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Fig. 1. Juxtaform addresses the visual exploration of large shape collections (a) for creative design. Stroke-based shape abstractions (b) are presented juxtaposed
in-situ (c,d) to optimally visualize shape corpora with minimal visual clutter. A novel stroke filtering algorithm provides an automatic sketch-like rendering
designed to highlight both the most common structures and diverse shape parts in a shape corpus (e). Users can browse, suppress or select currently displayed
shapes (d), or reveal unseen parts of the corpus either spatially (f) or by sketching (g), providing a compelling integrated workflow for early sketch ideation (h).

We present juxtaform, a novel approach to the interactive summarization
of large shape collections for conceptual shape design. We conduct a for-
mative study to ascertain design goals for creative shape exploration tools.
Motivated by a mathematical formulation of these design goals, juxtaform
integrates the exploration, analysis, selection, and refinement of large shape
collections to support an interactive divergence-convergence shape design
workflow. We exploit sparse, segmented sketch-stroke visual abstractions
of shape and a novel visual summarization algorithm to balance the needs
of shape understanding, in-situ shape juxtaposition, and visual clutter. Our
evaluation is three-fold: we show that existing shape and stroke clustering
algorithms do not address our design goals compared to our proposed shape
corpus summarization algorithm; we compare juxtaform against a structured
image gallery interface for various shape design and analysis tasks; and we
present multiple compelling 2D/3D applications using juxtaform.
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1 INTRODUCTION
“The designer does not, as a rule, begin with some preconceived idea.
Rather, the idea is the result of careful study and observation, and the
design a product of that idea.” —Paul Rand
Sketching as an interactive exercise [Schon and Wiggins 1992]

and sketch strokes as a visual abstraction [Prats 2007] are both
critical in early stage design towards the development of ideas in
divergence-convergence cycles [Liu et al. 2003] of design iteration
[Arias-Rosales 2022]. We present a principled inquiry of such shape
design and address the resulting design goals with a novel interactive
exploratory shape summarization system called juxtaform.
Shape collections and existing designs fuel a rich mix of inspi-

ration, templates, and constraints into this creative design process
[Holinaty et al. 2021]. Inspirational shapes often need to be jux-
taposed (used synonymously with superimposed) for comparison
relative to each other (Figure 2), as well as evaluated in-situ within
their design context [Arias-Rosales 2022]. Such shape corpora are
abundant online and are increasingly produced by generative AI
models [Cohen-Or and Zhang 2016; Gao et al. 2022; Rombach et al.
2021], providing both an enormous wealth of design data and a
challenge to effectively exploit it. The ability to interactively inter-
leave exploration (divergence) with filtering and refinement (con-
vergence) of such shape corpora presented in-situ as juxtaposed,
sketchy ensemble summaries thus has the potential to disruptively
streamline early stage design [Arias-Rosales 2022]. Yet, design lit-
erature does not provide a comprehensive set of design goals that
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Fig. 2. Examples of superimposition in an airplane design [Nichols 1954].
Designers often use superimposition to explore variations around a common
form or visualize similarities and differences between design variations.

can be mathematically optimized as a sketch summary for shape
ensemble exploration.
We thus conducted formative interviews with 5 design profes-

sionals to formally understand the role of shape collections and
generative AI in design applications. Findings consistent with prior
work [Arias-Rosales 2022] underline the importance of rapid and
ideative exploration of shape diversity in spatial context to under-
stand and harness the creative potential of a shape collection (§3).

Understanding shape diversity and context necessitates reasoning
of parts of shapes in relation to each other, addressed by a large body
of research on shape registration and correspondence [Castellani
and Bartoli 2020]. Even given a segmentation and part correspon-
dence across shapes, rapidly conveying a summary view of a large
collection in context entails finding an effective visual representa-
tion of shape, and then, an optimal balance between overall spatial
clutter, showing complete representative shapes, as well as unique
shape segments that capture the shape diversity of the collection.

A sketchy stroke-based representation of shape is well-suited to
the above design goals: it provides a sparse visual abstraction of
partial or complete shapes with minimal clutter suitable for juxta-
position; it aligns with ideative sketching [Arora et al. 2017], where
shapes can be imagined as mental compositions of disparate and
incomplete strokes; stroke attributes such as color or transparency
can convey auxiliary information relevant to their shapes; and the
strokes serve as selection and manipulation handles for interactive
shape exploration and modeling [Tsang et al. 2004].

While there is a rich body of inter-disciplinary research on sketch-
based design (§2), the sketch-based exploration and refinement of
juxtaposed shape collections is relatively uncharted. We formulate
the design goals distilled from design literature and our formative
study (§3) as mathematical objectives to develop a novel algorithm to
visually summarize a shape collection (§5). Juxtaform (§4) is a system
that exploits this visual summary to interactively visualize, explore,
filter, and refine large shape corpora using in-situ juxtaposed sketch
strokes (Figures 1, 5).
Overview: A review of prior art (§2) is followed by a summary

of findings of our formative study on exploratory shape design (§3),
with study details in the supplemental. The study provides us with
design objectives and a concrete problem statement, several motivat-
ing applications, and a framework to position our system juxtaform
relative to prior art. We then present our interface juxtaform, with
details on user interaction (§4) and our algorithm for visual sum-
marization of a shape corpus (§5). We also show that compared to

our approach, existing stroke and shape aggregation techniques de-
signed for different design objectives are unsurprisingly ill-adapted
to visually summarizing a large juxtaposed shape corpus (§6). §7
presents the summary of a formal user study comparing juxtaform
to a baseline structured image gallery interface (see supplemental).
We also show several creative 2D and 3D applications suggested
by our formative study and illustrated using juxtaform (§8), and
conclude with a discussion of limitations and future work (§9).
Our contributions are three-fold. We:
1. provide a formative analysis of sketch-based shape corpus explo-
ration whose design goals inform juxtaform and future systems.
2. formulate a novel stroke-filtering (summarization) algorithm to
balance juxtaposed shape exploration goals and visual clutter.
3. present juxtaform, a compelling system for exploratory shape
design, with a formal evaluation, and many creative applications.

2 RELATED WORK
Interactive sketch-based exploration of juxtaposed shape collections
for early stage design touches areas of shape ideation and explo-
ration [Biasotti et al. 2016a], geometric aggregation [Zhu et al. 2014],
and sketch-based shape interaction [Olsen et al. 2009]. We provide
an overview of work in these areas before further positioning them
relative to design objectives from our formative study in §3.

