
Eurographics Symposium on Geometry Processing 2017
J. A. Bærentzen and K. Hildebrandt
(Guest Editors)

Volume 36 (2017), Number 5

Generalized Matryoshka: Computational Design of Nesting Objects

Alec Jacobson, University of Toronto, Canada

Figure 1: We generalize the classic Matryoshka dolls (also known as Russian nesting dolls) to generic 3D shapes.

Abstract

This paper generalizes the self-similar nesting of Matryoshka dolls (“Russian nesting dolls”) to arbitrary solid objects. We
introduce the problem of finding the largest scale replica of an object that nests inside itself. Not only should the nesting object
fit inside the larger copy without interpenetration, but also it should be possible to cut the larger copy in two and remove the
smaller object without collisions. We present a GPU-accelerated evaluation of nesting feasibility. This test can be conducted at
interactive rates, providing feedback during manual design. Further, we may optimize for some or all of the nesting degrees
of freedom (e.g., rigid motion of smaller object, cut orientation) to maximize the smaller object’s scale while maintaining a
feasible nesting. Our formulation and tools robustly handle imperfect geometric representations and generalize to the nesting of
dissimilar objects in one another. We explore a variety of applications to aesthetic and functional shape design.

1. Introduction

Human fascination and satisfaction with snugly fitting geometric
shapes has as much to do with pragmatism (e.g., packing belongings
efficiently in a storage container) as it does with aesthetics (e.g.,
calligram poetry). It is no wonder that Russian nesting dolls, Ma-
tryoshka, quickly became a universally recognized toy since their
first incarnation little over a century ago (see Figure 2). Philosophi-
cally, the object-within-itself metaphor resonates with a broad set of
design principles from architecture to software engineering.

In this paper, we consider the geometric problem of placing an object
within itself. Our primary motivation is to generalize Matryoshka
dolls to arbitrary shapes (see Figure 1). We focus on providing
a computational design tool to help a user find feasible nesting
configurations and maximize the relative scale of the inner object.

Using traditional computational design tools, it is tedious to deter-
mine if one object lies entirely inside another. A user must iterate
between camera changes to inspect feasibility and perform geomet-
ric edits. Designing nesting objects demands even more effort since
nesting also requires that the inner object can be physically removed

without collision when the containing object is cut in half. Further
adding to complexity, optimal nesting placements and cut directions
may be at unintuitive orientations for non-convex geometries (see
Figure 3). Resorting to offline collision detection or, worse, verifica-
tion via physical fabrication would fragment the design process.

We pose the problem of optimal (self-)nesting as finding the largest
scale of an object so that it fits entirely inside a containing object
such that the containing object can be cut in two and removed with-
out collisions. While solving this problem exactly is intractable,
we present various levels of optimization tools to assist a designer.
Alternatively, we can operate as a fully automatic generalized Ma-
tryoshka generator. Specifically, we present highly parallelizable
methods to:

• determine whether a given design is a feasible nesting;
• find the maximum scale of the inner object given its placement

and cut plane through the containing object; and
• optimize the nesting scale over some or all design parameters.

We demonstrate iterative design scenarios where these methods
quickly find a large nesting scale while (optionally) satisfying cus-

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

Figure 2: Zvyozdochkin & Malyutin’s original Matryoshka dolls
have a simple, nearly convex shape and packing ratios are roughly
70% to 80%. Derivative designs largely adhere to this formula.

tom aesthetic or functional constraints from the user (e.g., avoiding
cuts through salient regions). Our suite of tools for self-nesting
extends trivially to nesting one object into a different object. As
a means of visualization and validation, we fabricate some of our
results using commodity 3D printing.

2. Related Work

While to our knowledge no previous work has directly considered
the problem of designing and optimizing nesting objects†, our prob-
lem and methodology are similar to previous methods for construct-
ing bounding primitives, designing densely packing shapes and
detecting collisions.

Bounding primitives. Constructing hierarchical bounding shapes
is a fundamental problem in computer graphics. Traditional meth-
ods focus on canonical bounding polytopes such as spheres, boxes,
KDOPS, and convex hulls. Bounding polyhedra can be constructed
via morphological operations [CB14], and theoretical optimality re-
sults exist for very specific shapes (e.g., [Sch11]). However, bound-
ing does not ensure rigid, collision-free removal.

Recently, Sacht et al. presented a flow-based method to progressively
fit a triangle mesh within a simplification thereof [SVJ15]. These
“nested cages” are tightly fitting, but solve a complementary problem:
they continuously deform the outer object to fit the inner object as
tightly as possible. The desired nested cage is therefore very similar
in placement to the original shape, making derivative-based local
optimization effective. Instead, our problem treats both objects as
rigid up to scale. The optimal result may require a radically different
placement of the inner object with respect to the containing object
(see Figure 3), implying the need for a global search.

† We encountered one example of 3D-printed Matryoshka with non-
traditional shapes (http://www.thingiverse.com/thing:1032093). This manu-
ally designed nesting appears to simply fit a bounding sphere in each shape.

Computational design and fabrication. Improved rapid fab-
rication processses have inspired a wealth of methods for the
computational design of interesting objects. While many recent
methods share our enthusiasm for computational design of toys
[STC∗13, TCG∗14, BWBSH14, UKSI14, BCT15], most methods
do not directly optimize over collision/interpenetration constraints.
Similar in spirit to our generalization of Matryoshka, Sun & Zheng
generalize Rubik’s cubes to arbitrary shapes [SZ15]. They man-
age collisions by a group theoretical reduction to 2D that is not
immediately applicable to our scenario.

