These features are currently selected using
dihedral angles with a selection threshold of cos−1(0.9) (approx.
25°), but one could easily plug in user-provided features. Finally,
we trace these feature edges as well to preserve surface details.

4 GENERALITY OF THE ALGORITHM
To demonstrate the generality of our approach, we investigate the
effect of changing boundary conditions and apply our method to
objects with non-trivial topologies.

4.1 Effect of Boundary Conditions
First we explore the effect of traction boundary conditions on algo-
rithm output. Figure 5 shows three identical bars subject to (resp.)
shearing, compression, and torsion loads. Note how the resulting
trusses adapt to these different boundary conditions. We also show
the effect of varying the traction boundary conditions for a more
complex chair shape. The two loading conditions correspond to a
sitting pose and a rocking chair pose. That is, a downward force
is applied on the seat in the former case, while the latter adds a
compressive force on the backrest as well.



Volumetric Michell Trusses for Parametric Design & Fabrication: Supplemental Material

(a) (b) (c)

(d) (e)

Figure 5: Effect of applying different boundary conditions
on the same domain. Top row: The left face of the beam is
fixed while the right face is subject to downward pulling (a),
tension (b), and torsion (c) along the right face. Bottom row:
the chair is optimized for a purely downward sitting load
(d) and for the sitting load combined with a force pushing
into the backrest (e). Notice the “bunched up” truss elements
along the top of the backrest as well as directly below it in
the chair’s feet (inset) when the backrest force is added.

4.2 Effect of Complex Geometry
We also explore the expressive power of Michell Trusses by build-
ing trusses over a variety of complex shapes. Lacking a numerical
method for constructing Michell Trusses for general 3D domains,
prior work [Zegard and Paulino 2015, 2016] tends to construct
Michell Trusses over geometrically simple and symmetric domains.
Our method allows the novel capability of creating Michell Trusses
over arbitrary 3D shapes. Construction of Michell Trusses over such
interesting, geometrically complex input domains is demonstrated
throughout the paper. In particular, we show trusses optimized over
high-genus input domains in Figure 6, while Figure 1 in the main
document shows a Michell Truss over a shape with numerous large
concave regions. Quantitative measures aside, these results also
show that our volumetric Michell Trusses preserve the “aesthetic”
of the input shape even when it exhibits complex geometric fea-
tures. We believe that this property makes our trusses well suited
for design applications—particularly in architectural design where
preservation of visual quality and overall shape is especially impor-
tant [Dapogny et al. 2017]. In the next section, we discuss parametric
post-processing operations enabled by our method which further
this goal of integrating visual design and structural optimization.

5 ADDITIONAL EDITING OPERATIONS
Wedescribed four editing operations utilizing the global parametriza-
tion in the main document. Here, we detail two additional opera-
tions.

Figure 6: Our method works for arbitrary 3D shapes—
independent of the homotopy class of the input mesh—as
illustrated by these high genus examples. (Left) a genus-3
pillar is constructed by using our Michell Truss as the re-
bar skeleton before concrete is poured into the pillar shell.
(Right) a high-genus input mesh is used to create a truss
sculpture usingmetal bars. Input shapes created usingCarlo
Séquin’s Scuplture Generator (https://people.eecs.berkeley.
edu/~sequin/SCULPTS/scherk.html).

5.1 Vertex Snapping
We also allow users to enforce that a few selected vertices of the
input mesh always have truss nodes lying on them.

The user specifies a subset of fixed vertices V0 ⊂ V and the
parametrization is updated by solving the least-squares minimiza-
tion with an appropriate constraint applied:

ϕ∗ = argmin
ϕ

3∑
i=1









Gx 0 0
0 Gy 0
0 0 Gz


(
ϕ̃i − ϕi

)






2

2

, (5)

s.t. ∀v ∈ V0 ϕi (v) = round
(
ϕ̃i (v)

)
.

The truss extraction is then performed on the parametrization
ϕ∗ instead of ϕ̃. This has the effect of snapping the parameter grid
to the selected vertices, while still closely following the principal
stress lines elsewhere. An example use case is snapping to sharp
visual features, resulting in aesthetically pleasing results, as shown
in Figure 7. Again, this useful user interaction is only possible be-
cause of the global parametrization created by our method. Another
potential use of this interaction could be for building intercon-
nected trusses by optimizing over multiple objects independently
and forcing the truss layouts to snap to the desired connection
points between objects.

