
Fluid Control with Laplacian Eigenfunctions
Yixin Chen

University of Toronto
Toronto, ON, Canada
yixin@cs.toronto.edu

David I.W. Levin
University of Toronto
Toronto, ON, Canada

Nvidia
Toronto, ON, Canada

diwlevin@cs.toronto.edu

Timothy R. Langlois
Adobe Research
Seattle, WA, USA

tlangloi@adobe.com

multi-resolution scheme applied 1024x10241024x1024artist's drawings artist's drawings multi-resolution scheme applied

Figure 1: Using several artist’s drawings as keyframes, we efficiently optimize fluid simulations which match them. We can
achieve high resolution results an order-of-magnitude faster than previous methods. We run our optimization at a sequence of
resolutions (from 64×64 to 1024×1024), with warm starting between. This aids convergence and avoids gradient collapse of the
objective function if keyframes are too dissimilar.

ABSTRACT
Physics-based fluid control has long been a challenging problem in
balancing efficiency and accuracy. We introduce a novel physics-
based fluid control pipeline using Laplacian Eigenfluids. Utilizing
the adjoint method with our provided analytical gradient expres-
sions, the derivative computation of the control problem is effi-
cient and easy to formulate. We demonstrate that our method is
fast enough to support real-time fluid simulation, editing, control,
and optimal animation generation. Our pipeline naturally supports
multi-resolution and frequency control of fluid simulations. The ef-
fectiveness and efficiency of our fluid control pipeline are validated
through a variety of 2D examples and comparisons.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657468

CCS CONCEPTS
• Computing methodologies→ Physical simulation.

KEYWORDS
physics-based animation, fluid control, optimization, adjoint
method

ACM Reference Format:
Yixin Chen, David I.W. Levin, and Timothy R. Langlois. 2024. Fluid Control
with Laplacian Eigenfunctions. In Special Interest Group on Computer Graph-
ics and Interactive Techniques Conference Conference Papers ’24 (SIGGRAPH
Conference Papers ’24), July 27–August 01, 2024, Denver, CO, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.3657468

1 INTRODUCTION
Fluids have long been an integral part of computer graphics. Visual
storytelling is often enhanced with puffs of smoke, splashing water,
and explosive flames. Simulation methods have improved dramati-
cally, enabling more complex effects, as evidenced by works such as
Pixar’s Elemental, which contains fluid simulation in almost every
frame. However, control of fluid simulations remains a challenging

https://orcid.org/0000-0001-7547-9587
https://orcid.org/0000-0001-7079-1934
https://orcid.org/0000-0002-5043-8698
https://doi.org/10.1145/3641519.3657468
https://doi.org/10.1145/3641519.3657468

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Chen et al

problem. Setting simulation parameters and initialization to match
artistic intent can be time-consuming. Getting just enough, but not
too much, water to splash out of a cup can require many iterations
of a simulation. In some cases, users want outputs that feel like
fluids but are nonphysical and require non-intuitive control forces
to get a simulation to match.

Numerous methods have been explored to control fluids. We
discuss these in detail in §2.2, but they all struggle with the difficulty
of fluid control in general. The evolution of fluids is highly nonlinear,
with a large number of degrees of freedom, resulting in a formidable
optimization challenge. Previousmethods aremostly too slow to use
in real-time applications. Moreover, the artistic preference for fluids
to exhibit nonphysical behaviors for emphasis and effect further
exacerbates the difficulty of achieving effective fluid control.

We demonstrate that the method of Laplacian Eigenflu-
ids [De Witt et al. 2012; Liu et al. 2015; Cui et al. 2018] is amenable
to control and offers several distinct advantages. The method rep-
resents the velocity field as a weighted sum of laplacian eigen-
functions, where the weight vector is integrated over time, greatly
reducing the number of DOFs in the simulation. It is intrinsically
divergence-free, so there is no divergent mode leakage, which can
happen with standard numerical pressure projection. The eigen-
function representation naturally provides frequency control, and
the velocity fields are spatially smooth, which removes the need
for smoothness regularization. When objectives are defined solely
with velocity-based keyframes, optimization is extremely fast as it
can be conducted entirely within the reduced space. This approach
provides a distinct separation of velocity DOFs and density/image
resolution, thereby allowing for efficient control.

As is common in unconstrained optimization fluid control, users
can optimize for control forces to satisfy specified keyframes. Addi-
tionally, we show that the speed of Eigenfluids enables real-time
response, allowing users to iteratively "sculpt" fluid animations ei-
ther by modifying keyframes or by adjusting pathlines. We provide
analytical expressions for the necessary gradients and show that
our method can produce results comparable to previous methods
with an order-of-magnitude speedup.

2 RELATEDWORK
2.1 Fluid simulation
The field of fluid simulation in computer graphics has experienced
substantial progress over decades. Bridson [2015] provides a good
overview. We utilize Laplacian Eigenfluids [De Witt et al. 2012;
Liu et al. 2015; Cui et al. 2018] to solve the incompressible Navier-
Stokes equations using a reduced space to represent the velocity
field. This provides a separation between the velocity DOFs and the
density field DOFs, which is often desirable: lower-frequency defor-
mation can be pleasing when applied to high-resolution artwork. It
is very fast and intrinsically divergence-free, making it well suited
to control.

2.2 Fluid control
Starting from [Foster and Metaxas 1997], one of the first controllers
for fluids, fluid control in computer graphics has evolved signifi-
cantly over the past two decades.

2.2.1 Optimization-based control. Optimization-based fluid con-
trol has emerged as a powerful tool for directing fluid simulations,
providing systematic and efficient means to achieve desired behav-
iors. The optimization process facilitates the exploration of control
strategies, such as the minimization of certain energy functions
or adherence to specific constraints, resulting in simulations that
closely align with user-defined goals.

Keyframes are a popular control method, with seminal work
[Treuille et al. 2003] using keyframes to direct smoke simulations.
This method defined an objective function to measure the difference
between the current state of the fluid and the target state, provided
derivatives of each fluid operation, and used the L-BFGS method to
find optimal control forces. However, it is prohibitively expensive
to compute the derivatives, only allowing low-dimensional con-
trol forces to be applied. It was refined in [McNamara et al. 2004],
which employed the adjoint method to compute the derivatives
more efficiently. The problem was reformulated as a constrained op-
timization [Pan and Manocha 2017; Inglis et al. 2017], which, with
the application of the primal-dual algorithm, further improved per-
formance. More recently, Tang et al. [2021] improved performance
through frequency-aware force field reduction.