Perhaps most similar to our problem are those of stackabiliza-
tion [LAZ∗12], Escherization [KS00] and boxelization [ZSMS14].
These methods take arbitrary shapes as input and alter their ge-
ometry to conform to the goal of self-stacking in one-direction,
tessellating the plane or transforming into a box (resp.). In some
sense, our problem is more basic: the relative geometries are fixed.
This has a dramatic effect on the types of collision detection and
global optimization methods at our disposal.

Improving the rapid fabrication process itself has also led to geo-
metric decomposition and packing methods to meet 3D printer con-
straints [LBRM12, Att15, CZL∗15, HMA15]. The packing methods
assume a rectangular build volume and employ bounding primitives
to reduce complexity. For example, Vanek et al. pack non-convex
objects using a discrete set of rotations by sequentially growing a
height field [VGB∗14]. Our method nests arbitrary shapes at arbi-
trary angles and operates directly on the input geometry.

Malomo et al. solve a related problem to construct flexible, cut-away
molds for casting-based fabrication of 3D shapes [MPBC16].

While the computational tools for reconfigurables [GJG16] are not
a feasible replacement for our fast search, we borrow concepts from
this and other (e.g., [UKIG11]) optimization-assisted design tools.

Swept volumes and collision detection. Our methodology for
quickly determining nesting feasibility is heavily influenced by
“depth peeling”-type methods that have been used for GPU-
acceleration of constructive solid geometry visualization [GHF86,
KGP∗94, HR05], order-independent transparency [Eve01, BCL∗07],
CNC milling simulation [IO07], and shape diameter estimation
[BKR∗16]. Similarly, layered depth images [SGHS98] (origi-
nally presented for image based rendering) have been leveraged
for intersection volume computation [FBAF08], collision detec-
tion [MOK95, HTG03, KP03] and swept volumes for minimal

39% 53% 63%

fixed position+rotation fixed rotation free

Figure 3: Left to right: Our optimization leverages positional and
rotational degrees of freedom to tightly self-nest The Fat Cat.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.thingiverse.com/thing:1032093

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

interference-removing translations [KOLM02]. Our method pro-
vides the additional application of this approach to early-exiting
collision-free translational trajectory verification. Detecting whether
an object can be removed intuitively seems harder than static col-
lision detection, but leveraging depth-peeling nesting verification
often requires fewer tests than static collision detection due to early
failures of more strict conditions.

Alternative non-depth-peeling-based methods also leverage the GPU
for collision detection, for example by rendering signed distance
fields [SGGM06] or via high-throughput bounding-volume hierar-
chies [LMM10].

3. Nesting

Unlike traditional bounding volumes [SVJ15], we define valid
self-nesting to occur when a solid shape A transformed by a non-
reflecting similarity transform T : R3→ R3 lies strictly inside itself
(T(A)⊂A) and the parts of A above and below a cut plane P can
be removed by translating linearly along some vectors a+ ∈ R3 and
a− ∈ R3 (resp.) without colliding into the transformed shape. Let
us explore this definition and become familiar with combinations of
shapes, transformations and cut planes that admit valid self-nestings.

invalid

valid

Perfect self-nesting. We are most in-
terested in the case when the uniform
scaling s induced by the transformation
T is as large as possible. It is tempting to
claim that for a convex shape A that any
transformation T will produce a valid

self-nesting even if the scaling is nearly 100%. While its true that
a convex shape scaled by any amount will fit inside itself, it is not
true that any cut plane P will allow safe removal (see inset). Instead,
valid self-nesting depends on the choice of cut plane. We can cat-
egorize the set of shapes that admit infinitesimal shrinkages while
self-nesting with respect to a chosen cut plane in a manner analgous
to the definition of “star-shaped polygons” (see, e.g., [PS85]). An
infinitesimal shrinkage of a shapeA admits a valid self-nesting with
respect to a cut plane P if and only if there exists vectors a+ such
that every point on the shape’s boundary ∂A above the plane P has
a clear line of sight along a+ intersecting P (and analogously for
a−). In either direction the shape A must be a (skewed) function
graph above the cut plane. This is a severely limited class of shapes.

Figure 5: The Calavera achieves a high self-nesting scale of 91%
allowing this 20-layer generalized Matryoshka.

Traditional hand-carved Matryoshka dolls have a distinctive, sim-
ple shape. They are convex or nearly convex, almost always split
horizontally (perpendicular to gravity), and typically scale by 70-
80% between layers (see Figure 2). This imperfect nesting scale
effectively allows the dolls to have a finite thickness (traditional
wooden dolls are a few millimeters thick), but more importantly
allows at least nominal deviation from the class of perfect nesting
shapes (most doll heads bulge slightly above the cut plane).

The goal of this paper is to help a user explore nestings of arbitrary
solid 3D shapes. Since the scale of the ith level with respect to the
original shape will increase exponentially, we strive to help the user
find nesting scales comparable to traditional Matryoshka dolls but
for much more irregular geometries (see Figure 5).

4. User Interface

In our tool, the user loads the triangle mesh boundary of a solid
shape A; positions, rotates and scales a second instance B; and
chooses a cut plane P. While the user explores the design, our

Fixed Rotation Free Rotation

Figure 4: A user finds nestings for one bust inside another. Our tool optimizes the maximum feasible nesting scale for fixed position and fixed
rotation in real-time (∼ 70 fps). The user can also free the rotation resulting in higher nesting scale at the cost of performance (∼ 1 fps).