2.1 Early-Stage Shape Ideation
Exploratory ideation is an essential and challenging part of the
creative process. Prior work has focused on both understanding
‘ideation’ and developing creativity support tools (CSTs) [Shneider-
man 1999] to assist people with creative tasks. Despite a variety
of multi-modal CSTs, sketching rough shapes around a basic form
remains a preferred method for shape ideation [Prats 2007; Schon
and Wiggins 1992; Smithers 2001]. In particular, designers typically
sketch a basic idea of their vision [Hua 2019; Prats and Earl 2006]
and go through cycles of divergence, by exploring variations around
this vision, and convergence, by selecting and refining desirable
variations, to conceptualize their eventual design [Liu et al. 2003].

Juxtaform provides a novel combination of three main charac-
teristics — the familiar control and environment of sketch-based
ideation, exploration and filtering features explicitly aligned with
the goal of divergence-convergence cycles around a specific concept,
and the computational capability to support the rapid exploration
of shape diversity in large shape corpora.

2.2 Shape Exploration
A large body of literature deals with the rich space of shape explo-
ration, and the challenging problem of browsing large collections
of graphical objects (Figure 3). From the difficulty of searching [Bia-
sotti et al. 2019], retrieving [Gao et al. 2014; Liu et al. 2013; Schulz
et al. 2017; Tangelder and Veltkamp 2008], and exploring [Averkiou
et al. 2014; Kleiman et al. 2013] desired shapes to that of imagining
new shape ideas from existing collections [Averkiou et al. 2014;
Jain et al. 2012; Lee et al. 2011; Xu et al. 2012], shape exploration
systems have addressed a diverse set of challenges and user goals
pertaining to the exploration process. The majority of research in
this area — which is focused on images [Zhu et al. 2014], 3D models,
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Fig. 3. Three shape exploration systems which illustrate different design choices with respect to visual representation, spatial arrangement, and interaction.
(a) A gallery layout with scroll-based interactions [Kleiman et al. 2013], (b) A hierarchical layout with click-based interactions [Huang et al. 2013], and (c) A
hybrid layout with edit-based interactions on a structural shape proxy [Ovsjanikov et al. 2011].

and sometimes both [Hueting et al. 2015] — can be characterized
by the different application scenarios and exploration goals of the
designed systems, as well as the design choices made when building
the system.

Our approach is focused on the juxtaposed visual summarization,
interactive exploration, and selection of shapes and parts of shapes
from large shape collections which are spatially aligned or for which
reasonable alignments can be computed [Kim et al. 2012]. Much
research is, however, still complementary to ours, and given the
multiple ways in which prior art relates to juxtaform, we have
further positioned this research relative to ours in the context of
our problem scope and design goals in the supplementary material.

2.3 Geometric Aggregation
Various algorithms for aggregating collections of graphical objects
have been proposed for images [Agarwala et al. 2004; Zhu et al.
2014], vectorized sketches [Liu et al. 2018; Van Mossel et al. 2021],
3D models, and scenes [Fish et al. 2014; Huang et al. 2019; Xu et al.
2014b]. Most relevant to us are techniques that focus on aggregating
geometrically similar shapes and sketch strokes.
A notion of similarity between shapes [Van Kaick et al. 2011;

Veltkamp 2001] has been used to present organized hierarchical lay-
outs [Huang et al. 2013], discover common structures [Pauly et al.
2008], or support intuitive feature and text-based queries [Biasotti
et al. 2016b; Gao et al. 2014]. Stroke aggregation approaches [Grabli
et al. 2004; Liu et al. 2018; VanMossel et al. 2021; Yan et al. 2020] typi-
cally assume a single shape and focus on constructing geometrically
accurate aggregates for sketch-based applications [Gryaditskaya
et al. 2020; Hähnlein et al. 2022; Xu et al. 2014a].
In contrast, our focus is not on averaged strokes or clustered

shapes, but on the visual composition of representative strokes from
a collection to maximize understanding of the shape collection with
minimal clutter.

2.4 Sketch-Based Shape Interaction
The bulk of research in sketch-based modeling pertains to the use
of sketch-strokes for the interactive creation of shapes [Olsen et al.
2009]. Our research, focused on the stroke-based exploration of
large collections of existing shapes, complements these approaches
and easily integrates to provide initial shapes or shape suggestions
[Tsang et al. 2004] for further sketch-based refinement. Notably
relevant are also techniques like ours, which recognize the value of
in-situ visualization in design (albeit without juxtaposing multiple

shapes) [Arora et al. 2018; Lee et al. 2011; Paczkowski et al. 2011;
Ye et al. 2021] and creative ideation [Arora et al. 2017; Hennessey
et al. 2016; Holinaty et al. 2021; Orbay et al. 2012]. In the context
of designing effective visualization and interaction techniques to
maximize the understanding of a visual composition of shapes, our
work also takes inspiration from research on composite visualiza-
tion systems [Javed and Elmqvist 2012], interaction techniques to
navigate multiple stacked views [Cockburn et al. 2009; Lam and
Munzner 2010], and the use of sketch-based queries for juxtaposed
objects [Hassoumi et al. 2019; Matejka et al. 2018].

3 FORMATIVE STUDY: CREATIVE EXPLORATION OF
SHAPE COLLECTIONS

We summarize here the findings of a formative study aimed at con-
cretizing design objectives for a system to support the exploration
of large shape collections in early stage shape design.

To consolidate our understanding of shape collections exploration
in practice, we interviewed 5 participants (2 industrial and 1 product
designers, a professional 3D modeler, and an independent artist).
The semi-structured interviews included a discussion of creative
application(s), workflow(s), example project(s), and the role and
challenges of shape exploration within it; and a critique of examples
of recent research in shape exploration (ShapeSynth [Averkiou et al.
2014] and SketchSoup [Arora et al. 2017]). We outlined four specific
knowledge goals during our interviews: the reasons and goals for
exploring a shape collection; criteria for selecting shapes or parts of
shapes from the collection; the intended application of the selections;
and perceived benefits/challenges with creative exploration of shape.
We now report on design insights and objectives for an interactive
shape exploration system and refer the reader to the supplementary
for further study details.

