
Face ExtrusionQuad Meshes
Karran Pandey

karran@cs.toronto.edu
University of Toronto

Toronto, Canada

J. Andreas Bærentzen
janba@dtu.dk

Technical University of Denmark
Copenhagen, Denmark

Karan Singh
karan@dgp.toronto.edu
University of Toronto

Toronto, Canada

(a)

(c)

(b)

(d)

(e)

(g)

(f)

E

E EE

E E

(h)

Figure 1: Face Extrusion Quad meshes (FEQs) are built using a sequence of face-loop modeling operations. Arbitrary triangu-
lar meshes (a), can automatically be skeletally topologized as an FEQ (b), and geometrically fit to the original mesh (c). The
construction graph is shown abstracted, with color-coded subgraph nodes matching an FEQ part structure (d). FEQs enable a
variety of shape history aware applications like inverse box modeling (e),(f), and FEQ-preserving cut-and-paste (g),(h).

ABSTRACT
We propose a 3D object construction methodology built on face-
loop modeling operations. Our Face Extrusion Quad (FEQ) meshes,
have a well designed face-loop structure similar to artist crafted 3D
models. Furthermore, we define a construction graphwhich encodes
a sequence of primitive extrude/collapse and bridge/separate oper-
ations that operate on admissible face-loops. We show that FEQs
are imbued with a meaningful face-loop induced shape skeleton,
part segmentation, plausible construction history, and possess the
many advantages of extrusion-based 3D modeling. Our evaluation
is threefold: we show a gallery of challenging 3D models trans-
formed to FEQs with compelling face-loop structure; we showcase

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00
https://doi.org/10.1145/3528233.3530754

the potential of an inherent construction graph, using FEQ-based
cut-paste and inverse modeling applications; and we demonstrate
the impact of various algorithmic and parameter related choices
for FEQ modeling and application.

CCS CONCEPTS
• Computing methodologies→Mesh geometry models.

KEYWORDS
quadrilateral meshes, shape modeling

ACM Reference Format:
Karran Pandey, J. Andreas Bærentzen, and Karan Singh. 2022. Face Extrusion
Quad Meshes. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Proceedings (SIGGRAPH ’22 Conference Proceedings),
August 7–11, 2022, Vancouver, BC, Canada.ACM, NewYork, NY, USA, 9 pages.
https://doi.org/10.1145/3528233.3530754

1 INTRODUCTION
Quadrilateral meshes, or simply quad meshes, are a popular repre-
sentation for surface modeling, with many advantages, both func-
tional and aesthetic [Gahan 2010; Pottmann et al. 2008; Vaughan

https://orcid.org/
https://doi.org/10.1145/3528233.3530754
https://doi.org/10.1145/3528233.3530754

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Pandey, et al.

2012], and they are a rich area of ongoing academic research
[Bommes et al. 2013] studying problems pertaining to quad shape,
planarity, alignment, connectivity and remeshing.

Artists have also paid significant attention to the 3D modeling
of objects using quad meshes. A common interactive quad mesh
workflow, box modeling, is widely used by novices and professionals
alike [Vaughan 2012]. Analogous to sculpting from a block of clay,
box modeling creates objects by extruding and bridging parts of
the shape from a simple starting shape such as a cube. Hundreds of
online blogs and tutorials promote the technique [Pixxo3D 2021],
for its easy to refine construction history, and inherent part struc-
ture. Artists also focus on the design of face-loops in a quad mesh
(Figure 2). For a closed manifold quad mesh, a face-loop is sequence
of adjacent quads, traversed across opposite edges (Figure 2). Well
designed face-loops are the direct result of face extrusion oper-
ations, and are commonly used by artists to define meaningful
regions of an object aligned with an object skeleton or deformation
lines (Figure 2) [Bordegoni and Rizzi 2011; Gahan 2010; Johnson
2020].

Motivated by the artistic importance of face-loops in design,
we propose, Face Extrusion Quad FEQ meshes, a 3D object rep-
resentation built on atomic face-loop modeling operations that
can explicitly capture the properties of artist designed face-loops.
Specifically, we closely follow an invertible box modeling work-
flow, to build an FEQ as a sequence of primitive extrude/collapse
and bridge/separate operations on admissible face-loops. Then
we encode the sequence of operations as a directed construc-
tion graph that imparts an FEQ with a well-defined shape skele-
ton, part segmentation and plausible construction history (Fig-
ure 1). Further, our vocabulary of face-loop operations is designed
to avoid the creation of undesirable self-intersecting face-loops
(Figure 2(a)).

A practical requirement for FEQ adoption is the ability to auto-
matically transform an arbitrary triangle mesh into an FEQ, that is
aligned with its skeletal and part structure (Figure 1). Consistent
with the extrusion based methodology we do this by forming quad
meshes for each branch node. These branch nodes meshes are then
extruded, joined by bridges, and fitted to the original geometry
as discussed in Section 5. We demonstrate the effectiveness on a
diverse range of models.

Next, we propose a method for computing a construction graph
for FEQs in Section 6. Specifically, we show how a sequence of
collapses can be used to iteratively strip face loops until the feature
is reduced to its base patch (Figure 1). These collapses are recorded
in the construction graph, and from this representation we can now
reconstruct the feature on a different base patch. The construction
graph also enables applications that can exploit a high-level shape
structure, such as the cut-and-paste of features from an FEQ to
another quad mesh. A core part of our contribution is that we do
not simply copy a part of the mesh, but rather use the construction
graph, to rebuild the feature on the target mesh, and since we are
rebuilding (rather than simply adding a set of faces) the feature
naturally adapts to the shape and connectivity of the target mesh.
Artistically, our work can be viewed as the sculpting analogue to
the problem of imagining a drawing sequence of strokes from a
finished sketch [Fu et al. 2011].

