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In this document we include complete details for the user studies and tech-
nical evaluations conducted in our paper "Juxtaform: interactive visual sum-
marization for exploratory shape design". Specifically, we describe the set
up, procedure and insights from both the formative user study (section 3.1
in the main manuscript) and the evaluation user study (section 7 in the
main manuscript) in full. We further describe impressions from aritsts about
the creative potential of juxtaform in realistic artistic workflows and an
in-depth technical evaluation of our algorithm which includes the effect of
parameters, performance and comparisons with relevant prior art.
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1 USER STUDIES
We characterize the problem space of exploring shape collections
from the perspective of creative end-users. We highlight insights
from formative interviews with artists and designers, who creatively
work with shapes on a daily basis. The role and challenges of shape
exploration in their workflow inspire a set of design goals for cre-
ative shape exploration systems.

1.1 Formative Interviews
We recruited 5 participants comprising of industrial (P1, P2) and
product designers (P3), professional 3D modelers (P5)and indepen-
dent artists (P4) with experience ranging between 2-3 years (P1, P3)
to 5 years (P2, P4) and more (P5), through convenience sampling;
and interviewed them about their applications, workflow and per-
sonal experience exploring shape collections on prior professional
projects.

1.1.1 Interview Format, Structure, and Analysis. Each interview
was an hour-long semi-structured discussion conducted via video-
conference. The interview began with a discussion of the partici-
pant’s creative application(s), workflow(s) and the role of shape ex-
ploration within it. Participants were encouraged to walk us through
example projects, and highlight challenges faced when exploring
shapes. At the end of the interview, we asked the participant to
critique examples of recent research in shape exploration.
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Weoutlined four specific knowledge goals for follow-up questions
during our interviews:

• Exploratory Goals: In the context of their projects, what were
creators looking for?What form of shape abstraction did their
search terms have? What were the high-level goals for the
exploration?

• Selection Criteria: How do creators select from a set of candi-
date shapes and what criteria inform their choice?

• Applications: How do creators use the shapes they find?
• Challenges: What challenges do creators face in shape explo-
ration? Which aspects of the process are fun/tedious?

Each interview sessionwas video recorded and transcribed. Through
thematic analysis, we comparatively analysed transcripts to form a
holistic understanding of shape exploration workflows and applica-
tions. Quotes from each participant were grouped with respect to
the four overarching themes, and further clustered into insights.

1.1.2 Insights. We found three typical motivators for shape explo-
ration: inspiration, reference, and embellishment. Inspirational search
entails a fast, but extensive exploration of a shape corpus, to quickly
gather a wide range of diverse shapes to seed the ideation of a new
artefact. Exploration for a reference shape, or for shape embellish-
ment, involves sifting through one or more shape corpora to find
(parts of) shapes, that meet a more targeted set of design criteria.

The interviewed creators, in current practice had a fairly uniform
shape exploration workflow: they would first narrow their explo-
ration to a tractable set of hundreds of shapes via shape category
queries to an online search engine, or directly to tagged and labeled
shape repositories. These query results, typically comprising shapes
with strong structural and spatial commonalities, were then visual-
ized as a catalogue of thumbnails, usually within a web browser or
file explorer. Sometimes a few (typically 5 or less) shapes are cho-
sen from the thumbnails, for further processing, such as evaluating
these shapes in-situ within a larger design, or using parts of these
shapes to refine or embellish an evolving design; such processing
is iterative and requires repeated switching between the selected
shapes and their application context.
Creators reported that comparing disparately presented shapes

in such catalogues, for similarity or diversity, is both difficult and
tedious. P2 mentioned: “If I’m looking for a bottle to add to my scene
for example, I can quickly search the term ‘bottle’ on the internet and
I have a huge collection of shape ideas in front of me, that’s easy. The
difficult and boring part is really to look through this list and try to
find what I want. Seeing similar bottles again and again makes me
mentally switch off while looking for options and I don’t really register
differences between them. Its also impossible to see everything in the
set of [queried] results so I just pick the best I can see after a point and
make the most of it.”. In a similar vein, P5 said “It gets quite annoying
to go through multiple catalogues of shapes looking for new ideas
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after a point. The same ideas repeat themselves in different ways and
its hard to [summarily] evaluate whether a collection has something
interesting without diving into it and spending a lot of time, which is
something we usually don’t have time for in a deadline crunch.”