Beyond keyframe-based methods, various other optimization-
based control techniques have been explored. A series of papers
from Nielsen et al. [2009; 2010; 2011] used lower resolution sim-
ulation to control high-resolution smoke and liquid animations.
Predefined patterns [Yuan et al. 2011] and meshes [Raveendran et al.
2012] are used to manipulate fluids. Gregson et al. [2014] captured
real-world fluid behaviors and translated them into simulations.
Raveendran et al. [2014] proposed a technique for blending multiple
liquid simulations. Several flow interpolation techniques [Thuerey
2016; Sato et al. 2018a] have been presented for smoother and more
controllable results. Later, Eckert et al. [2018] discussed amethod for
integrating fluid density and motion data from single-view inputs
to enhance simulation realism, while Flynn et al. [2019] offered a so-
lution for intelligently resizing fluid simulation data. Takahashi and
Lin [2019] explored the transfer of parameters from real-world video
footage to virtual fluid animations. Sato et al. [2018b] demonstrated
a technique for transferring turbulence styles between simulations.
However, achieving real-time performance and high-resolution
control remains an ongoing challenge.

Recent approaches have leveraged deep learning. Schenck and
Fox [2018] integrated differentiable fluid dynamics into neural net-
works, enabling more accurate modeling of fluid behavior. Kim et al.
[2019] used neural networks for style transfer in smoke simulations.
Holl et al. [2020] developed a method to control partial differential
equations (PDEs) through differentiable physics, enhancing the
ability of neural networks to predict and manage complex physical
systems. Chu et al. [2021] presented a data-driven conditional ad-
versarial model that generated plausible velocity fields from a single
frame of a density field, while a two-stage generative model was
proposed by Xie et al. [2022] that assisted in the creation of smoke
illustrations from sketches. Kim et al. [2022] explored a deep learn-
ing approach for reconstructing detailed 3D smoke densities from
simple artist sketches. Aurand et al. [2022] proposed an efficient
technique for applying neural style transfer to volumetric simu-
lations. Tang et al. [2023] introduced a physics-informed neural

Fluid Control with Laplacian Eigenfunctions SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

corrector that improves the control and accuracy of fluid simula-
tions, particularly in scenarios involving complex deformations.
Deep learning methods can have trouble extrapolating to novel
flows outside of their training data.

2.2.2 Optimization-free control. In contrast to optimization-based
approaches, several works have explored direct control. Fattal and
Lischinski [2004] introduced forcing terms to direct smoke ani-
mations towards targets without requiring optimization. Other
optimization-free fluid control schemes have employed geometric
potentials [Hong and Kim 2004; Shi and Yu 2005b], advected radial
basis functions [Pighin et al. 2004], guiding objects [Shi and Yu
2005a], and scale-dependent forces [Thürey et al. 2009]. Mihalef
et al. [2004] presented a method for realistically animating and
controlling the complex dynamics of breaking waves, capturing
both their visual and physical properties.

Various feature-based [Schpok et al. 2005] fluid control tech-
niques have been explored, including path-based [Kim et al. 2006],
vortex-based [Angelidis et al. 2006], filament-based [Wei𝒔mann
and Pinkall 2010], particle-based [Rasmussen et al. 2004; Madill
and Mould 2013], and preview-based sampling [Huang et al. 2011].
Yang et al. [2013] introduced a unified approach to smoke control
using signed distance fields. Ren et al. [2013] explored techniques
for analyzing and modulating the intrinsic multi-scale features in
fluid simulations. Manteaux et al. [2016] introduced a space-time
framework for sculpting liquid animations, allowing for seamlessly
editing pre-computed animations of liquid.

2.2.3 Interactive control. While interactive fluid simulation meth-
ods have seen significant advancements, real-time interactive fluid
control problems are largely unexplored in computer graphics,
where the challenges mostly lie in the need for integration of user
input and real-time responsiveness. Pan et al. [2013] introduced an
interactive system for real-time editing of localized liquid motions
using geometric deformation. Yan et al. [2020] presented a novel sys-
tem to synthesize realistic liquid splashes from simple user sketches,
which utilizes a conditional generative adversarial network (cGAN)
trained with physics-based simulation data. Schoentgen et al. [2020]
used precomputed templates to direct particle-based simulations.
Advancing further, Tang et al. [2023] employed convolutional neu-
ral networks trained with physics-inspired loss functions along
with a differentiable fluid simulator to provide an efficient work-
flow for rectifying deformed fluid flows. However, these methods
generally focus on localized time spans (static in some cases), and
sketch control is not fine-grained.

3 FLUID CONTROL
We start with a short overview of the Laplacian Eigenfluids method.
We then describe the design of our objective function, which incor-
porates standard keyframe control as well as control with pathlines
and obstacles. The speed of Eigenfluids enables interactive user
guidance of the optimizer. We also describe how the method easily
enables multi-resolution and frequency-based control.

Notation. Uppercase bold denotes matrices, while lowercase bold
is used for vectors. We use superscripts to denote a value at a
particular time step or to index instances of vectors. Subscripts are
used to index entries or segments of vectors/matrices/tensors.

3.1 Laplacian Eigenfluids
A full description is provided in [De Witt et al. 2012; Cui et al.
2018]. To solve the incompressible Navier-Stokes equations, the
fluid velocity field 𝒖 ∈ R𝑚𝑑 on a grid of𝑚 cells in dimension 𝑑 is
represented as a combination of 𝑟 basis functions 𝒖 =

∑𝑟
𝑘=1𝑤𝑘𝚿

𝑘 =

𝑼𝒘 , where 𝑼 denotes the transformation matrix between the two
representations.1 The basis functions are eigenfunctions of the
vector laplacian operator, so are intrinsically divergence-free. In
this basis representation, the change of the velocity field can be
described by the update of the weight vector 𝒘 , using its time
derivative

¤𝒘𝑔 =

𝑟∑︁
ℎ=1

𝑟∑︁
𝑖=1

𝑤ℎ𝑤𝑖C𝑔ℎ𝑖 (1)

where the entries of the 3rd-order advection tensor are

C𝑔ℎ𝑖 =
∫
Ω

(
∇ × 𝚿

𝑖
)
·
(
𝚿
𝑔 × 𝚿

ℎ
)
𝑑Ω. (2)

The weight vector is advanced using an implicit trapezoidal update,
with an operator splitting scheme to apply damping