Figure 2: Face-loops in artist modeled quad meshes capture
object skeleton/deformation: creating such quad meshes
with a well-designed face-loop structure, avoiding face-
loops (magenta) with self intersection (red +) and self-
adjacency (orange edge), is challenging (a); segmenting the
object into regions using deformation aligned face-loops (b),
helps produce aesthetic quad meshes that we represent as
face extrusion quadmeshes (c) ©JohnsonMartin 2021, topol-
ogyguides.com.

2 RELATEDWORK
The past twenty years have seen a great deal of research on gener-
ating and manipulating quad meshes. Since the PGP method of Ray
et al. [2006] and QuadCover by Kälberer et al. [2007], numerous
often parametrization-based methods for quad mesh generation
have emerged [Bommes et al. 2013]. However, not many of the
methods are directly concerned with face loops. An important ex-
ception is the dual loops based method due to Campen et al. [2012;
2014] since their dual loops correspond to face loops in a coarse
quad layout. Dual loops are also of interest in hex meshing (e.g.
[Takayama 2019]) since the dual of a quad mesh can be seen as the
intersection of the surface with a collection of sheets. These sheets
are what Murdoch et al. [1997] called the Spatial Twist Continuum
(STC), and the STC in turn defines a hexahedral mesh. A number of
authors propose methods for improving quad meshes interactively
or automatically through operations which move and remove sin-
gularities, e.g. [Feng et al. 2021; Peng et al. 2014, 2011]. In more
closely related work, Daniels et al. [2008] consider face loop (called
poly-chord) collapse in the context of quad mesh simplification.

Several authors have proposed skeleton based mesh genera-
tion methods with similarities to the one we present in Section 5
[Bærentzen et al. 2012; Ji et al. 2010; Suárez and Hubert 2018; Usai
et al. 2015; Yao et al. 2009]. In particular, the method for skeleton
guided construction of quad meshes due to Usai et al. is concep-
tually similar to ours, but the handling of branch nodes is very
different. Specifically, the approach of Usai et al. entails the need to
solve an integer linear programming problem which we avoid.

Bærentzen et al. [2014] proposed the polar annular co-
representation for meshes cum skeleton. The main similarity is that
they also exploit the structural information of a constrained mesh
representation, but the polar annular representation of Bærentzen
et al. is targeted at branching structures and less broadly applicable
than FEQs. RigMesh by Borosán et al. [2012] shares the idea of cre-
ating a structurally aware model; in their case by explicitly creating

Face ExtrusionQuad Meshes SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

the skeleton together with the geometry. With PushPull++ Lipp et
al. [2014] created a system for editing models consisting of general
planar polygons. While we share the focus on extrusions, their
concerns are entirely different. Schmidt and Singh [2008] proposed
Surface Trees, a method which allows for constructing a tree of
layered triangle mesh surface features analogous to a CSG tree.
Nuvoli et al. [2019] presented QuadMixer which allows users to
perform boolean operations on quad meshes while retaining almost
all of the input mesh structure.

3 DEFINITIONS
A face loop L in a quad mesh M consists of a contiguous loop of
faces connected along their opposite edges. L is bounded by two
edge cycles, which we refer to as its rails, LR and L′R , and contains
a collection of opposite edges called sleepers, denoted by LS .

Two face loops are said to intersect if they share at least one
common face. If they only share common edges, they are said to
be adjacent. Adjacent face loops are said to be aligned if they fully
share one of their boundary loops. A face loop can therefore self-
intersect or be self-adjacent if it encounters the same face or edge,
respectively, more than once in its path (see Figure 3).

L is defined as simple if it is neither self-adjacent nor self-
intersect-ing. Each rail of a simple face loop bounds a face set,
referred to as its interior face set LF . A leaf face loop is a simple
face loop which does not contain any simple face loops in at least
one of its interior face sets.

A face path is a contiguous sequence of faces that connect two
faces. A face path must be traversable by stepping from face to face
along one or more loops, switching from one loop to another only
at intersections (see Figure 3 (right)).

A set of mesh faces, F ⊂ M are said to be path connected if any
two faces f1, f2 ∈ F are always connected by at least one face path.

The interior of a face loop is not unique (except e.g. on a torus)
since both rail curves bound a set of faces. However, the interior is
easily disambiguated. When an extrusion is performed, we think
of the extruded faces as the interior and when we analyze the loop
structure of a mesh, we consider the face set of smallest area to
be the interior. In the case of selection, the interior is user defined.
When the user selects a feature on the mesh, she only has to indicate
a face loop and which side should be considered the interior.

Figure 3: (Left to Right): A simple face loop and its con-
stituent rails, sleepers and interior; a self intersecting face
loop; a self adjacent face loop and a face path.

3.1 Visualization
Since face loops contain structural information about the mesh, it
is possible to form a curve skeleton [Cornea et al. 2007] directly
from the face loop structure as described in the following.