5.2 Curve Removal
Another advantage ofmaintaining awhole object parametrization is
that it allows semantically meaningful curve selection. This results
from the fact that a single, object spanning curve is mapped to
an integer coordinate curve. We use this to enable curve deletion.
Figure 8 shows an example of removing a spurious boundary curve
from a design for aesthetic purposes. As with the preceding two
operations, this useful manipulation is enabled by our algorithm
and simply not available with output produced by other approaches.

https://people.eecs.berkeley.edu/~sequin/SCULPTS/scherk.html
https://people.eecs.berkeley.edu/~sequin/SCULPTS/scherk.html


Arora, R. et al

(a) (b)

Figure 7: The user can specify certain vertices of the input
mesh as constraints (violet circles), forcing a truss node to
lie on each constrained vertex. The user can use these con-
straints, for example, to snap the truss to sharp vertices (a)
or for symmetry (b).

(a) (b) (c)

Figure 8: The existence of a global parametrization allows a
user to quickly select an offending curve in a truss (a-b) and
delete it to obtain the desired result (c).

6 PERFORMANCE
Table 2 concisely lists all our test geometries along with perfor-
mance statistics. The reported performance statistics are for an
Intel Xeon E5-2637 (3.5GHz) workstation utilizing 64GB of mem-
ory. Note that most of our code is written in MATLAB and is not
optimized for speed.

7 IMPORTANCE OF STRESS-ALIGNMENT
OBJECTIVE

Figure 9 shows the importance of our stress-alignment objective
by comparing our result to a stress field-agnostic hex-meshing
technique and to the trivial axis-aligned parametrization.

REFERENCES
Charles Dapogny, Alexis Faure, Georgios Michailidis, Grégoire Allaire, Agnes Couvelas,

and Rafael Estevez. 2017. Geometric constraints for shape and topology optimization
in architectural design. Computational Mechanics 59, 6 (01 Jun 2017), 933–965.
https://doi.org/10.1007/s00466-017-1383-6

Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017. Robust Hex-
dominant Mesh Generation Using Field-guided Polyhedral Agglomeration. ACM
Trans. Graph. 36, 4, Article 114 (July 2017), 13 pages. https://doi.org/10.1145/
3072959.3073676

L. Hesselink, Y. Levy, and Y. Lavin. 1997. The topology of symmetric, second-order 3D
tensor fields. IEEE Transactions on Visualization and Computer Graphics 3, 1 (Jan
1997), 1–11. https://doi.org/10.1109/2945.582332

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-Aligned Meshes. ACM Transactions on Graphics (Proceedings of SIGGRAPH
ASIA) 34, 6 (Nov. 2015). https://doi.org/10.1145/2816795.2818078

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018.
Singularity-constrained Octahedral Fields for Hexahedral Meshing. ACM Trans.
Graph. 37, 4, Article 93 (July 2018), 17 pages. https://doi.org/10.1145/3197517.
3201344

Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: Robust Hexahedral Mesh
Extraction. ACM Trans. Graph. 35, 4, Article 123 (July 2016), 11 pages. https:
//doi.org/10.1145/2897824.2925976

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover—Parameterization of 3D
Volumes. Computer Graphics Forum 30, 5 (2011), 1397–1406. https://doi.org/10.
1111/j.1467-8659.2011.02014.x

Jonathan Palacios, Lawrence Roy, Prashant Kumar, Chen-Yuan Hsu, Weikai Chen,
ChongyangMa, Li-YiWei, and Eugene Zhang. 2017. Tensor Field Design in Volumes.
ACM Trans. Graph. 36, 6, Article 188 (Nov. 2017), 15 pages. https://doi.org/10.1145/
3130800.3130844

Justin Solomon, Amir Vaxman, and David Bommes. 2017. Boundary Element Octahe-
dral Fields in Volumes. ACM Trans. Graph. 36, 3, Article 28 (May 2017), 16 pages.
https://doi.org/10.1145/3065254