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

invalid valid

Figure 6: Outer (blue) and inner (orange) shapes are clipped by the
cut plane (dashed) and rendered orthographically along the removal
direction (parallel lines). As fragment layers are peeled according
to depth, we inspect consecutive layers for “bad codes” (yellow).
Successfully peeling a pure background layer implies validity.

program tracks whether the current configuration admits a feasible
nesting in real-time (see Section 5). This unconstrained interaction
facilitates creativity, yet even with real-time feedback it is often
difficult to find a feasible solution.

Similar to the “auto-resolve” of [GJG16], the can user can also
directly explore the space of valid self-nestings. While the user
rotates and translates the inner shapeB or cut plane, our optimization
interactively computes the maximal feasible scale (see Figure 4).

The user can choose which parameters are free during the opti-
mization. If only the scale is free, then we use a fast local search
operation (see Section 6). If other parameters are also free, we en-
gage a stochastic global optimization (see Section 7). If all are free,
the user receives the best possible solution (e.g., as an initial design).
This case also implies a fully automatic Matryoshka generator tool.

5. Feasibility analysis

The heart of our approach is a fast method for determining if a
given configuration is a valid nesting. For this sub-routine we take
as input triangle meshes of the boundaries of two solid shapes A
and B (where B may be identical to A), a similarity transformation
T ∈ R3×4 applied to B, a plane P given by a point on the plane
p ∈ R3 and a normal vector n ∈ R3, and two translational removal
trajectory vectors a+,a− ∈ R3.

Determining if a configuration is feasible requires answering two
questions: Is T(B) inside of A? Can the two “halves” of A above
and below the plane P translate along a+ and a− without hitting B?

Drawing from the “free line of sight” intuition of Section 3, we cast
these as orthographic visibility queries. Leveraging the direct, real-
time rendering pipeline, we construct an orthographic projection
so that bounding box of A⊕B fits tightly in the viewing prism.
For each removal direction a ∈ {a+,a−}, we render the meshes
of A and T(B) clipped by the plane P, signed correspondingly
to a. If we knew the sorted depth order and identification of all
fragments landing at each pixel then we would know we have an
invalid configuration if:

1. any fragment of A appears (directly) before a fragment of T(B),

2. any fragment of T(B) appears directly before the background, or
3. any fragment of T(B) appears directly before a front-facing

fragment of A.

The first test catches whether any part of A would collide with B
as A travels along the removal direction (away from the camera).
The second and third tests catch whether part of T(B) protrudes out
of A. Such a protrusion usually may not trigger the first test in the
case that A is extremely foreshortened near the problem area (i.e.,
surface normals of A perpendicular to the view direction).

In practice, we do not gather and sort all fragments landing on
each pixel. Instead (inspired by techniques such as “depth peeling”
for order-independent transparency, see, e.g., [GHF86, Eve01]), we
iteratively peel the nearest fragment for each pixel (see Figure 6).

For iteration i we store for each pixel (x,y): the “color” vector
ci(x,y) and depth scalar zi(x,y) of the nearest fragment whose depth
is strictly greater than the previous iteration’s zi(x,y) > zi−1(x,y).
We abuse the color channels in ci to store whether the fragment is
from A or B and whether it is front or back facing.

By our assumption thatA and B are boundaries of solid shapes (i.e.,
without gaping open boundaries), the tests above reduce to simply
binary logical tests between consecutive iterations i and i−11. We
can save memory on the GPU, by “ping-ponging” between two sets
of color and depth framebuffer-textures (for odd and even iterations).

An occlusion query (GL_ANY_SAMPLES_PASSED) is used to de-
termine if enough layers have been peeled: if no fragments are drawn
this can be the last iteration. We still need to check feasibility on
this layer because a new background pixel on this layer may reveal
that part of B is outside of A.

Per-pixel feasibility tests are conducted by rendering a full-“screen”
rectangle, reading from the color and depth buffer textures from
the current and previous iteration. Depth buffers are used to reveal
whether the pixel belongs to a foreground object (A or B) or the
background (∅). We discard all good pixels, and render an arbitrary
value for bad pixels so that an additional occlusion query (again
GL_ANY_SAMPLES_PASSED) will trigger.

After checking per-pixel feasibility, if any bad pixels were found
we may report invalidity immediately. Otherwise, if no new frag-
ments were peeled on this iteration we may safely report validity.
Otherwise, we must continue peeling another layer.

6. Scale search

We now consider the scenario wherein the cut plane and removal
directions are fixed along with all rigid degrees of freedom. Max-
imizing the scale s so that B nests in A amounts to a feasibility
line search. At first glance, this appears very difficult. Feasibility
involves detecting collisions and interpenetration, making it non-
linear and non-convex with respect to the unknown scale s. In lieu of
other information, one might be inclined to opt for a general-purpose
global—perhaps stochastic—search method.

Experimentally we have found that a simple geometric convexifi-
cation of this constraint performs very well. Assume momentarily
that both B and A are convex. Then feasibility as a function of s is
monotonic: s = 0 trivially produces a valid nesting, and for some

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

70%

0%

100%

Figure 7: Nesting scale maximization is a non-linear, non-convex
problem. Fixing horizontal cut plane to the inner 2D bunny’s cen-
troid, we visualize a pseudo-coloring of the maximum feasible nest-
ing scale over 256 rotations for a grid of 2562 centroid locations.

s = s∗ > 0 a collision (either in the rest state or during removal)
occurs that further growing will never resolve. Via binary search,
we can shrink lower (feasible) and upper (infeasible) bounds around
s∗ to arbitrary precision with logarithmic computational complexity.
For non-convex shapes, conducting this binary search is conserva-
tive, but in practice usually optimal.