We define the cylindricity of a face loop L,

cyl(L) =

∑i ∈Ls si

∑

i ∈Ls ∥si ∥
, (1)

where si ∈ R3 are the sleeper edges which separate the faces of
L. It is clear that cyl(L) ≤ 1 and equal only if all si are identical
up to a positive scale factor. We now select face loops in order
of decreasing cylindricity normalized by the area of the face loop.
This normalization helps avoid a bias towards very short face loops.
Loops are only selected if they are neither self-intersecting nor
contain faces from previously selected loops. For each selected loop,
we create a skeletal edge connecting the barycenters of the rail
edge loops. When no more face loops can be selected, a vertex is
formed as the barycenter of each patch of path connected faces none
of which belong to a selected face loop. Finally, skeletal vertices
are connected if they belong to patches or face loops that share
boundary edges and unified if they are identical.

Figure 4: Comparing the face loop structure of FEQs (mid-
dle column) with artist-made meshes (left) [Takayama
et al. 2013] [Marcias et al. 2015] and feature-line driven
quad meshing (right) [Pietroni et al. 2021]. We see that
FEQs closely align to artist-made meshes while feature-line
driven approaches fail to capture parts of the model due to
self-intersecting face loops. A single self-intersecting face
loop per model is illustrated in blue in the right column.)

The face loop skeleton is an analysis tool which can be used to
show how consistent the face loop structure is: the skeleton can
be formed for any closed quad mesh, but if the mesh contains a
significant number of self-intersecting face loops (c.f. Figure 2),
many features are likely to be missing from the skeleton as shown
in Figure 4.

The chains of edges joined by valence two nodes in the skeleton
induce a segmentation of the mesh into aligned face loops. This
segmentation is also an important analysis tool which provides a
good part-decomposition of FEQs, and throughout the paper we
will show this segmentation on our models.

4 FEQS
We now define the four operations, illustrated in Figure 5, that form
the core of our methodology for face extrusion quad mesh (FEQ)
modeling. Informally, FEQs are defined as meshes which are created
or could be created using the forward operations extrusion and

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Pandey, et al.

Figure 5: (From left to right): The atomic operations: extru-
sion, collapse, bridging and separation.

bridging. We will consider the operations in terms of a quad mesh
M . Each operation has specific conditions that must be fulfilled for
it to be valid, and they all either add or remove a single face loop.

Extrusion. Given a path connected set of mesh faces with the
topology of a disk, F ⊂ M , the extrusion of F disconnects F from
M , introduces a new face loop, LE , which reconnects F to the M ,
and moves the vertices of F to their new position. Thus, the effect
of an extrusion is the introduction of a face loop followed by a
modification of the geometry.

Collapse. A face loop L, can be collapsed onto one of its rails
LR by collapsing each of its sleeper edges LS onto a vertex in
LR . Geometrically, we flatten the interior geometry by boundary
constrained smoothing if L is a leaf.

We define a valid face loop collapse as one where L is simple and
its interior face set, F , consists of one or more components of disk
topology. Usually, there is only a single component, but the inner
rail curve of L may contain the same vertex more than once. In this
case F will contain several components. If F is a path connected set
of faces of disk topology then the collapse is precisely the inverse
of extrude.

Bridging. Bridging can be defined as an extrusion where we
match the extruded face set to another face set and remove both
whereby the new face loop becomes a connecting tunnel between
the resulting holes. Two path connected sets of mesh faces of disk
topology, F1, F2 ⊂ M , can be bridged with a face loop of quads only
if their connectivities are each other’s precise mirror images since
the edges through which face loops enter and exit F1 and F2 are
then also mirror images. This ensures that face loops are correctly
paired after bridging and hence do not self-intersect.

It is possible to raise the genus of a mesh by bridging two sets
of faces that belong to the same connected component. However, it
is clear that the condition above is not enough to ensure that self-
intersecting face loops are avoided in this case: two different face
loops which are joined into one by the bridging might have been
intersecting before the bridge was created. We prefer to allow self-
intersections in higher genus meshes rather than impose further
conditions which would often make bridging infeasible.

Separation. A separation can be perceived as the inverse of a
bridging. The faces in a loop L are removed from the mesh and the
two holes corresponding to the rail curves are filled by quadran-
gulations. Unlike the other operations, we have not implemented
separation in our framework. For meshes which are constructed
using a sequence of the operations discussed above, we can triv-
ially perform the separations that are typically needed simply by
omitting the bridgings that would otherwise be performed.

Figure 6: (Top, From left to right): BNPs are subdivided to
form branch node meshes which are then bridged and ex-
truded to reconstruct graph paths. Thematched branch face
sets are displayed in blue in the bridging step, insets show
the precise structure of the face sets. (Bottom) We edit the
connectivity of the BNP by introducing auxiliary vertices to
improve the face loop structure at planar junctions.

What are FEQs then? While it would be satisfying to give a pre-
cise and formal definition of FEQs this is neither possible nor nec-
essary, and we will briefly address why.

It is possible to identify connectivities which cannot be formed
by face extrusion. Specifically, self-intersecting and self-adjacent
face loops (c.f. Figure 3) cannot be the result of face extrusion.

On the other hand, given a mesh which appears to be con-
structible using only extrusions (and possibly bridging), the se-
quence of extrusions needed to form this particular mesh from a
given initial mesh (say a cube) is not unique, and a sequence of
collapses is not guaranteed to lead back to this initial mesh. It is
possible we will be led back to a point where no further collapses
are possible (see Figure 12 (c)). In these cases, we would have to
backtrack in order to reach the initial mesh. Thus, in some cases,
the answer to whether a given mesh can be formed from an initial
mesh requires significant computation.