3.1 Design Insights
We found three typical motivators for shape exploration: inspiration,
reference, and embellishment. Inspirational search entails a fast but
extensive exploration of a shape corpus to quickly gather a wide
range of diverse shapes to seed the ideation of a new artefact. Ex-
ploration for a reference shape, or for shape embellishment, involves
sifting through one or more shape corpora to find (parts of) shapes
that meet a more targeted set of design criteria.
The interviewed creators described a fairly uniform shape ex-

ploration workflow they use in practice: they would first narrow
their exploration to a tractable set of hundreds of shapes via shape
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Fig. 4. Juxtaform pipeline: shapes in the corpus are first abstracted as a sparse set of sketchy juxtaposed (superposed) strokes. A subset of these strokes acts as
both a visual summary of the shape corpus and interaction handles for shape and part exploration, filtering, and refinement.

category queries, resulting in shapes with strong structural and
spatial commonalities. These are viewed as a catalogue of thumb-
nails, and a few (typically 5 or less) shapes or their parts are chosen
for further evaluation or processing in-situ within the creator’s
larger shape design task. Often, multiple iterations of explore, select,
refine, and evaluate in-situ are required to accomplish the design
task; but comparing disparately presented thumbnails for similarity
or diversity was described as both difficult and tedious. Partici-
pants were excited about the engaging creative potential of tools
like ShapeSynth [Averkiou et al. 2014] (shape extrapolation) and
SketchSoup [Arora et al. 2017] (playful and aesthetic visual design).

In summary, we gained five key insights from these interviews:
early stage design typically entails imprecise shape search (I1)as
shapes are rarely used as-is, or in contexts where precise shape de-
tails are not critical; shape exploration is often tied to task deadlines,
or perceived as a quick initial step, requiring high throughput (I2),
making effective visual summaries of shape collectives important;
creators seek a diverse set of shapes, common and unique, with rich
variation (I3) both for inspiration and for shape or part refinement;
shape understanding in context (I4) is crucial to evaluate juxtaposed
shapes relative to each other and in-situ of their design context; and
shape exploration, like other aspects of a creative tasks, should be
fun and engaging (I5).

3.2 Design Goals
The findings of our formative study are in strong agreement with
general research in creativity support tools [Shneiderman 1999] and
the role of sketching, juxtaposition, and shape collections in early
stage design [Arias-Rosales 2022]. We distill these collective insights
into 4 design goals for creative exploration of shape corpora.

• Rapid Exploration (D1): Quickly convey the overall essence
of shapes in large collections using sketch abstraction (I1,
I2), with fluid interactive tools to select (parts of) shapes and
browse variations (I3, I5).

• Diversity Exploration (D2): Provide an interactive understand-
ing of shape/part diversity in shape corpora (I3).

• Contextual Exploration (D3): Allow juxtaposed, in-situ pre-
sentation of shapes and their parts to enable general shape
comparison (I1), greater visual throughput (I2), and shape
understanding in a design context (I4).

• Ideative Exploration (D4): Interactively present shapes and
their parts in a manner that aids imagining and creating novel
shapes beyond those in the given collection.

3.3 Synthesis
While priorwork has explored such design goals in isolation, juxtaform
is a unique contribution towards the combination of these goals.
Inspired by sketchy (NPR) and other perceptual shape abstractions
[Lin et al. 2018; Todd 2004], as well as spatial arrangements that jux-
tapose common structure [Matejka et al. 2018] to aid understanding
and comparison in shape collections [Zhu et al. 2014], juxtaform
employs a juxtaposed sketch-based visual abstraction to define an
interactive stroke-based visual summary of a shape corpus. The
sparse stroke-rendering of shape parts facilitates legible juxtaposi-
tion, which in turn enables easy integration into the spatial context
of a design application (Figure 11) and aids designers in mentally
imagining shapes beyond the collection (Figure 15).
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Fig. 5. A typical interaction workflow for juxtaform in the context of exploring a collection of airplanes. The user is first shown a visual summary of strokes (a)
which they can then explore by hovering over different features of interest like a pointed nose (b), a flat wing (c), a very swept-back wing (d), or a wide tail (e).
To explore deeper into the collection, users can brush over regions of interest, such as the wing (f) , revealing a collection of new stroke bundles (g). When
hovering over revealed stroke bundles (h) the users can click to ’filter in’ sub-collections of interest for further exploration (i). The eventual shape of interest
can be selected by clicking on it (j).

4 JUXTAFORM
Guided by these design goals, we designed juxtaform as an interac-
tive sketch stroke-based system for the exploration of shape corpora.
Critical to the design of juxtaform is our choice of visual repre-
sentation, spatial layout, and interaction handles for shapes in the
collection.
Visual representation: We abstract all shapes in the corpus

into a set of perceptually salient strokes. Strokes for the entire
corpus are then analysed to extract stroke bundles that summarize
representative shape and part structure across the corpus (D1).
Spatial layout: Our visual summary for a shape corpus is an

in-situ juxtaposition of a sparse set of stroke bundles that optimize
screen space, balancing spatial shape diversity with minimal visual
clutter (D1, D2, D3). Note that the displayed strokes capture the
entire corpus and may not depict some shapes completely, or at all.

Interaction Handles: The displayed stroke bundles themselves
form interaction handles. Hovering over a stroke bundle allows a
user to browse and cycle through complete shapes that contribute
to the bundle (D3). An explore brush enables visualizing more/less
of the shape variation in the corpus in a spatial region (D2). Visible
stroke bundles can also be used to filter shapes in the corpus spatially
or using sketch input (D1).

4.1 System Pipeline
The juxtaform pipeline (Figure 4) comprises an initial processing
stage where the shape corpus is analysed to extract a sparse set of
strokes filtered to visually summarize the corpus, and an interaction
stage where the designer can directly use the summary strokes to
further explore or refine parts of the shape corpus.

4.1.1 Processing Stage. The initial processing stage creates a visual
summary by (i) abstracting, (ii) superimposing, and (iii) summarizing
shapes in the corpus. The input shape corpus is first abstracted to

a perceptually salient stroke-based NPR representation for each
shape (D1). This sketch-stroke abstraction can be computed for
2D/3D shape automatically as shape features like ridges/valleys
and view-dependent contour lines from 2D images [Chan and Vese
2001] or 3D models [Bénard and Hertzmann 2019]. The extracted
strokes are then segmented into perceptual parts, for example using
a corner detection technique [Wolin et al. 2008]. We assume shapes
are already rigidly aligned based on these shape features (various
auto-registration approaches exist [Van Kaick et al. 2011]). The
extracted sketch strokes are then superimposed onto each other
(D3,D4). The superimposed strokes are summarized using our novel
stroke summarization algorithm (detailed in §5.1) which balances
diversity and visual clutter of depicted strokes from the corpus.