When manually exploring, the user can choose to have the nesting
scale parameter automatically optimized to its largest feasible value
while changing the other design parameters. The logarithmic com-
plexity of the search ensures consistent and interactive performance.

7. Global optimization

Let us consider the case that some or all other parameters are free to
be optimized. Given a shape A and another shape B we seek to find
a non-reflective similarity transformation T, cut plane P and removal
directions a+,a− that maximize the scale s of B while maintaining
a valid nesting (according to the definition in Section 3):

maximize
s,R,c,P,a+,a−

s (1)

such that T(B) nests in A w.r.t. P,a+,a−,

where we break the transformation T ∈ R3×4 into a scale s ∈ R and
rotation R ∈ SO(3) about displaced centroid c ∈ R2 of B.

While the objective function is linear, the constraint is non-linear
and non-convex (see Figure 7). It is neither easy nor efficient to
measure violation of the constraint in a way that admits differen-
tiation. Because of the removal process, the nesting constraint is
strictly more complex than the interpenetration constraints consid-
ered in physically based simulation (see, e.g., [BWK03, FBAF08]).

Due to the cut plane, the constraint is even more complex than the
space-time untangling problem for reconfigurables [GJG16].

Fortunately, we have an extremely fast evaluation for constraint
feasibility. This opens the door to stochastic global optimization
methods. We experimented with genetic algorithms, simulated an-
nealing, and other Monte Carlo methods, but ultimately found best
performance using the particle swarm method [KE95].

7.1. Particle Swarm Optimization

Given an arbitrary objective g(x) : Rn→ R to maximize, the basic
particle swarm optimization proceeds by assigning k random initial
positions (parameter values) xi ∈ Rn and velocities vi ∈ Rn. At a
fixed pace, particles update their positions by stepping along their
respective velocities and update their velocities via momentum term
and attraction forces toward the current global and local maxima:

vi← ωvi +ϕprp(xp
i −xi)+ϕgrg(xg−xi), (2)

xi← xi +vi, (3)

where ω ∈ [0,1) scales the momentum term, ϕp,ϕg ∈ [0,1) scale
forces pulling the particle toward its personal best position ever
witnessed xp

i ∈Rn and current global best over all particles xg ∈Rn,
and rp,rg are random variables drawn uniformly from [0,1).

For our problem, we define x = [s,R,c,P,a+,a−] and introduce
feasibility as a hard constraint:

g(x) =

{
s if nests,
∞ otherwise.

(4)

Finally, after each update we project each component onto its re-
spective constraint set: s∈ [0,1), R∈ SO(3), c∈ bounding box(A),
P ·a+ > 0, P ·a− < 0.

In our interface (see Section 4), a user can fix partial subsets of the
degrees of freedom interactively at runtime (see Figure 8).

Automatic Upright Custom Cut Plane

63%
60% 56%

Figure 8: Left to right: Starting with a fully optimized self-nesting
of The Colonel, the user can add constraints forcing an upright
orientation of the inner object or fixing the cut to a desired plane.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

Figure 9: Via global optimization, Nefertiti self-nests recursively.

7.2. Accelerations

This basic algorithm performs reasonably efficiently compared to
truly brute force approaches such as grid-search or pure random
search. However, we observed that this method spends many iter-
ations sampling small scale values deep inside A that are clearly
suboptimal. We now introduce unique accelerations for our problem.

Local scale search. If a particle’s position x has a small scale
component s, we can equivalently cast the optimization problem in
Equation (1) as a maximization of the scale parameter with respect
to all other degrees of freedom:

maximize
R,c,P,a+,a−

f (R,c,P,a+,a−) (5)

where

f (R,c,P,a+,a−) = maximize
s

s (6)

such that T(B) nests in A w.r.t. P,a+,a−, (7)

Written in this way we can leverage the binary search approximation
of the previous section for maximizing the nesting scale given all
other degrees of freedom:

f ≈ search
s

(R,c,P,a+,a−). (8)

Making this substitution in our particle swarm optimization we re-
move the scale component from the position vector x (decrementing
the degrees of freedom) and replace the objective function with a
search for the maximal scale given all other parameters:

g(x) =

{
searchs(R,c,P,a+,a−) if nests,
∞ otherwise.

(9)

This places our optimization in a class of hybrid particle swarm
optimization methods. In general, hybridizations perform a local op-
timization (e.g., Newton’s method) to race particles upward in their
current basin of attraction. Viewed from the original formulation in

Equation (1), our hybridization is a (convexified) local optimization
along a single coordinate (cf., [WP09]).

Early search abortion. The binary search quickly narrows in on
the optimal scale values, given all other degrees of freedom. While
logarithmic in performance, the cost to squeeze the bound within
0.1% of the solution is at best 10 feasibility tests (1/2

10 ≈ 0.1%).
During the search iterations, if the upper bound is already less
than the particle’s best witnessed so far, then the exact value of
this search will have no effect on this or any particles’ update.
Therefore, the binary search can safely be aborted prematurely. This
additional hybridization bears some resemblance to branch and
bound algorithms found in discrete optimization [LD60].