𝒘̃𝑡+1 =
(
Δ𝑡

2
𝑪̃𝑡+1𝒘̃𝑡+1 + Δ𝑡

2
𝑪𝑡𝒘𝑡 +𝒘𝑡 + 𝒇 𝑡

)
(3)

𝒘𝑡+1 = 𝑫𝒘̃𝑡+1 (4)

where the notation 𝑪𝑡 = C ×3 𝒘𝑡 =
∑𝑟
𝑖=1𝑤

𝑡
𝑖
C𝑔ℎ𝑖 denotes contrac-

tion over the 3rd dimension to produce a matrix, 𝒇 𝑡 represents any
external forces that are applied, and 𝑫 = 𝑒𝜈Δ𝑡𝚲 is the diagonal
damping matrix (𝚲 is a diagonal matrix of the basis eigenvalues).
In practice, just a single Newton iteration is used, and conjugate
gradients on the normal form work well. Typically, 𝑟 ≪𝑚𝑑 , so this
method is very efficient. For advecting a density field 𝝆 through
the velocity, the full space velocity 𝒖 is formed, and a standard
advection scheme is used. This is done efficiently using inverse sine
and cosine transforms (i.e., the matrix 𝑼 is never explicitly formed).

3.2 Optimization problem
Control is posed as a minimization problem, where we aim to find a
sequence of control forces 𝒇 which minimize an objective function
𝜑 that incorporates desired states/keyframes. Without a superscript,
vectors such as the control force vector 𝒇 ∈ R𝑛𝑟 = [𝒇 0⊤,𝒇 1⊤, . . .]⊤
represent the concatenation of vectors from all 𝑛 timesteps. We
optimize

argmin
𝒇

𝜑 (𝒇 , 𝒒) (5)

where 𝒒𝑡 = [𝒘𝑡⊤, 𝝆𝑡⊤]⊤ is the state of the system at time 𝑡 . The
objective function of standard keyframe control is defined as

𝜑 (𝒇 , 𝒒) = 𝑘𝑠

𝑛∑︁
𝑡=0

𝒇 𝑡

2︸ ︷︷ ︸
𝜉𝑠

+𝑘𝑤
∑︁

𝑡 ∈𝑲𝑤

𝒘𝑡 −𝒘𝑡∗

2
︸ ︷︷ ︸

𝜉𝑤

+𝑘𝑑
∑︁
𝑡 ∈𝑲𝑑

𝝆𝑡 − 𝝆𝑡∗

2

︸ ︷︷ ︸
𝜉𝑑

,

consisting of three terms: 𝜉𝑠 for minimizing control forces, 𝜉𝑤 for
controlling velocity and 𝜉𝑑 for controlling density, respectively.
𝑘𝑠 , 𝑘𝑤 , and 𝑘𝑑 are all scaling parameters. 𝑲𝑤 and 𝑲𝑑 are sets of
keyframe times for velocity and density. 𝒘𝑡∗ and 𝝆𝑡∗ represent
1Each basis function is associated with a wave vector 𝒌 ∈ R𝑑 . We use the notation
Ψ𝑘 to generically iterate over the basis functions.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Chen et al

the keyframes. The gradients required for this optimization are
provided in §4. To satisfy the incompressibility constraint, we nor-
malize all input keyframes to have the same amount of total density.

3.2.1 Obstacles. Obstacles are usually handled by a simple pro-
jection method in the Eigenfluids framework. At every step, the
full-space velocity is reconstructed, and it is adjusted to enforce
boundary conditions, and then the velocity is transformed back to
the reduced space.

While this method could easily be incorporated into our sim-
ulation and optimization, we found that adapting the objective
function to handle obstacles allows the object constraints to be
treated in a soft way, balancing them against the other objectives.
Specifically, we define a function

𝒖̃𝒙 =


0 𝒙 is not in an obstacle
𝒏̂ 𝒙 is on the boundary of an obstacle
𝒖𝒙 𝒙 is inside of an object

(6)

where 𝒙 denotes the position of grid cells and 𝒏̂ is the outward
normal of the obstacle at position 𝒙 . Then we can extend our objec-
tive function with a penalty term 𝜉𝑜 to effectively handle obstacles,
where

𝜉𝑜 = 𝑘𝑜

∑︁
𝒙

(𝒖𝒙 · 𝒖̃𝒙)2 . (7)

3.2.2 Pathlines. The pathlines of a fluid can be useful for control,
as they give users a visualization of how portions of the fluid move
over time. These can be easily computed, visualized, and controlled
as the paths of massless particles in the fluid flow (Fig. 2). To add
a pathline control, the user can interactively add a particle and
a desired forward or backward path for it. We then augment our
system state 𝒒𝑡 = [𝒘𝑡⊤, 𝝆𝑡⊤,𝒑𝑡⊤]⊤ with the particle position 𝒑𝑡 .
The particle is integrated through the fluid flow, and we enhance
our cost function by incorporating a term

𝜉𝑝 = 𝑘𝑝

∑︁
𝑡 ∈𝑲𝑝

𝒑𝑡 − 𝒑𝑡
∗

2 . (8)

The fluid flow will be then adjusted to match the specified pathlines.

Figure 2: During user interaction, pathlines can be used to
look forward or backward in time. When selecting a spatial
point at time 𝑡 , the user can choose to trace the pathline
backwards to the start 𝑡0 and forwards to a time 𝑡+. The user
can then specify any of the pathline’s positions at times after
𝑡0. Multiple pathlines could be used at once, each of different
lengths.

initial
shape

target
shape

32x32 64x64 128x128 256x256 512x512

use the optimal force vector from lower resolution control
as the initial force vector for higher resolution control

Figure 3: In our multi-resolution scheme, we downsample
density keyframes, run the optimizer to convergence, then
use that solution to initialize an optimization at the next
resolution level.

3.3 Multi-resolution pyramid
When keyframes are very far from the current state, the L2 cost
function can break down, giving zero gradients. To avoid this, we
optimize on a sequence of density resolutions. Illustrated in Fig. 3,
we first optimize on a low-resolution image until convergence, then
use that solution to initialize the optimization at the next level. We
note that the velocity DOFs in the reduced space do not change; they
are just expressed on different resolution grids (through different
resolution DCTs). Themulti-resolution pyramid allows us to control
the degree to which we match keyframes. We can match closely
using high-resolution velocities or use low-resolution velocities to
leave room for stylistic smoky elements.