4.1.2 Exploration Stage. The summarized strokes are presented to
the user as handles for interactive exploration. We provide a set of
interactive features to support three main tasks informed by our
formative analysis (§3): exploration (discover / reveal new shapes),
search (query and filter shape parts based on stroke features), and
analysis (study the distribution of shapes in the corpus).

The user interface (UI) is simple and usable with a mouse or stylus
in one of select, explore or draw modes (see supplementary video).
Hovering and clicking, as typical, is used to search, highlight, and
select sketch strokes which in turn visualizes and selects shapes, or
parts of shapes. The modifier ‘alt’ is used to enter a brush-based
exploration mode where mouse motion reveals more/less sketch
strokes that comprise the shape corpus. Hotkey ‘D’ enters draw
mode, where mouse strokes are used as sketch input. The mouse
wheel can be used to cycle the visualization of searched shapes or
to control the clutter parameters for stroke summarization. The
hotkey ‘C’ cycles through multiple color visualizations to aid in
understanding the sketch corpus.
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Discovery / Exploration: Each displayed stroke is a handle for
exploration, allowing a user to discover the shape(s) it belongs to by
hovering over it with the mouse cursor. This highlights the complete
shape(s) that contain the hovered location, muting unrelated strokes.
Users can discover more strokes in regions of interest using the
explore brush activated by holding the ‘alt’ modifier key. As users
use the explore brush, they can interactively summarize the added
strokes to the desired resolution with the mouse wheel, retaining
only novel variations.
Filter / Search: Once users see ideas they like (or do not like)

while hovering over a region, they can focus their exploration by
clicking to filter in shapes contained in the region, or conversely,
remove shapes using an eraser (activated by holding the ‘ctrl’ modi-
fier). Users can also sketch desired stroke features to query shapes
with such strokes in the ‘draw’ mode, toggled using the ‘D’ key.

Corpus Analysis: Juxtaform uses three color maps (cycled using
the ‘C’ key), to help users study the distribution of shapes and their
parts in the corpus at a desired level of abstraction, each of which
targets a particular analysis goal. The object-based color map assigns
one color per object, facilitating visual identification of individual
shapes in the collection. The stroke-based color map maps each
segmented stroke to a different color to help users visualize the
part structure of shape(s) and the available exploration handles.
The diversity-based color map utilizes the VIRIDIS color scheme
[Nuñez et al. 2018] to indicate stroke density: violet in regions with
a high stroke density in the overall collection (common strokes), to
a lighter yellowish color in regions of low stroke density (unique
strokes). While the first two color maps help users discern different
juxtaposed shapes and features, the diversity score-based color map
(see Figure 8) conveys the distribution of shapes in the collection
(D1, D2, D3).

5 STROKE FILTERING AND SUMMARIZATION
We now present the two main stroke processing algorithms driving
juxtaform. (i) Summarizing Stroke Collections: balancing visual clut-
ter and the maximal display of shape diversity; and (ii) Interactive
Stroke Filtering: interactively navigating large stroke corpora using
spatial filtering.

5.1 Visually Summarizing Large Stroke Collections
The problem of presenting a large shape collection as a set of super-
imposed strokes can be perceived as optimizing three contending
objectives: a) the inclusion of a maximal set of strokes that suffi-
ciently represent the diversity of features in the collection, b) in-
cluding as-complete-as-possible shapes to provide a strong sense
of the overall objects in the collection, and c) minimizing visual
clutter to ensure that individual strokes can be perceived and form
meaningful handles for selection and exploration. Mathematically,
this objective can be expressed as finding a stroke collection 𝑆 which
maximizes an objective 𝐸 as follows:

𝐸 (𝑆) = 𝐸𝑑 (𝑆) + 𝐸𝑐 (𝑆) + 𝐸𝑣 (𝑆) (1)

where 𝐸𝑑 (𝑆) is a measure of diversity captured by the stroke col-
lection, 𝐸𝑐 (𝑆) estimates the completeness of shapes in the stroke

Fig. 6. A 𝛿-neighborhood (in blue) for a set of strokes (in black) and the
intersection of new candidate strokes (green) with this neighbourhood (in
red). A large fraction of 𝑆1 intersects with the shape neighbourhood and
it is therefore not added to the summary, whereas 𝑆2 represents a unique
feature with almost no intersection with the current neighborhood and is
therefore added to the summary.

collection, and 𝐸𝑣 (𝑆) is a measure of the visual clarity of the stroke
collection. We now describe each of these terms.

𝐸𝑑 (𝑆): We define diversity measure 𝐸𝑑 (𝑆) to capture both com-
mon and unique features in the collection. We first define a 𝛿-
neighborhood for a shape or stroke as the region containing all
points within 𝛿 distance from the object. The uniqueness of a stroke
𝑠 ,𝑈 (𝑠) ∈ [0, 1], is then defined as the average fraction of 𝑠 not con-
tained within the respective neighborhoods of other shapes in the
collection (Figure 6). Commonness, 1−𝑈 (𝑠), is the reverse of unique-
ness (see Figure 7 (left) for highly common strokes). To capture both
common and unique strokes, we define 𝐸𝑑 as follows:

𝐸𝑑 (𝑆) =
∑︁
∀𝑠∈𝑆

|𝑈 (𝑠) − 1
2
| (2)

𝐸𝑐 (𝑆): To estimate the completeness of shapes in the stroke collec-
tion, we define a measure called stroke coherence𝐶 which captures
whether a pair of strokes belong to the same shape. Specifically, we
set 𝐶 (𝑠𝑖 , 𝑠 𝑗 ) = 1 for each 𝑠𝑖 , 𝑠 𝑗 that belong to the same shape, and 0
otherwise. 𝐸𝑐 (𝑆) is then defined as:

𝐸𝑐 (𝑆) =
∑︁

∀𝑠𝑖 ,𝑠 𝑗 ∈𝑆
𝐶 (𝑠𝑖 , 𝑠 𝑗 ) (3)

Optimizing for 𝐸𝑐 also has a desirable side effect of decreasing
the likelihood of selecting partial or short floating stroke segments
that may be artifacts of a sub-optimal stroke segmentation.