At the end of the interview, we showed participants examples of
unique creativity support tools such as ShapeSynth [Averkiou et al.
2014] and SketchSoup [Arora et al. 2017] which combine creative
ideation with shape exploration. The participants were excited about
the aesthetic visual design of SketchSoup and ShapeSynth’s unique
ability to generate shapes beyond the initial collection. In particular,
they mentioned that such creative elements have the potential to
turn the usually tedious task of clicking through shapes into an
engaging and creative exploration of ideas.
In summary, we gained five key insights from these interviews.

• Imprecise Shape Search (I1): Creators often have only a broad
sense of desired shape(s), since the chosen shapes in some
tasks are rarely used as-is, or are an accessory, whose precise
details are not critical to the design task.

• High throughput (I2): Shape exploration is often accompanied
by an approaching deadline or perceived as a quick precursor
to impending design tasks. An overarching issue with existing
shape collection browsers was the time it could take, even
to determine if the shape collection was appropriate for the
creative task.

• Rich Variations (I3): Creators sought a diverse set of shape
variations during exploration, both for inspiration and for
shape refinement. In particular, there was a desire to under-
stand the overall distribution of shapes in a collection: the
common and unique parts and features of shapes and their
relationship to each other.

• Understanding in Context (I4): It is important for creators to
be able to pre-view and understand explored shapes, relative
to each other and their given design context. It is significantly
easier for example, to evaluate and select between candidate
3D shapes, when juxtaposed in-situ, in a 3D scene with spatial
constraints.

• Creative Engagement (I5): Shape exploration, like the cre-
ative process itself, should be fun and engaging. Creators
we interviewed found ideation interfaces that are playful
and aesthetically pleasing (eg. SketchSoup [Arora et al. 2017]
for shape, and ColorBuilder [Shugrina et al. 2019] for color),
appealing to dabble with, as a source of inspiration and ideas.

1.2 Design Goals
We distilled these collective insights into 4 design goals for creative
exploration of shape corpora.

• Rapid Exploration (D1): Quickly convey using sketch abstrac-
tion, the overall essence of shapes in large collections (I1,
I2), with fluid interactive tools to select (parts of) shapes and
browse variations (I3, I5).

• Diversity Exploration (D2): Provide an interactive understand-
ing of shape/part diversity, in shape corpora (I3).

• Contextual Exploration (D3): Allow juxtaposed, in-situ pre-
sentation of shapes and their parts, to enable general shape

comparison (I1), greater visual throughput (I2), and shape
understanding in a design context (I4).

• Ideative Exploration (D4): Interactively present shapes and
their parts in a manner that aids imagining and creating novel
shapes, beyond those in the given collection.

1.3 Related Work Relative to Design Goals
1.3.1 Rapid Exploration (D1). Rapid exploration is important for
both objective and subjective tasks.
A large body of research is focused on objective tasks such as

the targeted search and retrieval of shape, based on different input
queries, such as rough sketches, images or text [Biasotti et al. 2016;
Gao et al. 2014; Rehman et al. 2012; Tangelder and Veltkamp 2008].
Relative to juxtaform, these approaches would be used either to
narrow exploration to still large class of shapes, or downstream for
precision in later stage shape design.
Work has also been done on subjective tasks such as free-form

browsing, overall understanding of the shape corpus, and ideative
exploration of shape diversity [Averkiou et al. 2014; Huang et al.
2013; Ovsjanikov et al. 2011], shape correspondence and structure
[Huang et al. 2013; Kim et al. 2012; Xu et al. 2014] to provide an
overview of the shape corpus. Low-dimensional feature embeddings
or common can also streamline interactive exploration [Arora et al.
2017; Averkiou et al. 2014].

Sketchy (NPR) and other perceptual shape abstractions [Averkiou
et al. 2014; Lin et al. 2018; Ovsjanikov et al. 2011; Todd 2004], as well
as spatial arrangements and juxtapositions of common structure
[Huang et al. 2013; Kleiman et al. 2013; Matejka et al. 2018], aid
understanding and comparison in shape collections [Zhu et al. 2014].