However, our atomic operations are not predicated on global
properties of the mesh, only on the specific conditions. Nor do we
necessarily need to decompose the entire mesh: in many cases, we
might want to create an FEQ from a part of a larger mesh or add
an FEQ component to a mesh which can simply be a general quad
mesh. Finally, as discussed below, we can create an FEQ from a
part of a mesh even if some of the face loops do not admit a valid
collapse.

5 EXTRUSION-BASED REMESHING
Our algorithm for creating an FEQ,M , from an initial triangle mesh,
Mt is based on the atomic operations of extrusion and bridging and
consists of two main steps: inverse skeletonization and fitting. An
implementation is made available in https://github.com/janba/GEL,
and the process is described in greater detail in [Pandey et al. 2022].

Inverse Skeletonization. The remeshing relies on a curve skeleton
with straight edges [Cornea et al. 2007; Tagliasacchi et al. 2016]

https://github.com/janba/GEL

Face ExtrusionQuad Meshes SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Figure 7: The figure illustrates matching subsets of the
branch face sets. On the left, the vertex has valence 6 and
on the right it has valence 5. By selecting only four faces in
each one ring, we ensure that the two subsets have identical
structure and can thus be bridged.

which we compute using the Local Separator method [Bærentzen
and Rotenberg 2021] and store in an undirected graph G = (V ,E)
where each node n ∈ V is imbued with a 3D position. We construct
a quad mesh from G using the following steps. Initially, the branch
nodes ofG , i.e nodes with valence > 2, are identified and a triangle
mesh is created and subdivided, producing a quad mesh for each
branch node. The final mesh is obtained using bridging and extru-
sion operations. The steps are shown in Figure 6 and discussed in
greater detail below.

Consider a branch node n. Inspired by prior work on inverse
skeletonization [Bærentzen et al. 2012], we construct a representa-
tive mesh for n by computing a spherical Delaunay triangulation
of points found by intersecting each outgoing path with a sphere
centered on n. The resulting Branch Node Polyhedron (BNP) con-
tains a vertex for each outgoing path, referred to as a path vertex.
The BNP is subsequently improved using a procedure described in
Section 5.1.

Next, we produce a branch node mesh for n by a single iteration
of Catmull-Clark subdivision [Catmull and Clark 1978] of the BNP.
We state without proof that Catmull-Clark subdivision of a triangle
mesh produces a quad mesh where all face loops circle the original
vertices and do not self-intersect. For each outgoing edge of n, the
branch node mesh contains a unique path vertex along with a sur-
rounding ring of quads. This is an especially useful structure since
quads from this one-ring can be bridged or extruded to reconstruct
the graph structure. Below, we refer to this one-ring of quads as a
branch face set.

To reconstruct a path between two graph nodes, we bridge the
branch face sets corresponding to the two nodes (c.f. Section 4).
Since the branch face sets are created by subdividing triangle fans,
they are identical if the path vertices have the same valence. If
the valencies differ, we can select a matching subset for each of
the the branch face sets, and these subsets are then bridged. If
the valencies of the path vertices are k1 and k2, respectively, we
select min(k1,k2) − 1 contiguous faces from each face set as our
subsets. The branch face sets are rings of quads that have a very
regular structure: any quad shares a face loop with each of its two
neighbors in the ring. By selecting min(k1,k2) − 1 contiguous faces,
the subsets leave both rings open which entails that the outermost

faces do not share their face loops with another face. Such a subset
will be referred to as an open ring whereas a full branch face set will
be referred to as a closed ring. We must bridge identical subsets of
branch face sets: either open or closed rings depending on whether
the branch face sets are different or identical, respectively. For an
illustration of matching open rings, please refer to Figure 7.

A similar process is followed for leaf connections, but instead of
bridging, we here need only extrude, and we always extrude the
full branch face sets (closed ring). Both bridging and extrusions are
guided by the graph edges as illustrated in Figure 6.

Now that we have a quad mesh with the desired face loop struc-
ture, we inflate and fit the inverse skeletonized meshM to the input
trianglemeshMt . For our fitting procedure, we use the sparse-linear
least-squares system outlined in Least-Squares Meshes [Sorkine
and Cohen-Or 2004]. For more details on the fitting procedure,
please refer to our supplementary document [Pandey et al. 2022].

5.1 BNP Connectivity Improvement

Figure 8: The figure illustrates the connectivity improve-
ment for planar regions in a BNP. The interior edges are
removed, and a central vertex is introduced which is then
connected to all boundary vertices.

Two types of changes are made to the BNP before Catmull-Clark
subdivision. The first type involves introducing auxiliary vertices
to ensure that the BNP triangles are closer to equilateral which, in
turn, leads to a better output mesh. The second is a refinement step
which ensures that we can match closed rings in most cases.

Planar Junctions. Planar regions in a BNP can be identified as
a collection of faces with a small dihedral angle (less than 15◦)
between them. Such regions correspond to a set of outgoing graph
paths which approximately lie within the same plane, like, say, the
fingers of a hand. In terms of this example, we would expect that a
given finger is only connected to the adjacent fingers, but since the
BNP is a triangulation, we also get edges connecting non-adjacent
fingers as illustrated in Figure 8.

To prevent this, we retopologize planar regions in a BNP by
introducing an auxiliary vertex in the center of the planar region
and connecting this new vertex to all of the boundary vertices.
Returning to the hand example, this means that the fingers are now
only connected to adjacent fingers and the auxiliary vertex which
roughly corresponds to the palm.