𝐸𝑣 (𝑆): To estimate visual clarity 𝐸𝑣 (𝑆), we consider each stroke
as the owner of its 𝛿-neighborhood. Given that a collection of strokes
belonging to the same shape form a coherent whole, cluttered areas
are then defined as regions of the screen whose ownership is con-
tested by strokes belonging to multiple shapes. Visual clutter can
thus be estimated as the sum of the areas of such regions, with each
area weighted by the number of contesting shapes. 𝐸𝑣 , or the lack
of visual clutter, is the reciprocal of this sum. 𝐸𝑣 thus also implicitly
offsets the tendency to select multiple overlapping common strokes
due to 𝐸𝑑 .
Finding 𝑆 that maximizes 𝐸 (𝑆) is an expensive combinatorial

selection problem, similar to NP-hard graph problems likeMaximum
Independent Set. We note, however, that 𝐸 (𝑆) is based on perceptual
heuristics and an efficient/interactive but approximate solution is
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Fig. 7. (From left to right) Dense summaries generated using stroke subsets
with increasing uniqueness𝑈 (𝑠 ) rendered using a sketch style that high-
lights shapes with high average 𝐸𝑑 . The ordering of our greedy selection has
the quality of reverse-engineering a human sketching session that begins
with constructing a scaffolding of the most common parts before adding
unique details with high feature diversity.

critically preferable to a slow optimal algorithm. We thus opt for a
fast greedy algorithm based on locally optimal stroke objectives.

We now describe our greedy algorithm for stroke summarization.
Given a shape collection, we nowwish to compute an optimal subset
of strokes 𝑆 that maximizes our objective function 𝐸. The underly-
ing idea is to greedily select increasingly diverse, non-conflicting
strokes (thus promoting visual clarity 𝐸𝑣 and diversity 𝐸𝑑 ) from the
collection on a shape-by-shape basis (thus promoting completeness
𝐸𝑐 ). We therefore iterate through shapes ordered by the average
uniqueness of their constituent strokes (least unique first). For a
given shape, we add all of its constituent strokes which have a high
uniqueness with respect to the combined 𝛿-neighborhood of shapes
that have already been processed ordered by length (also promotes
completeness 𝐸𝑐 ). This is because we can fairly assume that in case
of low uniqueness with respect to processed shapes, the feature rep-
resented by the stroke is already captured by strokes from previous
shapes in the summary view (see Figure 6). A parameter 𝛼 is used
to define the uniqueness threshold for stroke selection.

The order of our greedy selection is designed to include as much
diversity as possible, ensuring that the distribution of shapes in
the collection is well represented and complete shapes are included
as far as possible. The ordering of the shapes helps the summary
view stay faithful to the distribution of shapes in the collection.
Finally, ordering by length within a shape helps us ensure that
we include as-complete-as-possible shapes. Our greedy approach
therefore approximates a local optimum for the optimization.
The level of detail in our constructed stroke summary can also

be interactively adjusted by varying 𝛼 and 𝛿 (which determine if a
stroke is sufficiently represented by already processed shapes) to
provide coarse-to-fine summaries of the stroke collection. Higher 𝛼
(and lower 𝛿) admits more spatially proximal strokes creating more
detailed summaries (illustrated in supplementary material).

5.2 Spatial Stroke Filtering
Spatial filtering allows users to select and filter shapes via point-
based spatial queries. In particular, if a user specifies a point with a
mouse click, all the displayed strokes which intersect the neighbor-
hood of the point are identified, and their owner shapes are selected
and filtered in while removing remaining shapes. Conversely, such
spatial queries can be used to erase or remove the selected shapes.

Our sketch-based filter also works in a similar manner, filtering
out any shapes whose 𝛿 neighborhoods do not contain the sketched
curve. Finally, our stroke summarization algorithm’s coarse-to-fine
𝛼, 𝛿 parameters allow users to control visual clarity adaptively, and
globally or in local regions during exploration (illustrated in section
2 of the supplementary material).

6 TECHNICAL EVALUATION
We evaluate our summarization algorithm technically by showing
the impact of its design parameters and by comparing it with prior
art on geometric aggregation, and evaluate its performance on di-
verse corpora. A comprehensive evaluation of parameter choices
and comparisons with prior art can be found in section 2 of the
supplementary material.

6.1 Parameters
Our algorithm relies on two parameters: the 𝛿 neighbourhood se-
lected for dilation and the 𝛼 value which defines the allowed per-
centage intersection threshold for stroke selection. While both 𝛿

and 𝛼 can be used to control the amount of visual clarity seen in
the computed summaries, we fix 𝛿 based on the size of the superim-
posed collection’s bounding box (default 1% of the box diameter).
Informed by our practical experience with different corpora, we set
the default 𝛼 = 0.6 (at least 40% of a stroke’s length should convey
new visual information).

6.2 Comparison with Geometric Aggregation
Our algorithm is specifically tailored to summarizing a shape cor-
pus subject to our design goals. It is however worth evaluating
whether existing geometric aggregation techniques can be trivially
repurposed to solve our problem.
To construct a comparable summary with shape aggregation

methods, we clustered the shape corpus using out-of-the-box image
clustering techniques [Pedregosa et al. 2011; Taskesen 2021] and
superimposed the cluster representatives. The number of clusters
were chosen to match either the number of strokes or shapes in
our summary. As we can see in Figure 9, with comparable stroke
density, our summary captures a greater feature diversity and repre-
sents a larger portion of shapes in the collection with fewer strokes.
On the other hand, with comparable shape representation, shape
aggregation-based summaries cannot be visually parsed. Overall,
while shape aggregation methods do ensure complete shapes in
their summaries, our ability to include incomplete shapes in a co-
herent part-aware manner helps us capture more feature diversity
with less visual clutter.

6.3 Performance
We evaluate the performance of our method on a diverse set of
shape corpora consisting of 2D images, 2D fonts, and 3D models
with varying size and stroke density. In particular, we measure the
amount of sparsification performed by our method with respect
to strokes and shapes, and the time taken for pre-processing and
summarization. This evaluation, summarized in Table 1, was con-
ducted on an ASUS laptop with 16GB RAM and an NVIDIA RTX
3060 laptop GPU.
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Fig. 8. A gallery of views generated while exploring different shape collections with juxtaform. We show two collections of 3D models (bottles, cars) and an
image collection of a capital T in different fonts. For each collection, the default visual summary is illustrated, along with a visualization of the strokes in the
collection colored by their uniqueness (violet (common) to yellow (unique)) and a view with the diversity of a local region explored by brushing.

Fig. 9. Our summarization results can represent features from a greater
number of shapes 𝑁 with fewer strokes 𝑆 and minimal visual clutter (top)
compared to shape aggregation-based summaries with a comparable num-
ber of strokes (middle) and shape representation (bottom).