Inspired by these themes, juxtaform employs a juxtaposed sketch-
based visual abstraction, to define an interactive, stroke-based visual
summary of a shape corpus that addresses all four design goals.

1.3.2 Diversity exploration (D2). Many shape exploration systems
recognize the artistic need to explore both local and global diversity.
Proxies such as a common abstracted part structure [Ovsjanikov
et al. 2011], shape grammars [Dang et al. 2015], shape statistics
[Matejka et al. 2018], or a low-dimensional feature space [Averkiou
et al. 2014], offer interactive modalities to explore local and global
shape variations. Critically, these approaches sometimes filter away
uniquely interesting and extreme shapes and their parts as outliers,
and the presence of explicit intermediate representations can seem
foreign, break user flow, and make variation control difficult [Arias-
Rosales 2022]. Closer to our goals are sketchy systems that present
suggestions from a shape collection based on partial input [Lee et al.
2011; Orbay et al. 2012], or probe the shape collection using regions
on individual or averaged shapes [Kim et al. 2012; Zhu et al. 2014].
In contrast to proxy approaches, juxtaform interaction remains

largely within the domain of pure ideation sketching. It also does
not average or alter the input shapes, rather choosing to present an
entire shape collection as a juxtaposed sketch stroke-based visual
summary, balancing the needs of showing entire representative
shapes and common/unique parts of shapes, while minimizing visual
clutter.
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1.3.3 Contextual Exploration (D3). While the importance of com-
parative and in-situ visualization within an application context is
well established [Arias-Rosales 2022; Lao et al. 2021; Shireen et al.
2019], most ideative shape exploration systems display shapes one-
at-a-time, or in gallery-like spatial layouts [Averkiou et al. 2014;
Huang et al. 2013; Kleiman et al. 2013; Ovsjanikov et al. 2011]. Such
layouts require dedicated screen space, precluding them from sup-
porting explicit comparisons, and flexible integration into a focused
application context. Outside of exploration of shape corpora, vari-
ous tools have effectively used in-situ visualization for design space
exploration in immersive environments [Lao et al. 2021] and sketch-
based ideation [Arora et al. 2018; Lee et al. 2011].
Exploration in context is inherent in juxtaform, where a sparse

stroke-rendering of shape parts frees up valuable screen space to
facilitate legible juxtaposition (superposition), which in turn enables
convenient comparison of shapes and easy integration into the
spatial context of a design application.

1.3.4 Ideative Exploration (D4). Numerous approaches such as
generative models, shape grammars, genetic algorithms [Xu et al.
2012] and latent shape spaces [Averkiou et al. 2014] address ideative
shape exploration. Many of these approaches introduce randomness
to generate novelty in the shape generation process [Cohen-Or and
Zhang 2016], which can be inspiring but can also inhibit control
over the shapes, suggesting the need to control any stochasticity in
shape variations [Arias-Rosales 2022].
The sparse part-based stroke-rendered visual shape summaries

in juxtaform are designed to aid designers in mentally imagining
shapes beyond the collective (Fig. 15 main paper). Further, juxtaform
can be a compelling front-end to exploring the ideation space of
generative models (Fig. 14 main paper).

1.4 Evaluating Juxtaform
We conducted a user study to evaluate juxtaform as a shape explo-
ration system and examine its value in comparison, and for comple-
mentary use with traditional gallery-based layouts as identified in
our formative interview participants (§1). We set out to learn about:
(i) juxtaform’s visualization system and interaction workflow for a
diverse set of realistic exploration tasks and application scenarios;
(ii) how juxtaform fares compared to the competition in terms of
performance and user experience; (iii) usage patterns of juxtaform
which complements that of gallery-based exploration system; and
(iv) perceptual challenges associated with spatial arrangement in
large-scale shape exploration tasks.

We designed a multi-faceted comparative evaluation of juxtaform
against a baseline exploration system, on tasks involving different
browsing scenarios.