3.4 Frequency control
Due to the high non-linearity of the problem, there are many local
minima. As observed previously [Tang et al. 2021], controlling the
frequency content of control forces can aid the optimizer. Lapla-
cian Eigenfluids naturally supports this through reweighting of the
advection tensor. We use a cascade of ideal low-pass filters, which
amounts to limiting the number of basis functions. As opposed to
just filtering the frequency content of the control forces at different
stages of optimization, we actually reduce the DOFs of the system,
making optimization much faster at lower frequencies.

Beyond aiding the optimizer, having separate controls for the
velocity and density resolutions can be a useful tool for users. As
observed previously [Muller et al. 2004], low-dimensional dynamics
can often look appealing when applied to high-resolution textures
(Fig. 4). Eigenfluids provides this for fluids, as the velocity/forces
and density are represented in different spaces.

4 GRADIENT COMPUTATION
Here we provide an overview of how the objective cost function
gradient is computed and provide derivations for the non-trivial
components.

Fluid Control with Laplacian Eigenfunctions SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

4.1 Adjoint Method
For optimization, we need the derivative with respect to the control
forces:

𝑑𝜑

𝑑𝒇
=

𝜕𝜑

𝜕𝒒

𝑑𝒒

𝑑𝒇
+ 𝜕𝜑

𝜕𝒇
(9)

which can be evaluated efficiently using the adjoint method as
described by McNamera et al. [2004]. This is akin to reverse-mode
autodiff with several custom gradient operators, but it only requires
storing the simulation states, not the entire compute graph.

Specifically, we define a stepping function 𝒔 and we can represent
the update of state at each time step as

𝒒𝑡+1 = 𝒔𝑡 (𝒒𝑡 ,𝒇) =⇒ 𝒒 = 𝒔 (𝒒,𝒇) . (10)

Then the overall gradient can be written as
𝑑𝜑

𝑑𝒇
= 𝒓⊤

𝜕𝒔

𝜕𝒇
+ 𝜕𝜑

𝜕𝒇
(11)

= 𝒓⊤

©­­­­­­­­­­­­­«

𝜕𝒘1

𝜕𝒇 0
0 0 . . .

𝜕𝝆1

𝜕𝒇 0
0 0 . . .

0 𝜕𝒘2

𝜕𝒇 1
0 . . .

0 𝜕𝝆2

𝜕𝒇 1
0 . . .

0 0
. . .

.

.

.
.
.
.

ª®®®®®®®®®®®®®¬
+ 𝜕𝜑

𝜕𝒇
(12)

Where 𝒓𝑛 = (𝜕𝜑/𝜕𝒒𝑛)⊤, and

𝒓𝑡 =

(
𝜕𝒔𝑡

𝜕𝒒𝑡

)⊤
𝒓𝑡+1 +

(
𝜕𝜑

𝜕𝒒𝑡

)⊤
(13)

=
©­«
𝜕𝒘𝑡+1

𝜕𝒘𝑡
𝜕𝒘𝑡+1

𝜕𝝆𝑡

𝜕𝝆𝑡+1

𝜕𝒘𝑡

𝜕𝝆𝑡+1

𝜕𝝆𝑡

ª®¬
⊤ (

𝒓𝑡+1𝑤

𝒓𝑡+1𝜌

)
+
(
𝜕𝜑

𝜕𝒘𝑡

𝜕𝜑

𝜕𝝆𝑡

)⊤
(14)

In practice, to compute the gradient, we first run a forward simu-
lation and store all the states. We then use (14) to compute the 𝒓
vector and (12) to compute the gradient.

4.2 Velocity derivatives
Here we compute the 𝜕𝒘𝑡+1

𝜕𝒘𝑡 = 𝜕𝒘𝑡+1

𝜕𝒘̃𝑡+1
𝜕𝒘̃𝑡+1

𝜕𝒘𝑡 = 𝑫 𝜕𝒘̃𝑡+1

𝜕𝒘𝑡 part of (14),
and also the 𝜕𝒘𝑡+1

𝜕𝒇 𝑡 = 𝑫 𝜕𝒘̃𝑡+1

𝜕𝒘𝑡 terms from (12). The velocity field

doesn’t depend on the advected scalar, so 𝜕𝒘𝑡+1

𝜕𝝆𝑡 = 0.
Taking a derivative of (3) with respect to𝒘𝑡 gives(
𝑰 − Δ𝑡

2
[
C ×2 𝒘̃

𝑡+1 + C ×3 𝒘̃
𝑡+1])︸ ︷︷ ︸

𝑨𝑡+1

𝜕𝒘̃𝑡+1

𝜕𝒘𝑡︸ ︷︷ ︸
𝑿𝑡+1

=

Δ𝑡

2
(
C ×2 𝒘

𝑡 + C ×3 𝒘
𝑡) + 𝑰︸ ︷︷ ︸

𝑩𝑡

(15)

Taking the derivative with respect to 𝒇 𝑡 gives(
𝑰 − Δ𝑡

2
[
C ×2 𝒘̃

𝑡+1 + C ×3 𝒘̃
𝑡+1])︸ ︷︷ ︸

𝑨𝑡+1

𝜕𝒘̃𝑡+1

𝜕𝒇 𝑡︸ ︷︷ ︸
𝒀 𝑡+1

= 𝑰 (16)

But these are expensive to evaluate directly, as they require matrix
solves against large matrices. We can again use the dual/adjoint
method.

4.2.1 Dual Computation. Referring to equations (12) and (14), we
do not need the full derivative matrices; we need to compute

𝜕𝒘̃𝑡+1

𝜕𝒘𝑡

⊤
𝑫𝒓𝑡+1 =

(
𝒓𝑡+1

⊤
𝑫
𝜕𝒘̃𝑡+1

𝜕𝒘𝑡

)⊤
such that 𝑨𝑡+1 𝜕𝒘̃

𝑡+1

𝜕𝒘𝑡
= 𝑩𝑡

(17)
and

𝒓𝑡
⊤
𝑫
𝜕𝒘̃𝑡+1

𝜕𝒇 𝑡
such that 𝑨𝑡+1 𝜕𝒘̃

𝑡+1

𝜕𝒇 𝑡
= 𝑰 (18)

This is two applications of the dual method. To compute (17), com-
pute

𝑨𝑡+1⊤𝒄𝑡+1 = 𝑫𝒓𝑡+1 =⇒ 𝒄𝑡+1
⊤
𝑩𝑡 = 𝒓𝑡+1

⊤
𝑫
𝜕𝒘̃𝑡+1

𝜕𝒘𝑡
(19)

and to compute (18), compute

𝑨𝑡+1⊤𝒅𝑡+1 = 𝑫𝒓𝑡 =⇒ 𝒅𝑡+1
⊤
= 𝒓𝑡

⊤
𝑫
𝜕𝒘̃𝑡+1

𝜕𝒇 𝑡
(20)

This process requires two extra matrix solves, two extra matrix
vector products, and one extra matrix contraction compared to the
forward simulation (we already have the contraction over the third
dimension from the forward simulation). The 𝑨matrices lose the
skew-symmetry property of those in (3), due to the contraction over
the second dimension. Also note that in the first Newton iteration,
we initialize 𝒘̃ = 𝒘𝑡 , so 𝑩𝑡 = 2𝑰 −𝑨𝑡+1.