8. Experiments and results

We implemented our method in C++ using OPENGL and GLSL
shaders. We tested our implementation on an Intel Xeon 3.5GHz
CPU with 64GB of RAM and an NVidia GeForce GTX 1080 GPU.
After initial experimentation, we fixed the optimization parameters
to k = 200,ω = 0.98,ϕp = 0.01,ϕg = 0.01. During scale search, we
stop when the bound extent is less than 0.01% and return the lower
(feasible) bound. We run 500 update iterations during the particle
swarm optimization; improvements were occasionally witnessed
past this point, but returns were usually marginal. For all examples
in the paper, we use 512×512 viewports to render along a+ and a−

simultaneously during depth peeling (i.e., into a 1024×512 buffer).
Increasing beyond this resolution should improve accuracy, but in
practice had no effect for our examples.

Most non-linear, non-convex global optimizations cannot guaran-
tee finding a global optimum: ours is no exception. Compared to

Models |A|+ |B| Feas. Search Opt. s∗

Falcon+Key 26K 0.4ms 10ms 18s 90%
Calavera+self 53K 0.6ms 7ms 22s 90%
Orange+blue bust 79K 1.0ms 14ms 27s 68%
Bunny+self 140K 1.7ms 32ms 135s 61%
Colonel+self 145K 1.6ms 52ms 123s 63%
Fat Cat+self 150K 1.7ms 33ms 122s 63%

Table 1: We report timings and optimized scales (assuming all
parameters free) for some of the models in this paper.

Figure 10: The Spider Man has a very non-convex shape, but finds
a suitable nesting via an intuitive rotation.

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

Figure 11: 3D printed bunnies nest recursively inside a 16cm tall bunny.

ε σ

During validation During carving Result

Figure 12: Our model accommodates engineering tolerances. Left
to right: We conservatively validate nesting up to printer accuracy
(σ) plus minimum wall thickness (ε). When carving, we inflate the
swept volume by σ, resulting in physically realizable nesting.

brute force, our accelerated particle swarm optimization converges
to a satisfying solution much faster. For example, the brute-force
grid search to visualize the energy landscape for the simplified 2D
problem in Figure 7 took eight days to compute.

For all meshes in this paper (25,000 to 150,000 triangles), testing
nesting feasibility runs at over 500 frames per second (fps). Fixing
all other parameters, finding the maximum scale via binary search to
a tolerance of 0.1% runs interactively at around 30 fps (see Table 1).
Freeing all parameters, our global optimization inherits this high
performance: typically the particle swarm optimization can conduct
its 100,000 searches in 30 to 300 seconds. The variance in times
is due to the success of the early search abortion acceleration. In
particular, for near-perfect nesting shapes optimization finishes very
quickly: the optimal nesting of the Calaveras in Figure 5 is found in
less than half a minute. The Bunny in Figure 1 is a more complex
shape and correspondingly takes longer to find a fully automatic,
optimal nesting. The number of parameters freed to the optimization
amounts to a trade-off between interactivity (both in terms of control
and performance) and optimality. In Figure 8, the fully automatic
solution initially requires nearly two minutes of search time. Adding
the upright constraint reduces the degrees of freedom and corre-
spondingly the search time to under a minute. Finally, constraining
the cut plane reduces the search to 20 seconds.

Figure 9 shows a self-nesting of the Nefertiti bust, where the cut
plane has been placed behind the face. The total design time was
less than five minutes.

Figure 13: Our self-nesting tools generalize to nesting one shape
inside a different shape inside yet another different shape.

Robustness. The input to our method is a solid triangle mesh
(def. [ZGZJ16]). However, our fragment shader based approach
is far less sensitive to poor meshing and surface artifacts than tra-
ditional collision detection (e.g., [Lin93]) or boolean operations
(e.g., [ZGZJ16]). In general, as long as the model is consistently ori-
ented and free of spurious internal faces our method will work well
without the strict requirement on mesh quality [CGA17] or winding
numbers [JKSH13,ZGZJ16]. The Spider Man in Figure 10 has small
defects (open boundaries, non-manifold edges, self-intersections),
these are invisible during rendering and invisible to our method.

Fabrication. When the end goal is to 3D print the resulting nesting
shapes, we take into account the printer accuracy σ and minimal
wall thickness/filament size ε, by replacing A with the inward off-
set surface at negative signed distance −(σ + ε) during validity
checking and optimization. When carving the swept-volume of B
relative to the removal trajectories from either half of A, we re-
place B with the outward offset surface at positive signed distance
σ (see Figure 12). For our 3D printed results, we used a MAKER-
BOT REPLICATOR Z18 and empirically determined these parameter
values (σ = 0.7mm,ε = 0.5mm).

In our results, we fill the space between the inner and outer objects.
Besides creating a satisfyingly tight fit, this sometimes helps find

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

Figure 14: 3D printed Calaveras nest recursively. Each orientation
and cut plane is determine automatically giving slight variations
between layers. Our methods accommodate for printer tolerances,
so nesting scale is determined at scale. Compared to the virtual
result in Figure 5, an interesting polarity shift happens here: for
smaller sizes, it is more efficient to nest upside down.

Figure 15: A “Glass Key” nests along an optimal removal direction
within a “Maltese Falcon.”

unintuitive rotations when nesting. It would also be possible to print
thin, loose shells at least as thin as the minimal wall thickness ε.

Besides a motivating application, fabrication acts as third party
verification of our collision handling (see Figure 11). We use
CGAL [CGA17] and LIBIGL [JP∗13] to generate signed distance
offset surfaces and use the robust boolean operations of [ZGZJ16]
in LIBIGL to cut the outer layer in half and carve out the interior.
For fabrication, boolean operations are the computational bottleneck
(taking roughly four times as long as our optimization in the fully
automatic case), and, of course, fabrication is the real bottleneck.
The largest bunny in Figure 11 took 31 hours on our MAKERBOT.