1.4.1 Protocol. Our study took place in-person, in a dedicated room
in our laboratory. Upon providing consent and filling out a short
demographics questionnaire, participants were provided with an
overview of the study, where the facilitator explained that they will
be tasked to explore three different shape collections (planes, guitars,
fonts) to identify characteristics about the collection, or particular
shapes of interest, using two exploration systems: juxtaform and

a Folder system akin to typical gallery layout views as used by
professionals for such tasks (§1).
Before completing the tasks relevant to a shape collection with

the designated system, participants were given a brief walkthrough
of the system. They were also allowed to free-form explore the
collection before being shown the tasks, so as to gain a basic sense of
the collection (whichwould be consistent with a real-world scenario)
and familiarize themselves with the interface (therefore minimizing
time to appropriate basic functionality).
For each shape collection, participants were asked a series of

questions which they had to answer through exploration of the
shape collection in order, before moving to the next question. Once
they answered all questions, participants were invited to take a
break, before starting exploration of the next shape collection.

The exploration systems to work with for the first two collections
were fixed (i.e juxtaform first, then folder system or vice versa). For
the third collection, participants were given the freedom to use one
or both of the systems as they wished. This allowed us to study
potential hybrid usage patterns for exploration tasks, and capture
preferences of use in the context where juxtaform complements
other existing approaches. To reduce potential ordering effects or
bias associated with certain shape collections, we balanced systems
presentation order and collections across participants. For instance,
if P1 used juxtaform first to explore the planes collection, then
folders for guitars, and finally had a choice for fonts; P2 could be
assigned folders for guitars, then juxtaform for fonts, and would
have a choice for airplanes.
At the end of the study, we performed an unstructured closing

interview to discuss the participant’s user experience, usage patterns
observed during the third task where the participant had the choice
of the tool, challenges faced during exploration and a discussion
asking them to contrast and compare their experience with both
systems. A subset of participants were also given the opportunity to
try the additional features of juxtaform, such as its different spatial
and sketch-based filters, which were developed based on feedback
from early participants in the user study.

1.4.2 Tasks and Measures. We curated three shape collections, cov-
ering diverse object types, characteristics, and collection size: guitars
(200 3D models [Wu et al. 2015]), airplanes (450 3D models [Wu
et al. 2015]) and fonts (Capital T in 100 fonts [Ge et al. 2021]). Each
collection had a set of exploration tasks associated with it, such
as identifying items possessing a particular feature, or character-
izing global distributions, which we designed based on workflows
described by our formative interview participants (§1.1).

Our tasks were designed to simulate realistic browsing scenarios
pertaining to three exploration goals; search, comparison and under-
standing. Search tasks involve finding a particular shape based on a
description of a part, geometric feature or semantic style (D1); and
can be divided into three types based on the target; baseline (generic
shapes with many examples in the collection), rare (uncommon
shapes with a rare characteristic feature) and anomalies (geometric
outliers). Understanding tasks focus on the statistical distribution of
shapes in the collection, asking users to identify common features
and exemplify the diversity in the collection via examples (D2).
Comparison tasks focused on comparative analysis, asking users to
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identify relative extremes and trends in the context of other shapes
in the collection (D3). For e.g, are shapes of type Y always taller
than type X? For each collection, we designed a set of 4 search tasks,
3 understanding tasks and 3 comparative tasks.
We recorded completion time for each task, correctness of the

answers on a scale of 0 (wrong) to 1 (correct), as well as observation
notes whilst participants completed the tasks, along with qualitative
feedback collected during the closing interview.

1.4.3 Systems. We used two exploration systems in the study. The
first system was a gallery-based layout of stroke-based NPR ren-
ders of the shape corpus presented in a folder system (Figure 1-a),
which mimics the current solution we found professionals use. The
second was a limited version of juxtaform. We chose to only encom-
pass juxtaform features for which an equivalent capability exists in
the baseline to allow for a more fair comparison between the two
approaches, i.e. our study did not include spatial or sketch-based
filters. Further, we also grouped similar shapes into folders, each
with a representative thumbnail, to imbue the traditional gallery
with summarization abilities similar to juxtaform, allowing us to
keep the focus on the juxtapose vs. gallery presentation method:
shapes were grouped into folders using a clustering algorithm [Jar-
man 2020] based on a dilation-based shape similarity score. Given
that the shapes were pre-registered, the similarity score for a pair of
shapes was defined as the minimum dilation needed for one shape
neighbourhood to contain the other shape. As a sanity check, we
also ran the study on one participant with a flat unclustered folder
structure and noticed that the timing and correctness was at least
twice as bad compared to the clustered folders. We therefore decided
against including a comparison with a fully unclustered layout in
our user study.