4.3 Density derivatives

Here we compute the 𝜕𝝆𝑡+1

𝜕𝒘𝑡 =
𝜕𝝆𝑡+1

𝜕𝒖𝑡
𝜕𝒖𝑡

𝜕𝒘𝑡 and 𝜕𝝆𝑡+1

𝜕𝝆𝑡 parts of (14).

The 𝜕𝝆𝑡+1

𝜕𝒇 𝑡 terms of (12) are all zero (because 𝒔𝑡 only depends on
𝒒𝑡).

As for density advection, we use semi-lagrangian advection. The
derivatives 𝜕𝝆𝑡+1

𝜕𝒖𝑡 and 𝜕𝝆𝑡+1

𝜕𝝆𝑡 are provided by [McNamara et al. 2004].

The second term is straightforward to compute. 𝜕𝝆𝑡+1

𝜕𝒘𝑡 is tricky,

because 𝜕𝝆𝑡+1

𝜕𝒖𝑡 is a large, sparse matrix, and 𝜕𝒖𝑡

𝜕𝒘𝑡 is a DST/DCT
transform. But note that during the adjoint computation, what we
need to compute is

𝜕𝝆𝑡+1

𝜕𝒘𝑡

⊤
𝒓𝑡+1𝝆 =

(
𝒓𝑡+1𝝆

⊤ 𝜕𝝆𝑡+1

𝜕𝒘𝑡

)⊤
=

(
𝒓𝑡+1𝝆

⊤ 𝜕𝝆𝑡+1

𝜕𝒖𝑡
𝜕𝒖𝑡

𝜕𝒘𝑡

)⊤
(21)

We compute 𝜕𝝆𝑡+1

𝜕𝒖𝑡 first, then pre-multiply by 𝒓𝑡+1𝝆
⊤ to produce a

vector, and do one DST/DCT transform on that vector.
We exploit the sparsity patterns of these matrices to improve

performance. 𝜕𝝆
𝑡+1

𝜕𝒖𝑡 always has 𝑑 entries per row, in the same posi-
tions. We allocate one sparse matrix with this structure and reuse
it. 𝜕𝝆

𝑡+1

𝜕𝝆𝑡 has 4 (8) entries per row in 2D (3D), but they could be at
any of 9 (27) positions in 2D (3D). We allocate one sparse matrix
with 9 (27) entries per row, then fill entries or set to zero as needed.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Chen et al

Table 1: Timing statistics and parameter values for each example

Example Grid Resolution # Basis # Frames # Keyframes Forward
Simulation (s)

Derivative
Computation (s)

Blobby (Fig. 1 (a)) 1024×1024 100 20 2 703.788 1192.514
Jellyfish (Fig. 1 (b)) 1024×1024 100 20 2 606.923 996.961
Baby Dragon (Fig. 4) 512×512 16 20 2 19.136 25.549

Bird (Fig. 7) 128×128 100 40 1 47.939 43.149
Bunny (Fig. 8 (f)) 128×128 400 5 1 5.327 44.032
GRAPH (Fig. 9) 256×256 100 40 4 147.349 193.645

F/L/U/I/D (Fig. 11) 128×128 100 40 1 45.497 41.737
Running Man (Fig. 13 (c)) 128×128 100 30 15 58.791 60.439

Interactive forward pathline control (Fig. 6 (b)) 256×256 100 5 0 0.757 0.580
Interactive density control (Fig. 10(d)) 256×256 100 5 1 3.306 3.744

4.4 Obstacle derivatives
Our obstacle cost function 𝜉𝑜 only depends on the velocity, so
𝜕𝜉𝑜
𝒇 𝑡 = 0 and 𝜕𝜉𝑜

𝝆𝑡 = 0. The gradient w.r.t. velocity is 𝜕𝜉𝑜
𝜕𝒘𝑡 =

𝜕𝜉𝑜
𝜕𝒖𝑡

𝜕𝒖𝑡

𝜕𝒘𝑡 ,

where each element of 𝜕𝜉𝑜
𝜕𝒖𝑡 is (dropping 𝑡 superscript for clarity)

𝜕𝜉𝑜

𝒖𝒙
= 2 (𝒖𝒙 · 𝒖̃𝒙)

(
𝒖⊤𝑥

𝜕𝒖̃𝒙
𝜕𝒖𝒙

+ 𝒖̃⊤𝒙

)
(22)

As with the density derivatives, 𝜕𝒖𝑡

𝜕𝒘𝑡 is a DST/DCT transform and
is done once on the 𝜕𝜉𝑜

𝜕𝒖𝑡 vector.

5 RESULTS
5.1 Implementation Details
We based our implementation on the C++ Eigenfluids implementa-
tion provided by [Cui et al. 2018].We utilize the Eigen library [Guen-
nebaud et al. 2010], FFTW [Frigo and Johnson 2005], and the NLopt
[Johnson 2007] implementation of L-BFGS. All results were run
on a Macbook Pro with an M2 Pro and 16GB of RAM. Timing and
parameter values are provided in Table 1. Our scaling parameters
were all set to 1.0, except for 𝑘𝑑 , which ranged from 0.005 to 1.0.
Examples with more pronounced movement or deformation tended
to look better with a smaller 𝑘𝑑 . Animation sequences are shown
in our accompanying video.