Tomás Zegard and Glaucio H. Paulino. 2015. GRAND3 – Ground Structure Based Topol-
ogy Optimization for Arbitrary 3D Domains Using MATLAB. Struct. Multidiscip.
Optim. 52, 6 (Dec. 2015), 1161–1184. https://doi.org/10.1007/s00158-015-1284-2

Tomás Zegard and Glaucio H. Paulino. 2016. Bridging topology optimization and
additive manufacturing. Structural and Multidisciplinary Optimization 53, 1 (01 Jan
2016), 175–192. https://doi.org/10.1007/s00158-015-1274-4

https://doi.org/10.1007/s00466-017-1383-6
https://doi.org/10.1145/3072959.3073676
https://doi.org/10.1145/3072959.3073676
https://doi.org/10.1109/2945.582332
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/3197517.3201344
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1145/3130800.3130844
https://doi.org/10.1145/3130800.3130844
https://doi.org/10.1145/3065254
https://doi.org/10.1007/s00158-015-1284-2
https://doi.org/10.1007/s00158-015-1274-4


Volumetric Michell Trusses for Parametric Design & Fabrication: Supplemental Material

Table 2: Performance results for all the 3D testcases. All reported runtimes rounded off to the nearest 1/10th of a second.

Example # Vertices # Tets Resolution (ρ) Sim (s) Frames (s) Tex (s) Extract (s) Total (s)

Curved bridge 1240 3843 48 11.1 35.8 0.1 241.5 288.5
Mars lander (upper leg) 2359 10327 24 49.2 30.1 0.6 164.3 244.2
Satellite antenna arm 3244 13367 32 44.3 49.3 0.9 549.7 644.2
Holey pillar 4117 15071 32 45.1 69.0 1.2 344.3 459.6
Cantilever beam 3457 16704 24 7.8 42.6 1.1 393.4 444.9
Bar under torsion 3457 16704 32 5.9 43.0 1.1 1086.0 1136.0
Bar under tension 3457 16704 32 22.0 32.7 1.0 879.4 935.1
Simple bridge 4382 19011 32 65.5 275.0 1.6 572.0 914.1
Mars Lander (lower leg) 4599 21825 24 101.1 69.0 1.9 190.0 362.0
Pavilion 7308 23512 48 101.9 140.5 2.9 478.1 723.4
Bookcase 6261 23962 32 83.9 96.6 2.5 372.4 555.4
Mars Lander (body) 6564 24945 32 123.3 169.0 2.6 757.2 1052.1
Arched bridge 6457 31164 32 66.2 183.1 3.4 918.4 1171.1
Quadcopter frame 7121 32826 24 37.6 127 4.2 393.2 562
Helicopter top pylon 8779 37797 32 190.9 161.9 5.3 357.2 715.3
Chair (sitting load) 9801 46187 32 21.1 177.4 38.3 1083.9 1320.7
Chair (rocking load) 9801 46187 32 85.7 165.1 7.1 1168.1 1426
Climbing hold 13753 68773 24 39.8 229.4 15.5 541.1 825.8
Holey sculpture 18016 79270 48 432.0 323.2 103.3 1282.3 2140.8
Jet engine bracket 28041 131796 32 700.9 4770.3 74.6 1229.3 6775.1

24 MPa

5 MPa

0.4 MPa

Boundary-aligned 
hex-meshing

Grid-aligned
parameterization

Vol. 1.93 m3 max(σv ): 23.6 MPa Dia. 6.25 cm Vol. 1.90 m3 max(σv ): 21.5 MPa Dia. 5.25 cm Vol. 1.87 m3 Dia. 5 cm

Figure 9: To verify the importance of our stress alignment objective, we created two variants of the bridge truss using a
boundary-aligned hex-mesh [Gao et al. 2017] and by tracing the isolines of a trivial world-aligned parametrization. VonMises
stress computed under identical loads (lower is better) show that our stress-aligned truss significantly outperforms both.


	1 Symmetric Field Representations
	2 Minimizers of Equation 3
	3 Truss Layout Extraction Details
	4 Generality of the Algorithm
	4.1 Effect of Boundary Conditions
	4.2 Effect of Complex Geometry

	5 Additional Editing Operations
	5.1 Vertex Snapping
	5.2 Curve Removal

	6 Performance
	7 Importance of Stress-Alignment Objective
	References