1.4.4 Participants and Apparatus. We recruited 15 participants,
aged between 23 to 35, from a diverse set of ethnic and vocational
backgrounds via convenience sampling. Three participants had ex-
tensive prior experience with shape exploration via creative or
technical exposure to digital graphics software (P3, P6, P13), while
others were limited to an occasional use of text-based searches for
online shopping or presentation design. The studies were conducted
on an ASUS laptop with 16 GB RAM, an NVIDIA RTX 3060 graphics
card and an external monitor at a resolution of 1920 x 1080 pixels,
equipped with a mouse and keyboard, with a capture of audio and
screen recordings.

1.5 Results
Wediscuss ourmain findingswith regard to performance, patterns of
usage which we synthesize from observing participants completing
the tasks, and insights gathered from a thematic analysis of post-
study interview transcripts.

1.5.1 Performance. Figure 1-b shows a summary of participants’
mean completion time and correctness of answers. We were pri-
marily interested in re-creating in-the-wild exploration scenarios;
and while participants were instructed to take a reasonable amount
of time to complete each task, no time performance, nor duration
limit were set. This allows us to capture completion time that would
be closer to reality, i.e. factoring in the time one may take to get

more familiar about a dataset in earlier tasks, and a primary goal
of correctness as opposed to speed. Completion times should be
interpreted in this context. Further, we did not find performance
differences across shape collections, suggesting that they were all
of equivalent complexity. Below, we discuss our findings per type
of tasks.
Baseline Search: As we expected, both the folder system and

juxtaform performed well for such tasks, with juxtaform having a
slight edge with timing which could be attributed to the instant
access to diverse shapes via the summary view (D1). This finding is
however negligible given the fact time efficiency was not instructed
as a goal for participants.

Anomaly Search: Juxtaform’s efficacy at helping users quickly
identify outliers and anomalies in the dataset was evidenced by the
notable difference in both timing and answer quality for such tasks
(D1, D2). Participants particularly struggled with the folder system
when outliers differed only in small local region (e.g, a guitar with
a slanted neck), and got grouped within a larger cluster.
Rare Target Search: Participants effectively used juxtaform’s

summary view and brushing to find rare shapes in the collection.
However, they also mentioned that juxtaform filters would have
been particularly useful for such tasks. P11 said “When restricted to
the brush and hover, there were times when I could see something I
wanted, but it was hard to isolate it, particularly in regions with many
strokes.”, providing motivation for the relevance and necessity of the
spatial-based and shape-based filters which were not included in
our evaluation (D1,D2). With the folder system, participants missed
rare shapes when they belonged to large clusters of similar shapes.
P9 said “It was hit and miss with the folders, because it can be quite
overwhelming to scan through a large set of similar shapes looking
for a particular feature. I found rare shapes only when I chanced upon
them at random. I could have sworn that the target shape was not
in the collection until I just happened to notice it while browsing the
same folder of shapes the fourth time, right before I gave up.”

Comparison: Juxtaform had a performance advantage compared
to the gallery when it came to comparison tasks. Arguably, a gallery
is not designed for comparative analysis and therefore participants
using the folder system gave low confidence answers and explicit
guesses. In contrast, juxtaform should facilitate such tasks by de-
sign. As anticipated, our results show that participants were able to
answer such tasks quickly and with perfect accuracy (D1, D3).

Understanding: Understanding tasks displayed different trends
based on the organization of the folder system in relation to the
task. For instance, if the folders grouped airplanes by wing types,
participants found it easy to perform tasks which required them to
characterize different wing types. However, characterizing types of
tails with this folder structure could be significantly harder. As a re-
sult, we divided understanding tasks based on their alignment with
the organization of the folders. As we expected, the folder system
performs better on tasks which were aligned with its organization
compared to those that were not. Juxtaform’s cluster-agnostic repre-
sentation performed well irrespective of the task. Users often used
the diversity score color map to quickly perform such tasks. P1 said
“The diversity score color map is great to get a quick overview of the
different common and unique parts in the collection. I found it very
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Fig. 1. (a) The folder system used in the user study. Users could view representative icons for each folder (top left) and on double clicking the icon they were
shown its contents in a gallery layout (bottom). (b-c) Participants’ performance by task: completion time (b) and success rate (c) defined by the average
correctness of participant answers, for juxtaform (green) and the folder system (yellow). Error bars show 95% confidence intervals.

easy to answer questions about the distribution of shapes using this
color map.” (D1, D2).