Disparate nesting. Nothing in our formulation of the nesting prob-
lem or our proposed tools requires that the inner object B is the same
as the outer object A. Our method trivially generalizes to nesting
disparate shapes (see Figure 4). In Figure 13, a chicken nests inside
a duck inside of a turkey, at 50% and 77% respectively. Total design
time is under two minutes, not including finding models online.

The fabrication process above already takes advantage of disparate
nesting. This generalization is crucial for fabricating multi-layer
self -nesting shapes since scales decrease exponentially but printer
tolerances remain constant (see Figure 14). For optimal fabricated
results, each nesting must be computed independently.

In Figure 15, a high-genus key is nested inside of a falcon statue.
Fabrication tolerances are incorporated during optimization so that
the result may be 3D printed.

9. Limitations and Future Work

Most non-convex global optimizations
suffer from local minima and lack for-
mal guarantees; ours is no exception.
For non-convex shapes, feasibility mono-
tonicity is not guaranteed: configurations
exist where scaling a non-convex shape
creates a collision that is resolved after
further scaling (see inset). These situa-
tions seem to be rare in practice.

In future work we would like to improve
the performance of our optimization by
further exploiting the parallelism of the
particle swarm optimization. We model
removal strictly as translation, however,
for rigid objects we could potentially
achieve even larger nesting ratios if we
also consider rotations. This greatly com-
plicates evaluation of feasibility and is an exciting direction for
future work. We also assume that the input shapes are strictly rigid
and delegate shape editing operations to the user. Rigid nesting is
limited by the available volume within a shape: high genus or thin
non-convex shapes will not nest well (see inset). We would also
like to consider deformations during the optimization (à la freeform
modeling) and the nesting of deformables made of soft materials.

Acknowledgements

This work is funded in part by NSERC Discovery Grants (RGPIN-
2017-05235 & RGPAS-2017-507938), the Connaught Fund (NR-
2016-17), and a gift by Adobe Systems Inc. Thank you to David
Levin for illuminating discussions and Kevin Gibson, Masha Shug-
rina, Michael Tao, and Alex Tessier for early draft reviews.

References

[Att15] ATTENE M.: Shapes in a box: disassembling 3d objects for effi-
cient packing and fabrication. In Comput. Graph. Forum (2015). 2

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA J. A.
L. D., SILVA C. T.: Multi-fragment effects on the gpu using the k-buffer.
In Proc. I3D (2007). 2

[BCT15] BÄCHER M., COROS S., THOMASZEWSKI B.: Linkedit: inter-
active linkage editing using symbolic kinematics. ACM Trans. Graph.
(2015). 2

[BKR∗16] BALDACCI A., KAMENICKÝ R., RIEČICKÝ A., CIGNONI P.,
DURIKOVIČ R., SCOPIGNO R., MADARAS M.: Gpu-based approaches
for shape diameter function computation and its applications focused on
skeleton extraction. Comput. Graph. Forum (2016). 2

[BWBSH14] BÄCHER M., WHITING E., BICKEL B., SORKINE-
HORNUNG O.: Spin-it: Optimizing moment of inertia for spinnable
objects. ACM Trans. Graph. (2014). 2

[BWK03] BARAFF D., WITKIN A., KASS M.: Untangling cloth. ACM
Trans. Graph. 22, 3 (2003), 862–870. 5

[CB14] CALDERON S., BOUBEKEUR T.: Point morphology. ACM Trans-
actions on Graphics (Proc. SIGGRAPH 2014) (2014). 2

[CGA17] CGAL: CGAL, Computational Geometry Algorithms Library,
2017. http://www.cgal.org. 7, 8

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.google.com/search?q=Shapes+in+a+box:+disassembling+3d+objects+for+efficient+packing+and+fabrication
http://www.google.com/search?q=Shapes+in+a+box:+disassembling+3d+objects+for+efficient+packing+and+fabrication
http://www.google.com/search?q=Multi-fragment+effects+on+the+gpu+using+the+k-buffer
http://www.google.com/search?q=Linkedit:+interactive+linkage+editing+using+symbolic+kinematics
http://www.google.com/search?q=Linkedit:+interactive+linkage+editing+using+symbolic+kinematics
http://www.google.com/search?q=Gpu-based+approaches+for+shape+diameter+function+computation+and+its+applications+focused+on+skeleton+extraction
http://www.google.com/search?q=Gpu-based+approaches+for+shape+diameter+function+computation+and+its+applications+focused+on+skeleton+extraction
http://www.google.com/search?q=Gpu-based+approaches+for+shape+diameter+function+computation+and+its+applications+focused+on+skeleton+extraction
http://www.google.com/search?q=Spin-it:+Optimizing+moment+of+inertia+for+spinnable+objects
http://www.google.com/search?q=Spin-it:+Optimizing+moment+of+inertia+for+spinnable+objects
http://www.google.com/search?q=Untangling+cloth
http://www.google.com/search?q=Point+morphology
http://www.google.com/search?q=textscCgal,+Computational+Geometry+Algorithms+Library

Alec Jacobson / Generalized Matryoshka: Computational Design of Nesting Objects

[CZL∗15] CHEN X., ZHANG H., LIN J., HU R., LU L., HUANG Q.,
BENES B., COHEN-OR D., CHEN B.: Dapper: Decompose-and-pack for
3d printing. ACM Trans. Graph. (2015). 2