Surplus Quad Patches. When open rings are matched, left over
faces appear as surplus quad patches in junctions of the FEQ. While
such patches are sometimes necessary for the quad layout [Pandey
et al. 2022] they can often be removed, leading to a simpler mesh.

To reduce the number of unmatched faces in the bridging step,
the BNP is refined before Catmull-Clark subdivision. We know the
number of faces in the branch face set will be equal to the valence

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Pandey, et al.

of the BNP path vertex. Thus, we can increase the number of faces
in the smaller branch face set by splitting one of the BNP edges in
the link of the path vertex.

This split is only performed if it leads to a match between closed
rings (i.e. k1 = k2) for the connected pair of path vertices, and does
not result in an increased value of |k1 − k2 | for any other pair of
connected path vertices. The procedure is applied greedily until no
more improvements can be made.

Importantly, we do not make changes that would propagate the
need for subdivision. Thus, unlike [Bærentzen et al. 2012; Suárez
and Hubert 2018; Usai et al. 2015], we avoid searching for a global
solution, e.g. by solving an integer linear programming problem.

6 THE CONSTRUCTION GRAPH
Let’s consider a part S constructed by performing an ordered set of
face extrusions on a base mesh M . The construction history of S
can be represented using a directed acyclic graph of extrusions GC
called the construction graph (illustrated in Figure 12).

GC captures the construction history by storing extrusion oper-
ations and the relationships between them. For each face extrusion,
a node E is introduced inGC with an associated face-ownership FE .
FE consists of the faces modified or created by the extrusion, i.e its
base face set and introduced face loop L. We construct a directed
edge D from an extrusion node E to E ′, if there exist faces FD ⊂ FE
which are then further extruded by E ′. As a result, the union of
faces associated with incoming edges to E amount to its base face
set, and its outgoing edges have associated faces used by future
extrusions. Whenever two or more contiguous extrusion nodes are
successively applied to the same face set F , we merge them into a
combined extrusion node. For simplicity, we will assume that nodes
are combined below.

6.1 Encoding the Construction Graph
Given a selection S , its construction graph GC can be inferred by
iteratively deconstructing S using face loop collapses. In particular,
each collapse can be perceived as inverting a face extrusion, and is
therefore accompanied by the addition of an extrusion node to GC .
As shown in Figure 9, directed edges are added between inferred
extrusion nodes if the faces removed or flattened during a collapse
belong to an existing node in GC . This process is repeated until
there are no more collapsible face loops in S , thus completing the
construction graph GC .

As we wish to remove features from the extremities first, we
begin by collapsing the leaf face loop with the smallest area in S .
We then proceed to iteratively collapse the collection of aligned
face loops adjacent to it, before similarly identifying the next leaf
face-loop and repeating this process. Each such collection of aligned
face loops therefore introduces a combined extrusion node E inGC .

6.1.1 Encoding Extrusions. This deconstruction process is accom-
panied by an encoding which allows us to reconstruct the inferred
construction history on any selected base face set with disk topol-
ogy.

Given a collection of aligned face loops which introduce a com-
bined extrusion node E inGC , we first encode the faces in the collec-
tion which belong to previous extrusion nodes in GC . Specifically,

Figure 9: The construction graph for a forward modeling
process (a) which is then inferred using face loop collapses
(b). The colors below each node represent their face owner-
ships.

each outgoing face set FD to a node ED is encoded by parameteriz-
ing FE and storing the boundary loop of FD in the parameter space.
We parameterize FE by mapping its base face set to the unit disk
using a harmonic parameterization [Floater and Hormann 2005],
and extending the map to incorporate the aligned face loops. To
be precise, the boundary vertices in the parameter space are radi-
ally extended to concentric rings of increasing integer radius to
parameterize the aligned face loops. The parameterization therefore
preserves the face loop structure of FE in the parameter space. We
now store the parameterized boundary loop of FD , denoted B̃D ,
in the node E, along with a supplied or arbitrary reference point
encoding the orientation of ED . See Figure 10 for an illustration of
the process.

As we then iteratively collapse the face loops in the collection,
we encode the geometry of each inverted extrusion in E. Our geo-
metric encoding takes inspiration from prior work on edge-ring
based representations for part-based modeling [Schmidt 2011]. In
particular, while collapsing a leaf face loop L with interior face set F
onto its rail LR , the geometry of its corresponding face extrusion is
encoded relative to vertices in LR . Specifically, the position of each
face vertex prior to the collapse is stored in the local coordinate
frame of each rail vertex. After the collapse is performed, this col-
lection of rail relative vectors, denoted DRF , are stored in E along
with the parametrized coordinates of the rail and face vertices.

Having fully collapsed the collection, the base face set F is now
added to the face ownership of E in GC . To encode the orientation
of E, we additionally store the vertex corresponding to (1, 0) in
the parameter space, as the reference point of E. After the final
face loop has been collapsed, the area of its collapsed interior Fs is
stored along with GC to encode the scale of the feature.

6.2 Decoding the Construction Graph
Given a target face set Ft with disk topology and a reference point
vFt on its boundary, we now outline our procedure to decode GC
on to Ft with the desired scale and orientation. Each extrusion node,
E, in GC is visited in the opposite order of the encoding.