1.5.2 Usage Patterns. We performed a thorough analysis of tool us-
age from screen recordings of the study sessions. This allowed us to
characterize notable usage patterns, which we further contextualize
with insights from our observation notes and relevant quotes from
interview transcripts.

Participants balanced the use of the summary view and ex-
plore brush in different ways.While most relied on the summary
and brushed only when needed, some preferred to see as much of
the dataset as possible and extensively used the brush. One such
participant, P3, stated that “While the summary was great, and I
love how different shapes pop out when I hover over them; I really
enjoyed using the explore brush to reveal more stroke bundles and
see everything. I think seeing everything gives me a comfort that I’m
not missing anything in the collection. I also think the color maps
made it really fun to use the explore brush and discover the different
strokes in the dataset” (D2). Like P3, other participants also enjoyed
using the different color maps juxtaform had to offer. P7 said “The
object-based color map really helped me associate different colors with
different objects. It’s almost like an additional encoding that also helps
you remember the shapes you see. Imagine if everything was black,
it would be much harder to remember the shapes. It of course also
helps with discerning different shapes when there are multiple shapes
displayed at once” (D2). Meanwhile, P2 said “I loved starting out
with the diversity score color map. Brushing in different areas gave me
a great sense of the distribution of shapes in the collection like more
common or unique features. It also creates very aesthetic cool looking
visualizations that I enjoyed exploring with!” (D1, D2).
The two approaches are complementary. We gave partici-

pants the freedom to use either or both systems as they wished to
perform exploration tasks for the third and final collection. This
allowed us to investigate combined usage patterns for both explo-
ration frameworks and the potential for their complementary use.
All but three of our fifteen participants chose to use juxtaform for
all the tasks in the third collection. P3 and P8 preferred to start with
the folders but switched over to juxtaform after one or two tasks,
and P6 employed a hybrid use pattern switching between systems
based on the different tasks. In our closing interviews, participants
noted that juxtaform was their preferred starting point to get a

high-level overview of the diversity and distribution of shapes in
the collection. P13 stated that “Juxtaform is a great starting point
for exploration. I think seeing everything together really helps me get
a sense of what’s really in the collection, what its extents are. Once I
know that its easier for me to decide where to explore and how much. I
wish all of the shape collections I explored came with this view on the
side!” (D1, D2). However, they would sometimes prefer to switch
to folders to visualize details in isolation to make final selections.
P6, the participant with a hybrid use pattern attempted to use the
folders for this purpose, but felt that it would be more helpful if
there was an explicit correspondence between the two systems. P6
stated “While juxtaform’s combined view is great, I sometimes want
to just be able to lay out the curves in front of me. Doing this for 1000s
of curves makes no sense, but when I’ve brought it down to the 5 or
10 that I like, maybe I’d want to just lay them out in front of me and
choose. Its hard though because I can’t lay out say just the guitar
heads that I’m looking at in juxtaform now. I have to go back to the
folder system completely and then its difficult to even find what I am
interested in again.”

1.5.3 Perceptual Challenges. We also discussed the perceptual chal-
lenges faced by participants. Two prominent and consistent themes
that emerged from our interviews analysis were the load on visual
memory and spatial attention.

Visual memory. The most pressing challenge participants faced
while exploring large collections of shapes with folders was the
need to construct and retain a mental map of the different shapes
in the collection. One of the most consistent comments was that
juxtaform’s visualization design allows them to navigate and explore
the collection without any mental map at all. P4 said “With the
folders, the limit really is mymemory, it’s all about trying to remember
where things are. But with juxtaform it’s just all there in front of me all
the time. Whenever I want to pick out a shape or go back to something
I found earlier, I just have to brush or hover over a region and there it
is!” (D1, D2).