[Eve01] EVERITT C.: Interactive order-independent transparency. White
paper, nVIDIA 2, 6 (2001), 7. 2, 4

[FBAF08] FAURE F., BARBIER S., ALLARD J., FALIPOU F.: Image-
based collision detection and response between arbitrary volume objects.
In Proc. SCA (2008). 2, 5

[GHF86] GOLDFEATHER J., HULTQUIST J. P. M., FUCHS H.: Fast
constructive-solid geometry display in the pixel-powers graphics system.
In Proc. SIGGRAPH (1986). 2, 4

[GJG16] GARG A., JACOBSON A., GRINSPUN E.: Computational design
of reconfigurables. ACM Trans. Graph. (2016). 2, 4, 5

[HMA15] HERHOLZ P., MATUSIK W., ALEXA M.: Approximating free-
form geometry with height fields for manufacturing. Comput. Graph.
Forum (2015). 2

[HR05] HABLE J., ROSSIGNAC J.: Blister: Gpu-based rendering of
boolean combinations of free-form triangulated shapes. ACM Trans.
Graph. (2005). 2

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS M.: Real–time
volumetric intersections of deforming objects. In Vision, Modeling, and
Visualization: Proceedings (2003), AKA, p. 461. 2

[IO07] INUI M., OHTA A.: Using a gpu to accelerate die and mold
fabrication. IEEE Comput. Graph. Appl. (2007). 2

[JKSH13] JACOBSON A., KAVAN L., , SORKINE-HORNUNG O.: Robust
inside-outside segmentation using generalized winding numbers. ACM
Trans. Graph. 32, 4 (2013), 33:1–33:12. 7

[JP∗13] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2013. http://igl.ethz.ch/projects/libigl/. 8

[KE95] KENNEDY J., EBERHART R.: Particle swarm optimization. In
Proc. Neural Networks (1995). 5

[KGP∗94] KELLEY M., GOULD K., PEASE B., WINNER S., YEN A.:
Hardware accelerated rendering of csg and transparency. In Proc. SIG-
GRAPH (1994). 2

[KOLM02] KIM Y. J., OTADUY M. A., LIN M. C., MANOCHA D.: Fast
penetration depth computation for physically-based animation. In Proc.
SCA (2002). 3

[KP03] KNOTT D., PAI D. K.: Cinder: Collision and interference detec-
tion in real-time using graphics hardware. In Proc. GI (2003). 2

[KS00] KAPLAN C. S., SALESIN D. H.: Escherization. In Proc. SIG-
GRAPH (2000). 2

[LAZ∗12] LI H., ALHASHIM I., ZHANG H., SHAMIR A., COHEN-OR
D.: Stackabilization. ACM Trans. Graph. (2012). 2

[LBRM12] LUO L., BARAN I., RUSINKIEWICZ S., MATUSIK W.: Chop-
per: Partitioning models into 3d-printable parts. ACM Trans. Graph.
(2012). 2

[LD60] LAND A. H., DOIG A. G.: An automatic method for solving
discrete programming problems. ECONOMETRICA (1960). 6

[Lin93] LIN M. C.: Efficient collision detection for animation and robotics.
PhD thesis, UC Berkeley, 1993. 7

[LMM10] LAUTERBACH C., MO Q., MANOCHA D.: gProximity: Hi-
erarchical gpu-based operations for collision and distance queries. In
Computer Graphics Forum (2010). 3

[MOK95] MYSZKOWSKI K., OKUNEV O. G., KUNII T. L.: Fast collision
detection between complex solids using rasterizing graphics hardware.
The Visual Computer (1995). 2

[MPBC16] MALOMO L., PIETRONI N., BICKEL B., CIGNONI P.: Flex-
molds: Automatic design of flexible shells for molding. ACM Trans.
Graph. (2016). 2

[PS85] PREPARATA F. P., SHAMOS M. I.: Computational Geometry: An
Introduction. 1985. 3

[Sch11] SCHRAMM O.: How to cage an egg. 2011, pp. 87–104. 2

[SGGM06] SUD A., GOVINDARAJU N., GAYLE R., MANOCHA D.:
Interactive 3d distance field computation using linear factorization. In
Proc. I3D (2006), I3D ’06. 3

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Layered
depth images. In Proc. SIGGRAPH (1998). 2

[STC∗13] SKOURAS M., THOMASZEWSKI B., COROS S., BICKEL B.,
GROSS M.: Computational design of actuated deformable characters.
ACM Trans. Graph. (2013). 2

[SVJ15] SACHT L., VOUGA E., JACOBSON A.: Nested cages. ACM
Trans. Graph. 34, 6 (2015). 2, 3

[SZ15] SUN T., ZHENG C.: Computational design of twisty joints and
puzzles. ACM Trans. Graph. (2015). 2

[TCG∗14] THOMASZEWSKI B., COROS S., GAUGE D., MEGARO V.,
GRINSPUN E., GROSS M.: Computational design of linkage-based
characters. ACM Trans. Graph. (2014). 2

[UKIG11] UMETANI N., KAUFMAN D. M., IGARASHI T., GRINSPUN
E.: Sensitive couture for interactive garment editing and modeling. ACM
Trans. Graph. (2011). 2

[UKSI14] UMETANI N., KOYAMA Y., SCHMIDT R., IGARASHI T.:
Pteromys: Interactive design and optimization of free-formed free-flight
model airplanes. ACM Trans. Graph. (2014). 2

[VGB∗14] VANEK J., GALICIA J. A. G., BENES B., MĚCH R., CARR
N., STAVA O., MILLER G. S.: Packmerger: A 3d print volume optimizer.
Comput. Graph. Forum (2014). 2