Our summarization algorithm robustly handles shape collections
of different sizes and stroke densities, ranging from single shape
overdrawn sketches to 10K-sized shape repositories. The summaries
typically converge on a few hundred strokes, significantly thinning
out the input, and feature parts from about 40-100 shapes in larger
datasets. Beyond this point, we presumably either hit the visual
clarity threshold or there are no further shapes with unique features,
making remaining strokes redundant.
With respect to the time taken, the shape-stroke distance calcu-

lation is the most expensive computation due to the many shape-
stroke intersection computations within it. However, this computa-
tion can be perceived as a one-time pre-processing cost for a dataset,
as this distance matrix remains constant throughout interactive
exploration iterations. Further, in comparison to traditional stroke

clustering techniques that require inter-stroke distances our shape-
stroke distance computation consists of fewer calculations and is
therefore significantly more cost-effective for a large stroke count.
The greedy summarization algorithm, on the other hand, is fast and
steadily converges in under a second, suitable for interactive use.

Table 1. Performance statistics for our summarization algorithm. 𝑆 and 𝑁

are respectively the number of shapes and strokes in the input. 𝑆 ′ and 𝑁 ′

are corresponding numbers for the summarized output. The time is split into
the shape-stroke distance computation (Dist.) and summarization (Summ.).

Dataset 𝑁 𝑆 𝑁 ′ 𝑆 ′ 𝑁 ′
𝑁

𝑆 ′
𝑆

Time (in secs)

Dist. Summ.

Plane2 10K 725K 85 495 0.85 0.07 2835 0.92
Vase 470 15K 236 986 50.22 6.4 625 0.86
Plane1 448 38K 67 399 14.96 1.05 1027 0.8
Guitar 288 12K 47 313 16.32 2.54 313 0.25
Car 225 28K 54 504 24 1.8 960 0.68
Fonts 100 1526 28 169 28 11.08 26 0.01
Bottle 38 773 29 179 76.32 23.16 2.5 0.01
Koala 1 146 1 85 100 58.22 0.3 0.004
Lion 1 362 1 198 100 54.7 0.7 0.01

7 USER STUDY
To evaluate juxtaform as a shape exploration system compared
against the status-quo traditional gallery layouts, we conducted a
within-subject user study with 15 participants of varied vocational
backgrounds and experience. Our study included tasks designed to
simulate realistic browsing scenarios pertaining to three exploration
goals—search, comparison, and understanding tasks; to complete
for three different shape collections—guitars (200 3D models [Wu
et al. 2015]), airplanes (450 3D models [Wu et al. 2015]), and fonts
(Capital T in 100 fonts [Ge et al. 2021]). For each shape collection,
participants were asked to use juxtaform only, a folder system only
(Figure 10b), or either/both as they see fit. A detailed report of the
protocol, participants, and results is in the supplementary material.
Below, we summarize key take aways from the study.
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Fig. 10. (a) The folder system used in the user study. Users could view representative icons for each folder (top left) and on double clicking the icon they
were shown its contents in a gallery layout (bottom). (b-c) Participants’ performance by task: completion time (b) and success rate (c) defined by the average
correctness of participant answers, for juxtaform (green) and the folder system (yellow). Error bars show 95% confidence intervals.

Performance: Figure 10-b shows a summary of participants’
mean completion time and correctness of answers for each task
using juxtaform or the folder system only.
Search tasks involved finding a particular shape based on a de-

scription of a part, geometric feature or semantic style (D1), and
can be divided into baseline (find generic shapes with many ex-
amples in the collection), rare (find uncommon shapes with a rare
characteristic feature), and anomalies (find geometric outliers). As
we expected, the folder system and juxtaform were comparable for
baseline search; and juxtaform resulted in more efficiency at help-
ing users quickly identify outliers, anomalies, and rare targets in
the collections. Participants particularly struggled with the folder
system when outlier and rare shapes differed in small local region,
compared to a cluster of similar shapes. This can be attributed to
the benefits that juxtaposed layout offer over side-by-side layout
for quick identification of unique features compared to the general
trend, as supported by participants comments: “It was hit and miss
with the folders, because it can be quite overwhelming to scan through
a large set of similar shapes looking for a particular feature.” (P9).

Comparison tasks focused on comparative analysis, asking users
to identify relative extremes and trends in the context of other shapes
in the collection (D3); e.g, are shapes of type Y always taller than
that of type X?) Arguably, a gallery is not designed for comparative
analysis; in contrast, juxtaform should facilitate such tasks by design.
As anticipated, results show that participants were able to answer
such tasks quickly and with perfect accuracy with juxtaform.
Understanding tasks focused on the statistical distribution of

shapes in the collection, asking users to identify common features
and exemplify the diversity in the collection via examples (D2). Be-
cause different clusterings in the folder system make tasks easier
or harder, we divide understanding tasks based on their alignment
with the organization of the folders. As we expected, the folder
system performed better on tasks which were aligned with its orga-
nization compared to those that were not (e.g. cluster planes by tail
similarity makes it easier to process tail features, than it supports
understanding of wings). Juxtaform’s cluster-agnostic representa-
tion performed well irrespective of the task, and users often used
the diversity score color to quickly perform such tasks.
Usage Patterns: Analysis of tool usage and interview scripts

allowed us to characterize notable usage patterns.

In juxtaform, participants balanced the use of the summary view
and explore brush in different ways. While most relied on the sum-
mary and brushed only when needed, some preferred to see as much
of the collection as possible and extensively used the brush, while
leveraging different color maps. This suggests that our approach
does not prescribe a unique worfklow to solve a task, and therefore
effectively accommodates different user styles and strategies.

To be clear, we are not arguing for juxtaform to replace galleries:
both approaches are complementary, and this was evidenced in
our study. For the third shape collection, we gave participants the
freedom to use either or both systems as they wished to perform
exploration tasks. While most (n=12/15) chose to use juxtaform
only, complementary usage was also observed, e.g. starting with
juxtaform to get a sense of the collections then swtiching to folders
to visualize details in isolation to make final selections.