Spatial attention. The second challenge that participants faced
was paying attention to many different spatial objects on the screen
at once. As mentioned earlier (in P9’s quote), this could be partic-
ularly overwhelming with the folders and lead to missed shapes
during exploration. With juxtaform, on the other hand, the chal-
lenge was more about parsing different shapes when multiple got
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displayed at once. As P11 quoted earlier, participants felt that the
ability to select and filter shapes was essential and effectively miti-
gated this challenge. When asked to compare, P14 said “juxtaform’s
eraser and selection tools help so much when there’s too many shapes
infront of me. Not only does it feel like I am drawing or creating my
own shapes when filtering with the sketch and eraser, but within a few
clicks or brushes, I can always make sure that I’m looking at a very
relevant and easy to visualize set of shapes. I can imagine it being
perfect for picking out that one bag I want from a set of options when
online shopping. With the folders, however, I am stuck to just the one
way of categorization given to me. I can always try to reorganize ev-
erything myself, but I can’t expect to do that every time I’m exploring
with a different goal!” (D1, D2, D3).
Within the same context of online shopping, P5 had a different

opinion on juxtaform’s potential and said “While juxtaform seems
great for geometric shapes that have some sort of constant rigid struc-
ture, I can’t imagine using it for clothes, for example, where there can
be so many different orientations, views, colors and patterns. Plus its
also something I would inherently like to see in isolation. Imagine
seeing two colorful shirts on top of each other, it would not give me
any sense of what they might look like on their own!”

2 TECHNICAL EVALUATION AND COMPARISONS
We evaluate our summarization algorithm technically, by showing
the impact of its design parameters, by comparing it with prior art on
geometric aggregation/simplification, and evaluate its performance
on diverse corpora.

2.1 Parameters
Our algorithm relies on two parameters, the 𝛿 neighbourhood se-
lected for dilation and the 𝛼 value which defines the allowed per-
centage intersection threshold for stroke selection. While both 𝛿

and 𝛼 can be used to control the amount of visual clutter seen in
the computed summaries, we fix 𝛿 based on the size of the superim-
posed collection’s bounding box (default 1% of the box diameter).
Informed by our practical experience with different corpora, we set
the default 𝛼 = 0.6 (at least 40% of a stroke’s length should be con-
veys new visual information). In Figure 2 and Figure 3, we see the
effect of different choices of 𝛼 and 𝛿 respectively on the computed
summaries.

Fig. 3. (Left to Right) Summarization results with three decreasing stroke
neighborhoods 𝛿 and an adaptive user selected 𝛿 in different semantic
regions of the shape.

2.2 Comparison with Geometric Aggregation
Our algorithm is specifically tailored to summarizing a shape cor-
pus, subject to our design goals. It is however, worth evaluating
whether existing geometric aggregation techniques can be trivially
repurposed to solve our problem. In particular, we consider stan-
dard sketch-stroke clustering methods and global shape-aggregation
techniques.
Stroke clustering methods assume that they are operating on

a single shape, and thus struggle to aggregate a large number of
disparate strokes from different shapes within the same spatial
context. As shown in Figure 4, we compared our results with a naive
spectral k-means clustering approach [Pedregosa et al. 2011] based
on theHausdorff distance and a recent approach for clustering stroke
data in overdrawn sketches: StrokeAggregator [Liu et al. 2018] on an
input collection of guitars consisting of approximately 8000 strokes.
In the case of StrokeAggregator, the input stroke collection required
heavy pre-processing and thresholding as the executable struggled
to run out-of-the-box on the large number of input strokes. On the
pre-processed subset, it returned an overly simplified and aggregated
output, assuming that the input strokes are a single overdrawn
sketch. The spectral k-means approach, on the other hand, selects
a set of representative strokes for each cluster with the number of
clusters selected based on the number of strokes in our summary
output. Here, we noticed that the selected strokes lack shape and
part coherence (i.e. fail to represent whole parts in shapes), but
also have regions of heavy visual clutter. Overall, we believe that
the overwhelming density of strokes in our use case (thousands of
strokes) makes it difficult to capture meaningful information with
only inter-stroke distances.