[WP09] WAMPLER K., POPOVIĆ Z.: Optimal gait and form for animal
locomotion. ACM Trans. Graph. (2009). 6

[ZGZJ16] ZHOU Q., GRINSPUN E., ZORIN D., JACOBSON A.: Mesh
arrangements for solid geometry. ACM Trans. Graph. (2016). 7, 8

[ZSMS14] ZHOU Y., SUEDA S., MATUSIK W., SHAMIR A.: Boxeliza-
tion: Folding 3d objects into boxes. ACM Trans. Graph. (2014). 2

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.google.com/search?q=Dapper:+Decompose-and-pack+for+3d+printing
http://www.google.com/search?q=Dapper:+Decompose-and-pack+for+3d+printing
http://www.google.com/search?q=Interactive+order-independent+transparency
http://www.google.com/search?q=Image-based+collision+detection+and+response+between+arbitrary+volume+objects
http://www.google.com/search?q=Image-based+collision+detection+and+response+between+arbitrary+volume+objects
http://www.google.com/search?q=Fast+constructive-solid+geometry+display+in+the+pixel-powers+graphics+system
http://www.google.com/search?q=Fast+constructive-solid+geometry+display+in+the+pixel-powers+graphics+system
http://www.google.com/search?q=Computational+design+of+reconfigurables
http://www.google.com/search?q=Computational+design+of+reconfigurables
http://www.google.com/search?q=Approximating+free-form+geometry+with+height+fields+for+manufacturing
http://www.google.com/search?q=Approximating+free-form+geometry+with+height+fields+for+manufacturing
http://www.google.com/search?q=Blister:+Gpu-based+rendering+of+boolean+combinations+of+free-form+triangulated+shapes
http://www.google.com/search?q=Blister:+Gpu-based+rendering+of+boolean+combinations+of+free-form+triangulated+shapes
http://www.google.com/search?q=Real--time+volumetric+intersections+of+deforming+objects
http://www.google.com/search?q=Real--time+volumetric+intersections+of+deforming+objects
http://www.google.com/search?q=Using+a+gpu+to+accelerate+die+and+mold+fabrication
http://www.google.com/search?q=Using+a+gpu+to+accelerate+die+and+mold+fabrication
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=Robust+inside-outside+segmentation+using+generalized+winding+numbers
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=Particle+swarm+optimization
http://www.google.com/search?q=Hardware+accelerated+rendering+of+csg+and+transparency
http://www.google.com/search?q=Fast+penetration+depth+computation+for+physically-based+animation
http://www.google.com/search?q=Fast+penetration+depth+computation+for+physically-based+animation
http://www.google.com/search?q=Cinder:+Collision+and+interference+detection+in+real-time+using+graphics+hardware
http://www.google.com/search?q=Cinder:+Collision+and+interference+detection+in+real-time+using+graphics+hardware
http://www.google.com/search?q=Escherization
http://www.google.com/search?q=Stackabilization
http://www.google.com/search?q=Chopper:+Partitioning+models+into+3d-printable+parts
http://www.google.com/search?q=Chopper:+Partitioning+models+into+3d-printable+parts
http://www.google.com/search?q=An+automatic+method+for+solving+discrete+programming+problems
http://www.google.com/search?q=An+automatic+method+for+solving+discrete+programming+problems
http://www.google.com/search?q=gProximity:+Hierarchical+gpu-based+operations+for+collision+and+distance+queries
http://www.google.com/search?q=gProximity:+Hierarchical+gpu-based+operations+for+collision+and+distance+queries
http://www.google.com/search?q=Fast+collision+detection+between+complex+solids+using+rasterizing+graphics+hardware
http://www.google.com/search?q=Fast+collision+detection+between+complex+solids+using+rasterizing+graphics+hardware
http://www.google.com/search?q=Flexmolds:+Automatic+design+of+flexible+shells+for+molding
http://www.google.com/search?q=Flexmolds:+Automatic+design+of+flexible+shells+for+molding
http://www.google.com/search?q=Interactive+3d+distance+field+computation+using+linear+factorization
http://www.google.com/search?q=Layered+depth+images
http://www.google.com/search?q=Layered+depth+images
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=Nested+cages
http://www.google.com/search?q=Computational+design+of+twisty+joints+and+puzzles
http://www.google.com/search?q=Computational+design+of+twisty+joints+and+puzzles
http://www.google.com/search?q=Computational+design+of+linkage-based+characters
http://www.google.com/search?q=Computational+design+of+linkage-based+characters
http://www.google.com/search?q=Sensitive+couture+for+interactive+garment+editing+and+modeling
http://www.google.com/search?q=Pteromys:+Interactive+design+and+optimization+of+free-formed+free-flight+model+airplanes
http://www.google.com/search?q=Pteromys:+Interactive+design+and+optimization+of+free-formed+free-flight+model+airplanes
http://www.google.com/search?q=Packmerger:+A+3d+print+volume+optimizer
http://www.google.com/search?q=Optimal+gait+and+form+for+animal+locomotion
http://www.google.com/search?q=Optimal+gait+and+form+for+animal+locomotion
http://www.google.com/search?q=Mesh+arrangements+for+solid+geometry
http://www.google.com/search?q=Mesh+arrangements+for+solid+geometry
http://www.google.com/search?q=Boxelization:+Folding+3d+objects+into+boxes
http://www.google.com/search?q=Boxelization:+Folding+3d+objects+into+boxes