Perceptual Challenges: Two prominent and consistent themes
that emerged from our interviews analysis were the load on visual
memory and spatial attention.
The most pressing challenge participants faced while exploring

large collections of shapes with folders was the need to construct
and retain a mental map of the different shapes in the collection. One
of the most consistent comments was that juxtaform’s visualization
design allows them to navigate and explore the collection without
any mental map at all, e.g. P4 said “With the folders, the limit really
is my memory, it’s all about trying to remember where things are. But
with juxtaform it’s just all there in front of me all the time.” (D1, D2).
The second challenge that participants faced was paying atten-

tion to many different spatial objects at once. In the folder system,
relating, comparing, and aggregating features across distant objects
was overwhelming. With juxtaform, the challenge was more about
parsing different shapes when multiple got displayed at once, e.g.
P5 said “I would inherently like to see [individual shapes] in isolation.
Imagine seeing two colorful shirts on top of each other, it would not
give me any sense of what they might look like on their own.” Now,
participants felt that the ability to select and filter shapes was essen-
tial and effectively mitigated this challenge: P14 said “juxtaform’s
eraser and selection tools help so much when there’s too many shapes
in front of me. Not only does it feel like I am drawing or creating my
own shapes when filtering with the sketch and eraser, but within a few
clicks or brushes, I can always make sure that I’m looking at a very
relevant and easy to visualize set of shapes.” (D1, D2, D3).
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Fig. 11. Juxtaform’s potential for in-situ shape exploration is illustrated with two applications: a) selecting assets (a car) for 3D scenes and b) picking fonts and
visual elements for a poster design.

Fig. 12. A shape collection generated by exploring the latent space of GET3D
[Gao et al. 2022] is superimposed (top) and the distribution of shape features
is visualized using juxtaform’s uniqueness score-based rendering (bottom).

Fig. 13. Shapes constituting an animation cycle are superimposed (left) and
summarized by juxtaform to retain unique portions of each frame (middle).
The trail-like visualization, generated by mapping color and opacity to the
frame count, allows users to browse interesting frames (middle) and visualize
the animation cycle (right).

8 CREATIVE APPLICATIONS
Juxtaform’s visualization and interaction design enables unique
creative applications for a shape exploration framework. Inspired
by two of our initial design goals, i.e visualizing explored shapes
in-situ or in context of a users eventual application scenario (D3);
and the ability to explore new ideas that go beyond the reference
collection (D4), we describe four creative applications illustrating
the potential of juxtaform for ideative exploration (D4) that we
envisioned, and report on professional artists’ impressions on the
approach and their ideas on where juxtaform could integrate in their
creative practice.

8.1 Creative Usage Scenarios
8.1.1 In-situ exploration. Exploring shapes in-situ in a given cre-
ative context eliminates the need for switching between shape ex-
ploration and creative ideation. For example, Figure 11-a illustrates
the ability to explore a collection of cars within a 3D scene, and
Figure 11-b shows a user exploring different 2D fonts and guitar
shapes in the context of a poster design.

8.1.2 Mix-and-Match Creation. Juxtaform’s workflow also implic-
itly supports creative ideation over a novel space of shapes defined
by the combination of stroke-based features in the collection. We
allow users to explicitly ideate over this rich space of shapes by se-
lecting compatible strokes from different shapes to construct novel
designs. As illustrated in Figure 15, users can mix and match shape
parts via this workflow to construct novel design variations.

8.1.3 Browsing Personalized Assets. Another creative application
of juxtaform is the rapid exploration of the different versions, iter-
ations, or articulations of a creative artifact. Artist workflows can
produce hundreds of iterations and incremental and varied versions
of creative designs and articulated characters, resulting in a rich
space of variations of a single shape. As shown in Figure 13, visualiz-
ing this space of designs with juxtaform instantly highlights regions
of similarity and variation allowing artists to conveniently pick out
a desired part, version, or articulation of a shape for future use.
Access to parts and committed versions in a shape’s construction
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Fig. 14. Juxtaform acts as an intuitive interface for artists to explore design ideas using modern diffusion models. Large variation sets generated by the model
(here, 50 shapes per iteration) can be loaded into juxtaform to browse and construct concept designs that mix and match interesting ideas from the variation
set. Constructed designs can be input back into the model to complete an iterative feedback loop which allows users to visually control the generation process.

history is useful since artists often re-use parts and even construc-
tion scaffolds. Stroke coloring and transparency in juxtaform can
further convey the chronology of the shapes, making it easy to
visually parse a set of models with a meaningful time ordering. For
instance, as we can see in Figure 13, shapes that constitute frames of
an animation can be summarized and visualized in the order of the
frame count instead of feature commonality to construct compelling
summaries with the flavour of an onion-skinning visualization. Such
summaries can not only enable artists to instantly access a desired
pose from hundreds of unique frames in a dense animation [Assa
et al. 2005] but can also act as informative thumbnails to efficiently
browse a collection of animation cycles.

8.1.4 Exploratory Design with Generative AI. The emergence of
powerful machine learning-based creative tools has made it impor-
tant for the modern artist to interface with AI-based generative mod-
els for early-stage design and ideation. Juxtaform has the potential
to act as a front-end for modern generative models, enabling artists
to quickly incorporate modern machine learning in their creative de-
sign workflows. In Figure 14, we illustrate a convergence-divergence
design cycle using juxtaform’s mix-and-match and stability AI’s sta-
ble diffusion 2.1 image generator [Rombach et al. 2021]. The image
generator is proficient at creating novel variations and polished
designs from input text and image guidance. Juxtaform can be used
to efficiently explore AI generated variations and construct novel
concept designs from a combination of desired parts in the variation
set. These designs can then be fed back into the image generator as
more directed guidance for further exploration. This rapid iterative
workflow allows both artist and novice users an intuitive geometric
control over the generative model’s output, thus making it easier to
converge on desirable designs.

In the context of 3D generative models, a common difficulty is to
exhaustively explore and visualize a dense latent space of variations
corresponding to a particular object class. In Figure 12, we see how
juxtaform’s diversity score can be used to visualize the distribution
of shapes and features in the latent space. In particular, a collection
of shapes generated from NVIDIA’s GET3D [Gao et al. 2022] are
sampled and superimposed in juxtaform. Shapes that, on average,
contain the most common features, or conversely the most unique,
are rendered with greater opacity and deeper colors. Other shapes

are assumed to lie within this scaffolding and are gradually hidden
away using the same parameters, thus creating a concept sketch-
like render of the shape and feature distribution. This visualization
gives designers a sense of the shape and part distribution that the
generative model is capable of producing, which can then be used
to control the model or inspire their own designs.