Conversely, while not designed for sketch simplification, we find
that our summarization approach, can produce reasonable results,
for sketch simplification, treating every stroke in the sketch as a
shape in a corpus (Figure 5).
To construct a comparable summary with shape aggregation

methods, we clustered the shape corpus using out-of-the-box image
clustering techniques [Pedregosa et al. 2011; Taskesen 2021] and
superimposed the cluster representatives. The number of clusters
were chosen to match either the number of strokes or shapes in
our summary. As we can see in Figure 6, with comparable stroke
density, our summary captures a greater feature diversity, and repre-
sents a larger portion of shapes in the collection with fewer strokes.
On the other hand, with comparable shape representation, shape
aggregation-based summaries cannot be visually parsed. Overall,
while shape aggregation methods do ensure a complete shape part
coherency in their summaries, our ability to include incomplete
shapes in a coherent part-aware manner helps us capture more
feature diversity with less visual clutter.

2.3 Performance
We evaluate the performance of our method on a diverse set of
shape corpora, consisting of 2D images, 2D fonts and 3D models,
with varying size and stroke density. In particular, we measure the
amount of sparsification performed by our method, with respect
to strokes and shapes, and the time taken for pre-processing and
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Fig. 2. The detail and amount of diversity packed into our summarizations can be interactively adjusted from a coarse overview to a fine collection of detailed
geometric features using the 𝛼 parameter.

Fig. 4. Our method outperforms traditional stroke clustering techniques
on multi-shape summarization both w.r.t visual clutter and coherent part
diversity. From left to right, we see the input strokes (8K), our summary (282),
a hausdorff distance-based summary (282) and StrokeAggregator output.

Fig. 5. Our summarization algorithm can be used for a fast selection-based
sketch simplification, illustrated here on two overdrawn sketches.

summarization. This evaluation, summarized in Table 1, was con-
ducted on an ASUS laptop with 16GB RAM and an NVIDIA RTX
3060 laptop GPU.

Our summarization algorithm robustly handles shape collections
of different sizes and stroke densities, ranging from single shape
overdrawn sketches to 10K-sized shape repositories. The summaries
typically converge on a few hundred strokes, significantly thinning

Fig. 6. Our summarization results can represent features from a greater
number of shapes 𝑁 with fewer strokes 𝑆 and minimal visual clutter (top)
compared to shape aggregation-based summaries with a comparable num-
ber of strokes (middle) and shape representation (bottom).

Fig. 7. We evaluate the effect of the dataset size on our summarization
results. (Left to right) The dataset increases from 10 to 50, 500 and 10K
shapes. Our summarization converges based on the maximum allowed
clutter. The inset reveals the density of strokes in the input dataset.

out the input, and feature parts from about 40-100 shapes in larger
datasets. Beyond this point, we presumably either hit the visual
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clutter threshold or there are no further shapes with unique features,
making remaining strokes redundant.
With respect to the time taken, the shape-stroke distance calcu-

lation is the most expensive computation due to the many shape-
stroke intersection computations within it. However, this computa-
tion can be perceived as a one-time pre-processing cost for a dataset,
as this distance matrix remains constant throughout interactive
exploration iterations. Further, in comparison to traditional stroke
clustering techniques that require inter-stroke distances our shape-
stroke distance computation consists of fewer calculations and is
therefore significantly more cost-effective for a large stroke count.
The greedy summarization algorithm, on the other hand, is fast and
steadily converges in under a second, suitable for interactive use.

Table 1. Performance statistics for our summarization algorithm. 𝑆 and 𝑁

are respectively the number of shapes and strokes in the input. 𝑆 ′ and 𝑁 ′

are corresponding numbers for the summarized output. The time is split into
the shape-stroke distance computation (Dist.) and summarization (Summ.).

Dataset 𝑁 𝑆 𝑁 ′ 𝑆 ′ 𝑁 ′
𝑁

𝑆 ′
𝑆

Time (in secs)

Dist. Summ.

Plane2 10K 725K 85 495 0.85 0.07 2835 0.92
Vase 470 15K 236 986 50.22 6.4 625 0.86
Plane1 448 38K 67 399 14.96 1.05 1027 0.8
Guitar 288 12K 47 313 16.32 2.54 313 0.25
Car 225 28K 54 504 24 1.8 960 0.68
Fonts 100 1526 28 169 28 11.08 26 0.01
Bottle 38 773 29 179 76.32 23.16 2.5 0.01
Koala 1 146 1 85 100 58.22 0.3 0.004
Lion 1 362 1 198 100 54.7 0.7 0.01
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