Given an encoded extrusion node, with base face set F ′ and
an arbitrary or supplied reference point vF ′ we reconstruct the
geometry of the extrusion in three steps. First, F ′ is mapped to the
unit disk, ensuring that the supplied reference point vF ′ is mapped
to (1, 0). We then topologically introduce a face loop L′ around F ′.

Face ExtrusionQuad Meshes SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Figure 10: An outgoing face set (pink) of a combined extru-
sion node is encoded using its boundary loop (blue) in the pa-
rameter space. The parameterized boundary loop can then
be used to select corresponding face sets on another com-
bined extrusion node with the same number of extrusions
(right).

The encoded collection of rail relative vectorsDRF in the parameter
space are then interpolated to find a corresponding set of vectors
DR′F ′ for the parametric coordinates of each vertex in L′R and F ′.
The vectors in DR′F ′ are then scaled to account for the difference
in the area of the source and target face sets Fs and Ft .

Having computed DR′F ′ , we now encode its vectors in the cor-
responding local coordinate frames of the rail vertices in L′R . The
extruded vertex positions of each face vertex is then computed by
averaging the contributions of each rail vertex.

We iteratively reconstruct contiguous extrusions in this man-
ner, until we have fully rebuilt a combined extrusion node E ′. We
next decode the outgoing face sets of E ′ in order to identify the
base face set and reference point of the next extrusion node in the
graph. Specifically, f or each outgoing directed edge D from E ′ to a
target extrusion node E ′D , we have a parameterized boundary loop
B̃D . We now find the corresponding outgoing face set F ′D by first
parameterizing FE′ as before, and selecting faces whose centers are
contained within B̃D in the parameter space. The selected faces F ′D
are then added to the base face set of E ′D . If B̃D contains the refer-
ence point v of E ′D , we further identify a corresponding reference
point on F ′D by selecting the closest point to v on its boundary in
the parameter space.

As the process of decodingGC is an iterative sequence of local
extrusions, there can sometimes be non-smooth regions in the

reconstruction across separate extrusions. We therefore perform an
iteration of constrained smoothing to adapt the geometry specified
by the encoded extrusions to the reconstructed mesh connectivity.

7 RESULTS
A range of FEQ models created using the method discussed in
Section 5 is shown in Figure 11. The skeleton induced part structure
and the extrusion derived connectivity combine to produce meshes
quite similar to what we believe an artist might have created. This
argument is further reinforced by the similarity of our face loop
skeletons to those of models made by artists as shown in Figure 4.
Figure 14 shows a comparison between our method and the method
of Usai et al. [2015]. Unlike the method of Usai et al. our branch
nodes do not have to abide by the symmetries of the cube which
leads to a significant difference between the methods for these
inputs.

The construction graph stores an inferred plausible construction
history for an FEQ which opens up a wide range of possibilities for
mixing and recombining features of quad meshes while preserving
extrusion connectivity as shown in Figure 1 which also illustrates
are capabilities to automatically inverse box model a mesh down to
a cube. Figure 12 (a) shows steps of a collapse sequence along with
the corresponding addition of nodes to the construction graph. A
salient question is if this process can go wrong? Figure 12 (c) shows
an adversarial example where the blue face loops were initially
collapsed, making the hand very thin. The red tips of the fingers
no longer correspond to face extrusions and are hence not leaf
extrusions. Nevertheless, we can still extrude the hand down to the
red base mesh shown on the right. In (d) the middle finger of the
same mesh is collapsed and then extruded back on a base mesh
of four quads (middle) and a single quad (right). To sum up, our
procedure incorporates incollapsible face loops in the base mesh of
the extruded part; when the part is pasted onto another base mesh
these loops do not appear since they are not part of the construction
graph. From a geometry point of view, Figure 13 (top) shows how a
complex part pasted onto rectangular patches of different resolution
degrades gracefully with the number of quads in the target patch.

Figure 11: Gallery of FEQmodels created the bridging and extrusion-based remeshingmethod. Insets in the first row illustrate
the inverse box modeling capability of our framework

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Pandey, et al.

Figure 12: a) The process of inferring the construction graph for the hand model based on a given face loop selection (blue).
The addition of combined extrusion nodes to the graph is illustrated, with the colors representing the face set ownerships of
the deconstructed features. b) The deconstruction process is continued until we end at a cube. c) Adversarial deconstruction
d) Cut and paste of incollapsible face loops (in red)

Figure 13: Top: Cut and pasting the feline head onto differ-
ent base face sets consisting of 1, 4, 16 and 64 quads. Bottom:
A cut and paste of the horse head (left) which illustrates the
clean extension of the face loop structure in the paste opera-
tion and part-based modeling using our framework (right).

Figure 14: Remeshing using our method (left) and the
method of Usai et al. [2015] (right) for the warrior model
(a). Note that we here compare only automatic remeshing;
Usai et al. allow for manual adjustment which was used to
improve this model. Remeshings of the octopus model are
compared in (b). Again, our method is shown on the left.

Finally, Figure 13 (bottom) shows use cases where the same part is

pasted multiple times (a) and a mashup of parts from a variety of
models (b).

8 DISCUSSION, FUTUREWORK AND
CONCLUSION

In this paper, we have essentially advocated for the use of face
loops as opposed to single faces as the modeling primitive. The
resulting FEQ meshes turn out to not only have very clean quad
mesh structure but also to be highly modular, allowing for easy
modification and combination of features of 3D models. We have
also proposed a method for generating FEQs which produces highly
regular meshes by design, since the models are constructed from
simple branch node meshes only by extrusion and bridging.