5.2 Keyframe control
Our method works successfully with a variety of keyframes. In
Fig. 9, we transition between the letters G-R-A-P-H over a sequence
of 40 frames. At a resolution of 256×256, this optimization takes
us roughly 5 minutes, significantly faster than previous methods
at this resolution. In Fig. 1, we optimize fluid flows between hand-
drawn artwork frames. We are able to match the keyframes in shape
well; the color information does not factor into our cost function.
These are our slowest examples, as they are our highest resolution
1024×1024. Still, we optimize these on the order of 10s of minutes,
whereas previous methods at lower resolutions are on the order
of hours. The baby dragon in Fig. 4 is very fast because it uses a
small velocity basis. In Fig. 13, an initial optimization is run with 3
keyframes. However, the keyframes are far apart in time, and the

inbetween motion may not look correct. Our system can quickly
update the solution when new keyframes are added.

(a) translation

(b) rotation target
shape

initial
shape

Figure 4: Eigenfluids provides a separation between veloc-
ity and density DOFs. Here, a high-resolution dragon shape
(512x512) is transformed to different keyframes using only
𝑟 = 16 basis functions.

5.3 Multi-resolution
The crown example shown in Fig. 3 cannot converge at higher
resolutions. The keyframes are spatially non-overlapping, so our
cost function gives zero gradients. The lower-resolution blurring
of the keyframes creates overlap, allowing the optimizer to make
progress. The multi-resolution sequence is also shown for Blobby
and Jellyfish in Fig. 1.

5.4 Frequency control
Our frequency cascade can help the optimizer find better minima. In
Fig. 12, we show the frequency cascade captures keyframe features
better and reaches a lower objective value. The cascade also speeds
convergence, because 1) as noted by [Tang et al. 2021], focusing on
lower frequencies first can help the optimizer, and 2) by reducing
the number of basis functions we reduce our DOFs, so optimization
is dramatically faster as the basis size decreases.

5.5 Obstacles
Obstacles are robustly handled with our modified cost function. In
Fig. 5, a plume of smoke rises and curls around a solid object. We
set one target density keyframe (created from a smoke simulation

Fluid Control with Laplacian Eigenfunctions SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

with no objects) and show the effects of changing the 𝑘𝑑 parameter,
giving artists a balance between obstacle accuracy and keyframe
matching accuracy.

density
keyframe

kd=1.0
ko=1.0

kd=1e-2

ko=1.0
kd=1e-4

ko=1.0
kd=1e-5

ko=1.0
kd=0.0
ko=1.0

Figure 5: A smoke plume rises around an object. Parameter
values control how well it matches the final keyframe.

5.6 Real-time interactive control
While some of our initial keyframe based optimizations are not real-
time, we found our method fast enough to offer interactive feedback
and control on subsequent edits. In Fig. 10, we show how a user can
modify a density keyframe after the initial solve. Our system uses
the initial solution as a warm start and can reoptimize interactively.
Beyond density keyframes, users can also adjust velocity keyframes
and pathlines (Fig. 6). Our system can interactively draw pathlines
forward or backward, and adjust to user pathline changes in real-
time.

(a) brush editing on velocity

(b) forward pathline editing on density

(c) backward pathline editing on density

density field

velocity field

Figure 6: Starting with a simulation of smoke moving up-
wards (left), the user can (a) edit the velocity field. They can
(b) choose a point and edit the end of its pathline in a future
frame (blue dot). When clicking a point, they can also (c)
trace its path backwards and specify points along the path-
line.

5.7 Comparisons
We recreate several examples from previous papers to show the
efficacy of our method. In the bird example from [Pan and Manocha
2017] (Fig. 7), we match the keyframe with fewer high-frequency
artifacts. An interesting note here is that due to the strict incom-
pressibility of our method, there are several small gaps which can-
not be closed. This is expected, and starting from a torus (which
has the same topology as the desired shape) achieves the keyframe
with no gaps.

In Fig. 11, we transform the circle shape into five different letters
over 40 timesteps. Compared to previous work [Pan and Manocha
2017; Tang et al. 2021], our method generates fewer artifacts dur-
ing intermediate states, most likely due to the reduced velocity
representation. Our method is also much faster, taking 86 seconds
compared to 15 minutes or more for previous methods.

Standard semi-lagrangian advection (for density) is applied for
its simplicity. We emphasize that our method produces significantly
better results with this simple advection than previous methods,
which use more advanced advection schemes.

Figure 7: We transform a circle keyframe (left) into a bird
shape (right). Pan and Manocha [2017] had many artifacts
when using semi-lagrangian advection (top row), so they used
an up-winding scheme (second row). Our method converges
well when using semi-lagrangian advection for the density
(bottom three rows).

6 DISCUSSIONS AND CONCLUSION
In this work, we have showcased the utilization of Eigenfluids
for fluid control, highlighting its high efficiency and potential for
interactive applications. Our approach also integrates pathline con-
trol with keyframes, enhancing iterative workflows. We have pro-
vided analytical expressions for the necessary gradients, enabling
straightforward implementation. The results presented in this paper
demonstrate the efficacy of multi-resolution and frequency control.

Nevertheless, we have only focused on 2D applications in this
paper, leaving the implementation and validation of 3D fluid control
untouched. Theoretically, the Eigenfluid method and our gradient
expressions can be extended to 3D, but the scalability of this method
is anticipated to diminish when transitioning from 2D to 3D due to
the intrinsic expansion of the basis functions. This deserves more
analysis and study.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Chen et al

Additionally, a large number of basis functions might be required
to handle complex obstacles accurately or to accommodate extreme
deformations between keyframes, which will reduce performance.
Exploring methods for compressing the advection tensor could mit-
igate some of these challenges, presenting an intriguing direction
for future work.

More sophisticated frequency control could be explored through
manipulation of the advection tensor. This governs the flow of
energy in Eigenfluids and could be used to give users more con-
trol. Exploring alternative objectives, such as partial keyframes for
sparser constraints or objectives incorporating color information,
could broaden the method’s applicability. Moreover, most of our
method would map well to GPU architectures, enabling even more
efficient and large-scale fluid control.

Finally, fluid simulation and control with free surfaces between
liquid and gas are still unexplored in this particular reduced space,
which highlights another potential area for future development.

ACKNOWLEDGMENTS
We express our gratitude to all reviewers for their valuable feedback
and suggestions on this work. We thank Qiaodong Cui, Jingwei
Tang, and Zherong Pan for sharing their codes and offering help
for comparisons. We would also like to thank John Hancock and
Xuan Dam for their essential administrative support. Special thanks
to Masha Shugrina for drawing the beautiful teaser keyframes.
We appreciate the support from Yiting Li and Zhecheng Wang,
who assisted with video editing and proofreading. This work is
supported by funding from theNSERCDiscovery Grant, the Ontario
Early Researchers Award, the Canada Research Chairs Program,
and gifts from Adobe Research and Autodesk.