8.2 Impressions from Artists
We further assessed the creative potential of juxtaform in realistic
artistic workflows by demonstrating juxtaform to 4 creative pro-
fessionals including a professional illustrator and graphic designer
(A1), a product design graduate student (A2), a professional 3D artist
(A3), and an experienced developer of creative design tools (A4);
with professional experience ranging from 2-3 years (A2, A3) to 5
years (A4) and more (A1).
The creators were generally excited about the novelty of our

idea. They felt that it would be a great addition to their day-to-day
workflow but also suggested ideas for other creative applications
that juxtaform could enable.
Creatively Explore Reference Material. A1 said “The part

where the artist is able to sketch and erase to find shapes and forms that
match their intended artistic goal really stood out to me as something
that I would find beneficial in my day to day as an artist. I imagine
it would be a very handy way to ensure I’m following my reference
material correctly and find inspiration for new forms to draw.”

They further went on to describe a concrete scenario where they
would be excited to use juxtaform “Imagine a production artist tasked
to create a set of similar-ish image assets, perhaps a suite of plants or
rocks for use in a game or background art. If I was that artist and I had
this tool, I would love to feed a collection of my own illustrated assets
I’ve drawn so far, and rely on this tool to help me find new forms and
shapes similar to the existing set, while at the same time inspire me to
try out new forms and combinations. In a way, I could use this tool to
ensure that my output isn’t too similar to the existing set.”.

(Collaboratively) Explore Design Options. A2 and A3 alluded
to the benefits of juxtaform’s ability to integrate shape exploration
into different contexts. A2 said “I think it would be great to churn ideas
for quick design proposals. I can also imagine having the interactive
output of this tool within my proposal so that the client can explore
different options within the context of my proposal.” A3 added: “I think
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Fig. 15. 3D models made by combining parts from a 3D car repository with MeshMixer [Schmidt and Singh 2010] based on designs created via Juxtaform’s
mix-and-match-based exploration of the source repository. Design references (highlighted strokes around 3D models) are made using juxtaform, based on
which parts are queried from the source repository and seamlessly fused together in MeshMixer.

it could be great for concept art and storyboarding to show variations
in context.”.

Shape Attributes. The possibility of attaching various attributes
to the shapes in the tool was an interesting usage mentioned by
both A2 and A4. A4 said “Industrial designers find such exploratory
tools useful during ideation process. If you also labeled your shapes
with attributes, such as year it was made, etc. – then designers could
see the progression of designs and try to imagine where they should
take the next year’s design.” In a similar vein, and also integrating
ideas from above, A2 mentioned “I can think of it being very useful
as a collaborative visual note taker [...] designers iterate over designs
with clients and I make a lot of rough sketches to visually note what
clients like and want [...] our design team could color code parts of the
design based on the clients comments, and we could then superimpose
all our ‘visual notes’ to explore different design ideas, I would imagine
that many good designs would pop out naturally using this tool.”

Composition. Finally, similar to one of our creative usage scenar-
ios, A1 was also interested in using the tool to explore composition,
and said “sometimes I’m looking for compositions instead of just partic-
ular details of a subject. For example, if I gave the tool a set containing
some of my favourite posters for movies and music that were broken
down into sketch lines, I would be curious to see how I would use such
a tool to block in new compositions.”.

9 DISCUSSION, LIMITATIONS AND CONCLUSION
Juxtaform addresses the ambitious inter-disciplinary (graphics/H-
CI/visualization/design) space of shape corpus exploration and re-
finement for ideative shape design. Given the generality of the
creative application and the dimension and domain of shapes, we
performed a formal formative study (§3) to formulate clear design
objectives to be implemented by an interactive shape exploration
system (§4), built around stroke-based shape corpus summarization.
We show that existing geometric aggregation approaches are not
suited to our problem (§5). Our novel shape corpus summarization
(§6) is efficient, robust, and directly tied to our design goals. A user
study (§7) and creative applications (§8) showcase the promise of
juxtaform for shape exploration in interactive shape design for di-
verse sets of shapes and creative scenarios. Our proposed system is

not without limitations, but has been used by designers and study
participants with much excitement and positive feedback (see more
artist impressions in supplementary material).
Juxtaform is built on the core assumption that input shapes are

spatially pre-aligned, both in terms of orientation and scale. When
shapes are not aligned (e.g. animation frames in Figure 13), the
spatial disparity should be considered as shape diversity/variation.
Shapes that are not spatially aligned can result in summary views
that are non-intuitive and messy. However, advanced geometric
techniques for automatic shape registration, correspondence, and
alignment [Van Kaick et al. 2011] offer effective solutions to this lim-
itation, making it easy to pre-deform shapes to be spatially aligned
prior to exploration, and this is subject to future work.

Another limitation of our method is the simple Euclidean metric
used for spatial dilation and shape similarity. It is possible for our
approach to ignore diverse but spatially proximal variations of shape
as might be deemed as similar or identical by our distance metric.
This is particularly true for unique variations like fine detail and
bumps which are perceptually distinct but of small spatial amplitude.
However, since our stroke filtering algorithm is agnostic to the
shape affinity metric used, in the future we can investigate alternate
metrics for shape similarity.

Our approach also assumes shape and application scenarios that
are visually well-represented using sparse sketch strokes. Shape
filled with color and texture, such as emojis or clothes might need
additional visual elements and transparency to be adapted to our
framework. Even after that, users might prefer to visualize them in
isolation for targeted search tasks. Further, application scenarios like
quickly picking out emojis for texting constitute situations where
the benefits of in-situ exploration may not be as important.

Finally, the size of the shape collection is an important considera-
tion. While our system has clear benefits for a sweet spot of shapes
in the hundreds, exploration for smaller shape collections might
potentially be as good with simple gallery layouts. Further, larger
collections with thousands and millions of shapes may need to be
pruned by keywords and other criteria to a tractable size before they
can be effectively explored in juxtaform. The unique advantages and
applications of our method pertaining to comparative analysis and
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in-situ shape design, however, remain relevant contributions that
are independent of the size of the dataset.
In conclusion, our work brings together literature and insights

from graphics, HCI, and design practice, making a contribution to
ongoing research pertaining to ideative shape design. Our formative
study design goals can guide future systems. Our stroke summa-
rization algorithm balances spatial variation and clutter, and can
be applied to other interfaces looking to achieve compact visual
representations of geometric data with rich diversity. Our user study
design provides ideas for evaluating creative exploration systems
that need to support a broad range of design tasks. In summary, we
propose and evaluate a novel shape exploration system that is fast
(D1), supports the targeted exploration of diversity (D2) in context
(D3), and acts as an easy-to-use enjoyable interface for creative
ideation (D4).
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