A limitation of our current implementation of the construction
graph is the absence of a bridge node which would facilitate cut
and paste of parts with higher genus, but there are many other
avenues for future work. Specifically, our current framework is tied
to face extrusions, but some features which involve sharp creases,
e.g. eyes or mouths, tend to be modeled better by edge extrusions.
Finally, as implied by the findings of Murdoch et al. [1997], a clean
face loop structure can be helpful for hexahedral mesh generation,
and FEQs are exactly characterized by a clean face loop structure.

In summary, our principal contribution is a modeling framework
built around face loop operations that produce Face Extrusion Quad
meshes: we show that arbitrary meshes can be transformed to an
FEQ with a plausible construction history; FEQs are well integrated
with the popular box modeling workflow, and enable history aware
modeling applications such as the cut and paste of part structures.

ACKNOWLEDGMENTS
This project was funded in part by NSERC and Advokat Bent Thor-
bergs Fond (award no. 66.531).

REFERENCES
J Andreas Bærentzen, Rinat Abdrashitov, and Karan Singh. 2014. Interactive shape

modeling using a skeleton-mesh co-representation. ACM Transactions on Graphics

Face ExtrusionQuad Meshes SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

(TOG) 33, 4 (2014), 1–10.
J. Andreas Bærentzen, Marek Krzysztof Misztal, and K Wełnicka. 2012. Converting

skeletal structures to quad dominant meshes. Computers & Graphics 36, 5 (2012),
555–561.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-mesh generation and processing: A survey. Computer
Graphics Forum 32, 6 (2013), 51–76.

M. Bordegoni and C. Rizzi. 2011. Innovation in Product Design: From CAD to Virtual
Prototyping. Springer. http://books.google.ca/books?id=gXS-7JIJEwEC

Péter Borosán, Ming Jin, Doug DeCarlo, Yotam Gingold, and Andrew Nealen. 2012.
RigMesh: Automatic Rigging for Part-Based Shape Modeling and Deformation.
ACM Transactions on Graphics 31, 6, Article 198 (nov 2012), 9 pages. https://doi.
org/10.1145/2366145.2366217

Andreas Bærentzen and Eva Rotenberg. 2021. Skeletonization via Local Separators.
ACM Transactions on Graphics 40, 5, Article 187 (Sept. 2021), 18 pages. https:
//doi.org/10.1145/3459233

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual Loops Meshing: Quality
Quad Layouts on Manifolds. ACM Transactions on Graphics 31, 4, Article 110 (jul
2012), 11 pages. https://doi.org/10.1145/2185520.2185606

Marcel Campen and Leif Kobbelt. 2014. Dual Strip Weaving: Interactive Design of
Quad Layouts Using Elastica Strips. ACM Transactions on Graphics 33, 6, Article
183 (nov 2014), 10 pages. https://doi.org/10.1145/2661229.2661236

Edwin Catmull and James Clark. 1978. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer-aided design 10, 6 (1978), 350–355.

Nicu D Cornea, Deborah Silver, and Patrick Min. 2007. Curve-skeleton properties, ap-
plications, and algorithms. IEEE Transactions on Visualization & Computer Graphics
13, 3 (2007), 530–548.

Joel Daniels, Cláudio T. Silva, Jason Shepherd, and Elaine Cohen. 2008. Quadrilateral
Mesh Simplification. ACM Transactions on Graphics 27, 5, Article 148 (2008), 9 pages.
https://doi.org/10.1145/1457515.1409101

Leman Feng, Yiying Tong, and Mathieu Desbrun. 2021. Q-Zip: Singularity Editing
Primitive for Quad Meshes. ACM Transactions on Graphics 40, 6, Article 258 (dec
2021), 13 pages. https://doi.org/10.1145/3478513.3480523

Michael S Floater and Kai Hormann. 2005. Surface parameterization: a tutorial and
survey. In Advances in multiresolution for geometric modelling. Springer, 157–186.

Hongbo Fu, Shizhe Zhou, Ligang Liu, and Niloy J. Mitra. 2011. Animated Construction
of Line Drawings. ACM Transactions on Graphics 30, 6 (dec 2011), 1–10. https:
//doi.org/10.1145/2070781.2024167

A. Gahan. 2010. 3D Automotive Modeling: An Insider’s Guide to 3D Car Modeling and
Design for Games and Film. Elsevier Science. http://books.google.ca/books?id=
_VQS1jTnuWMC

Zhongping Ji, Ligang Liu, and Yigang Wang. 2010. B-Mesh: A Modeling System for
Base Meshes of 3D Articulated Shapes. Computer Graphics Forum 29, 7 (2010),
2169–2177.

M. Johnson. 2020. Modeling a Human Hand. Guides for 3D Artists (topolo-
gyguides.com).

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. Quadcover-surface pa-
rameterization using branched coverings. Computer graphics forum 26, 3 (2007),
375–384.

Markus Lipp, Peter Wonka, and Pascal Müller. 2014. PushPull++. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 1–9.

Giorgio Marcias, Kenshi Takayama, Nico Pietroni, Daniele Panozzo, Olga Sorkine-
Hornung, Enrico Puppo, and Paolo Cignoni. 2015. Data-Driven Interactive Quad-
rangulation. ACM Transactions on Graphics 34, 4, Article 65 (jul 2015), 10 pages.

https://doi.org/10.1145/2766964
Peter Murdoch, Steven Benzley, Ted Blacker, and Scott A Mitchell. 1997. The spatial

twist continuum: A connectivity based method for representing all-hexahedral
finite element meshes. Finite elements in analysis and design 28, 2 (1997), 137–149.

Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo Cignoni,
and Nico Pietroni. 2019. QuadMixer: Layout Preserving Blending of Quadrilateral
Meshes. ACM Transactions on Graphics 38, 6, Article 180 (nov 2019), 13 pages.
https://doi.org/10.1145/3355089.3356542

Karran Pandey, J. Andreas Bærentzen, and Karan Singh. 2022. Face Extrusion Quad
Meshes: Supplementary Material.

Chi-Han Peng, Michael Barton, Caigui Jiang, and Peter Wonka. 2014. Exploring
Quadrangulations. ACM Transactions on Graphics 33, 1, Article 12 (feb 2014),
13 pages. https://doi.org/10.1145/2541533

Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011. Connec-
tivity Editing for Quadrilateral Meshes. In Proceedings of the 2011 SIGGRAPH Asia
Conference (Hong Kong, China) (SA ’11). Association for Computing Machinery,
New York, NY, USA, Article 141, 12 pages. https://doi.org/10.1145/2024156.2024175

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini.
2021. Reliable Feature-Line Driven Quad-Remeshing. ACM Transactions on Graphics
40, 4, Article 155 (jul 2021), 17 pages. https://doi.org/10.1145/3450626.3459941

Pixxo3D. 2021. MODELLING For Absolute Beginners. https://www.youtube.com/
watch?v=9xAumJRKV6A

H Pottmann, A Asperl, M Hofer, and A Kilian. 2008. Architectural geometry : first
edition. Bentley Institute Press.

Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic
global parameterization. ACM Transactions on Graphics (TOG) 25, 4 (2006), 1460–
1485.

Ryan Schmidt. 2011. Part-based representation and editing of 3d surface models. Ph.D.
Dissertation. University of Toronto.

Ryan Schmidt and Karan Singh. 2008. Sketch-based procedural surface modeling and
compositing using Surface Trees. Computer Graphics Forum 27, 2 (2008), 321–330.

Olga Sorkine and Daniel Cohen-Or. 2004. Least-squares meshes. In Proceedings Shape
Modeling Applications 2004. IEEE, 191–199.

AJ Fuentes Suárez and Evelyne Hubert. 2018. Scaffolding skeletons using spherical
Voronoi diagrams: Feasibility, regularity and symmetry. Computer-Aided Design
102 (2018), 83–93.

Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and Alexan-
dru Telea. 2016. 3D Skeletons: A State-of-the-Art Report. Computer Graphics Forum
35, 2 (2016), 573–597. https://doi.org/10.1111/cgf.12865

Kenshi Takayama. 2019. Dual sheet meshing: An interactive approach to robust
hexahedralization. Computer Graphics Forum 38, 2 (2019), 37–48.

Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-
Hornung. 2013. Sketch-based Generation and Editing of Quad Meshes. ACM
Transactions on Graphics 32, 4, Article 97 (July 2013), 8 pages. https://doi.org/10.
1145/2461912.2461955

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni.
2015. Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve
Skeleton. ACM Transactions on Graphics 35, 1, Article 6 (dec 2015), 13 pages.
https://doi.org/10.1145/2809785

W. Vaughan. 2012. Digital Modeling. New Riders. https://books.google.co.in/books?
id=nzJ2QgAACAAJ

Chih-Yuan Yao, Hung-Kuo Chu, Tao Ju, and Tong-Yee Lee. 2009. Compatible quad-
rangulation by sketching. Computer Animation and Virtual Worlds 20, 2-3 (2009),
101–109.

http://books.google.ca/books?id=gXS-7JIJEwEC
https://doi.org/10.1145/2366145.2366217
https://doi.org/10.1145/2366145.2366217
https://doi.org/10.1145/3459233
https://doi.org/10.1145/3459233
https://doi.org/10.1145/2185520.2185606
https://doi.org/10.1145/2661229.2661236
https://doi.org/10.1145/1457515.1409101
https://doi.org/10.1145/3478513.3480523
https://doi.org/10.1145/2070781.2024167
https://doi.org/10.1145/2070781.2024167
http://books.google.ca/books?id=_VQS1jTnuWMC
http://books.google.ca/books?id=_VQS1jTnuWMC
https://doi.org/10.1145/2766964
https://doi.org/10.1145/3355089.3356542
https://doi.org/10.1145/2541533
https://doi.org/10.1145/2024156.2024175
https://doi.org/10.1145/3450626.3459941
https://www.youtube.com/watch?v=9xAumJRKV6A
https://www.youtube.com/watch?v=9xAumJRKV6A
https://doi.org/10.1111/cgf.12865
https://doi.org/10.1145/2461912.2461955
https://doi.org/10.1145/2461912.2461955
https://doi.org/10.1145/2809785
https://books.google.co.in/books?id=nzJ2QgAACAAJ
https://books.google.co.in/books?id=nzJ2QgAACAAJ

	Abstract
	1 Introduction
	2 Related Work
	3 Definitions
	3.1 Visualization

	4 FEQs
	5 Extrusion-based Remeshing
	5.1 BNP Connectivity Improvement

	6 The Construction Graph
	6.1 Encoding the Construction Graph
	6.2 Decoding the Construction Graph

	7 Results
	8 Discussion, Future Work and Conclusion
	Acknowledgments
	References