REFERENCES
Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek Nowrouzezahrai. 2006. A

controllable, fast and stable basis for vortex based smoke simulation. In Symposium
on Computer Animation (SCA 06). ACM, pages–25.

Joshua Aurand, Raphael Ortiz, Silvia Nauer, and Vinicius C Azevedo. 2022. Efficient
Neural Style Transfer for Volumetric Simulations. ACM Transactions on Graphics
(TOG) 41, 6 (2022), 1–10.

Robert Bridson. 2015. Fluid Simulation for Computer Graphics (2nd ed.). A K Peters/CRC
Press, New York.

Mengyu Chu, Nils Thuerey, Hans-Peter Seidel, Christian Theobalt, and Rhaleb Zayer.
2021. Learning meaningful controls for fluids. ACM Transactions on Graphics (TOG)
40, 4 (2021), 1–13.

Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable laplacian eigenfluids.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.

Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid simulation using
laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 1–11.

M-L Eckert, Wolfgang Heidrich, and Nils Thuerey. 2018. Coupled fluid density and
motion from single views. In Computer Graphics Forum, Vol. 37. Wiley Online
Library, 47–58.

Raanan Fattal and Dani Lischinski. 2004. Target-driven smoke animation. ACM Trans.
Graph. 23, 3 (aug 2004), 441–448. https://doi.org/10.1145/1015706.1015743

Sean Flynn, Parris Egbert, Seth Holladay, and Bryan Morse. 2019. Fluid carving:
intelligent resizing for fluid simulation data. ACM Transactions on Graphics (TOG)
38, 6 (2019), 1–14.

Nick Foster and Dimitris Metaxas. 1997. Controlling fluid animation. In Proceedings
computer graphics international. IEEE, 178–188.

Matteo Frigo and Steven G. Johnson. 2005. The Design and Implementation of FFTW3.
Proc. IEEE 93, 2 (2005), 216–231. Special issue on “ProgramGeneration, Optimization,
and Platform Adaptation”.

James Gregson, Ivo Ihrke, Nils Thuerey, and Wolfgang Heidrich. 2014. From capture to
simulation: connecting forward and inverse problems in fluids. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 1–11.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Philipp Holl, Vladlen Koltun, and Nils Thuerey. 2020. Learning to control pdes with

differentiable physics. arXiv preprint arXiv:2001.07457 (2020).

Jeong-mo Hong and Chang-hun Kim. 2004. Controlling fluid animation with geometric
potential. Computer Animation and Virtual Worlds 15, 3-4 (2004), 147–157.

Ruoguan Huang, Zeki Melek, and John Keyser. 2011. Preview-based sampling
for controlling gaseous simulations. In Proceedings of the 2011 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 177–186.

Tiffany Inglis, M-L Eckert, James Gregson, and Nils Thuerey. 2017. Primal-dual op-
timization for fluids. In Computer Graphics Forum, Vol. 36. Wiley Online Library,
354–368.

Steven G. Johnson. 2007. The NLopt nonlinear-optimization package. https://github.
com/stevengj/nlopt.

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. 2019.
Transport-based neural style transfer for smoke simulations. ACM Trans. Graph.
38, 6, Article 188 (nov 2019), 11 pages. https://doi.org/10.1145/3355089.3356560

Byungsoo Kim, Xingchang Huang, Laura Wuelfroth, Jingwei Tang, Guillaume Cor-
donnier, Markus Gross, and Barbara Solenthaler. 2022. Deep Reconstruction of 3D
Smoke Densities from Artist Sketches. In Computer Graphics Forum, Vol. 41. Wiley
Online Library, 97–110.

Yootai Kim, RaghuMachiraju, and David Thompson. 2006. Path-based control of smoke
simulations. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 33–42.

Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. 2015.
Model-reduced variational fluid simulation. ACM Transactions on Graphics (TOG)
34, 6 (2015), 1–12.

Jamie Madill and David Mould. 2013. Target particle control of smoke simulation. In
Proceedings of Graphics Interface 2013. 125–132.

Pierre-Luc Manteaux, Ulysse Vimont, Chris Wojtan, Damien Rohmer, and Marie-Paule
Cani. 2016. Space-time sculpting of liquid animation. In Proceedings of the 9th
International Conference on Motion in Games. 61–71.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Transactions On Graphics (TOG) 23, 3 (2004),
449–456.

Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. 2004. Animation and control of
breaking waves. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium
on Computer animation. 315–324.

M. Muller, M. Teschner, and M. Gross. 2004. Physically-based simulation of objects
represented by surface meshes. In Proceedings Computer Graphics International,
2004. 26–33.

Michael B Nielsen and Robert Bridson. 2011. Guide shapes for high resolution natural-
istic liquid simulation. In ACM SIGGRAPH 2011 papers. 1–8.

Michael B Nielsen and Brian B Christensen. 2010. Improved variational guiding of
smoke animations. In Computer Graphics Forum, Vol. 29. Wiley Online Library,
705–712.

Michael B Nielsen, Brian B Christensen, Nafees Bin Zafar, Doug Roble, and KenMuseth.
2009. Guiding of smoke animations through variational coupling of simulations
at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 217–226.

Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, andHujun Bao. 2013. Interactive
localized liquid motion editing. ACM Transactions on Graphics (TOG) 32, 6 (2013),
1–10.

Zherong Pan and Dinesh Manocha. 2017. Efficient solver for spacetime control of
smoke. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1.

Frédéric Pighin, Jonathan M Cohen, and Maurya Shah. 2004. Modeling and edit-
ing flows using advected radial basis functions. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation. 223–232.

Nick Rasmussen, Doug Enright, Duc Nguyen, Sebastian Marino, Nigel Sumner, Willi
Geiger, Samir Hoon, and Ron Fedkiw. 2004. Directable Photorealistic Liquids. In
Symposium on Computer Animation, R. Boulic and D. K. Pai (Eds.). The Eurographics
Association. https://doi.org/10.2312/SCA/SCA04/193-202

Karthik Raveendran, Nils Thuerey, Christopher J Wojtan, and Greg Turk. 2012. Con-
trolling liquids using meshes. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation.

Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk. 2014. Blending
liquids. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–10.

Bo Ren, Chen-Feng Li, Ming C Lin, Theodore Kim, and Shi-Min Hu. 2013. Flow field
modulation. IEEE Transactions on Visualization and Computer Graphics 19, 10 (2013),
1708–1719.

Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018b. Example-
based turbulence style transfer. ACM Transactions on Graphics (TOG) 37, 4 (2018),
1–9.

Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. 2018a. Editing fluid animation
using flow interpolation. ACM Transactions on Graphics (TOG) 37, 5 (2018), 1–12.

Connor Schenck and Dieter Fox. 2018. Spnets: Differentiable fluid dynamics for deep
neural networks. In Conference on Robot Learning. PMLR, 317–335.

Arnaud Schoentgen, Pierre Poulin, Emmanuelle Darles, and Philippe Meseure. 2020.
Particle-based Liquid Control using Animation Templates. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 79–88.

https://doi.org/10.1145/1015706.1015743
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://doi.org/10.1145/3355089.3356560
https://doi.org/10.2312/SCA/SCA04/193-202

Fluid Control with Laplacian Eigenfunctions SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Joshua Schpok, William Dwyer, and David S. Ebert. 2005. Modeling and Animating
Gases with Simulation Features. In Symposium on Computer Animation, D. Terzopou-
los, V. Zordan, K. Anjyo, and P. Faloutsos (Eds.). The Eurographics Association.
https://doi.org/10.2312/SCA/SCA05/097-106

Lin Shi and Yizhou Yu. 2005a. Controllable smoke animation with guiding objects.
ACM Transactions on Graphics (TOG) 24, 1 (2005), 140–164.

Lin Shi and Yizhou Yu. 2005b. Taming liquids for rapidly changing targets. In Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation.
229–236.

Tetsuya Takahashi and Ming C Lin. 2019. Video-guided real-to-virtual parameter
transfer for viscous fluids. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–12.

Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and Barbara Solenthaler.
2021. Honey, I Shrunk the Domain: Frequency-aware Force Field Reduction for
Efficient Fluids Optimization. In Computer Graphics Forum, Vol. 40. Wiley Online
Library, 339–353.

Jingwei Tang, Byungsoo Kim, Vinicius C Azevedo, and Barbara Solenthaler. 2023.
Physics-Informed Neural Corrector for Deformation-based Fluid Control. In Com-
puter Graphics Forum, Vol. 42. Wiley Online Library, 161–173.

Nils Thuerey. 2016. Interpolations of smoke and liquid simulations. ACM Transactions
on Graphics (TOG) 36, 1 (2016), 1–16.

Nils Thürey, Richard Keiser, Mark Pauly, and Ulrich Rüde. 2009. Detail-preserving
fluid control. Graphical Models 71, 6 (2009), 221–228.

Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe
control of smoke simulations. In ACM SIGGRAPH 2003 Papers. 716–723.

Steffen Wei𝒔mann and Ulrich Pinkall. 2010. Filament-based smoke with vortex shed-
ding and variational reconnection. In ACM SIGGRAPH 2010 papers. 1–12.

Haoran Xie, Keisuke Arihara, Syuhei Sato, and Kazunori Miyata. 2022. Dualsmoke:
Sketch-based smoke illustration design with two-stage generative model. arXiv
preprint arXiv:2208.10906 (2022).

Guowei Yan, Zhili Chen, Jimei Yang, and Huamin Wang. 2020. Interactive liquid splash
modeling by user sketches. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–13.

Ben Yang, Youquan Liu, Lihua You, and Xiaogang Jin. 2013. A unified smoke control
method based on signed distance field. Computers & graphics 37, 7 (2013), 775–786.

Zhi Yuan, Fan Chen, and Ye Zhao. 2011. Pattern-guided smoke animation with la-
grangian coherent structure. In Proceedings of the 2011 SIGGRAPH Asia Conference.
1–8.

https://doi.org/10.2312/SCA/SCA05/097-106

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Chen et al

target
shape

(a) 3x3 (b) 4x4 (c) 5x5 (d) 10x10 (e) 15x15 (f) 20x20
25 100 225 400

0.0

0.1

time per iteration (s)

basis

Figure 8: Starting from a circle, we morph to a bunny keyframe using different amounts of basis functions, which controls
the complexity of deformations we can model. We found that 100 basis functions (d) gave good results for our examples and
maintained good efficiency.

initial shape target shapes (4 keyframes)

Figure 9: With smoke initialized to the letter G, our system finds a flow to transition to the letters R A P H.

(a) load in image and
use as density keyframe

(b) apply keyframe control
to generate animation

(c) apply density brush
to have a new bear shape

(d) another keyframe control
using the new keyframe

Figure 10: After initially warping a gingerbread man to a bear, the user interactively modify the bear keyframe.

 [Pan and Manocha 2017] [Tang et al. 2021] Our method

Figure 11: We morph a circle keyframe into different letters and compare the results of two recent methods. The resolution is
1282 and from top to bottom, we show the results at frames 0, 20, 30, 35, and 40.

Fluid Control with Laplacian Eigenfunctions SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

initial
shape

target
shape

(a) direct control
by di�erent amount of basis functions

(b) multi-scale control
use the optimal force vector from lower frequency control

as part of the initial force vector for higher frequency control

5x5 10x10 15x15 20x20

relative objective value

basis

1.0

0.8

0.6

0.4

0.2
100 200 300 400

direct control
multi-scale
control

5x5 10x10 15x15 20x20

Figure 12: Our frequency cascade allows the optimizer to match keyframes more accurately, highlighted in the bottom row, and
shown quantitatively as lower objective values.

initial
shape target shapes (3 keyframes)

initial
shape target shapes (6 keyframes)

initial
shape target shapes (15 keyframes)

(a)

(b)

(c)

Figure 13: When keyframes are too far apart (a), the generated motion may not capture the users intent. Users can quickly add
new keyframes, (b) and (c), until the motion matches what they expect.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Fluid simulation
	2.2 Fluid control

	3 Fluid Control
	3.1 Laplacian Eigenfluids
	3.2 Optimization problem
	3.3 Multi-resolution pyramid
	3.4 Frequency control

	4 Gradient Computation
	4.1 Adjoint Method
	4.2 Velocity derivatives
	4.3 Density derivatives
	4.4 Obstacle derivatives

	5 Results
	5.1 Implementation Details
	5.2 Keyframe control
	5.3 Multi-resolution
	5.4 Frequency control
	5.5 Obstacles
	5.6 Real-time interactive control
	5.7 Comparisons

	6 Discussions and Conclusion
	Acknowledgments
	References

