Face Extrusion Quad Meshes: Supplementary Material

KARRAN PANDEY, University of Toronto, Canada

J. ANDREAS BARENTZEN, Technical University of Denmark, Denmark

KARAN SINGH, University of Toronto, Canada

In this document we include the supplementary material for our paper
"Face Extrusion Quad Meshes". Specifically, we describe the extrusion-based
remeshing procedure for generating FEQs in greater detail. We have aimed to
make this discussion self-contained. This document also contains additional
tests of the method and comparisons with other remeshing methods.

1 EXTRUSION-BASED REMESHING

Our extrusion-based remeshing takes as input a triangle mesh and
a curve skeleton represented as a graph. The skeletal graph is con-
verted to a mesh with FEQ connectivity by creating a polyhedron for
each branch node in the skeleton and, subsequently, using bridging
and extrusion operations to form a pure quad mesh. The resulting
mesh is finally fitted to the input quad mesh.

The code for extrusion-based remeshing is made available in the
GEL open source library available at https://github.com/janba/GEL.

1.1 Branch Node Meshes

The branch node mesh for a junction in the skeletal graph is con-
structed using three steps.

First, vertices corresponding to each outgoing path, called path
vertices, are identified by intersecting outgoing edges with a sphere
centered on the junction node. A spherical Delaunay triangulation
of the identified path vertices is then computed, resulting in a branch
node polyhedron (BNP) [Beerentzen et al. 2012]. Thus, by construc-
tion, each vertex in a BNP corresponds to an outgoing path of the
junction.

Next, the BNP connectivity is improved using two heuristics
which are discussed further in subsection 1.3.

Finally, the BNP is subdivided using Catmull-Clark subdivision to
build the branch node quad mesh. The faces incident on a path vertex
are denoted its branch face set. The number of quads in the branch
face set are, of course, the same as the valence of the corresponding
path vertex. Please see Figure 2 for examples of branch face sets
around path vertices.

1.2 Graph Path Reconstruction

In order to reconstruct the graph paths, we extrude the branch
face sets if the associated path leads to a leaf node. For instance, in
Figure 1 the legs, tail, and neck of the quadruped are meshed by
extruding branch face sets along their respective paths.

If the skeletal path connects two branch nodes, we instead bridge
the corresponding branch face sets. If the two branch face sets have
k1 and kj faces where ki = k2, we simply bridge the complete face
sets since they are identical. When the branch face sets form a com-
plete ring around the path vertex, we will denote this configuration
a closed ring.

Authors’ addresses: Karran Pandey, karran@cs.toronto.edu, University of Toronto,
Toronto, Canada; J. Andreas Beerentzen, janba@dtu.dk, Technical University of Den-
mark, Copenhagen, Denmark; Karan Singh, karan@dgp.toronto.edu, University of
Toronto, , Toronto, Canada.

Cag

Branch Node Polyhedra Branch Node Meshes Bridging Face Extrusion Quad Mesh
BNP Retopology

Fig. 1. Top: the extrusion based remeshing pipeline consists of the steps
shown from left to right. First the BNP is created by spherical Delaunay
triangulation followed by a retopology step. Next, the BNP are subdivided
forming the branch node meshes, and finally bridging and extrusion lead
to the final FEQ. Below: an example of how the vertex insertion alters the
connectivity of a hand mesh.

However, if k1 # kg, we select min(ky, k2) — 1 faces from each
branch face set (i.e. an open ring) as illustrated in Figure 2. Clearly,
we could have chosen to use the closed ring of the smaller face set,
but a closed ring of quads has a different mesh structure from an
open ring as illustrated in Figure 2. On the other hand, if we choose
open rings with equal numbers of quads from either face set, we
ensure that the two face sets have identical structure.

3

Fig. 2. The figure illustrates face loops in 5 and 6-sized branch face sets.
We can see how selecting 4 (i.e k1 — 1 faces) results in the same number of
corresponding face loops intersecting the selected face set. In a closed ring,
all face loops are shared by two faces whereas in an open ring, two face
loops only traverse a single quad.

https://github.com/janba/GEL

2« Pandey, et al.

Having identified the connectivity of the input face sets for the
bridge operation, we now construct the bridge geometry along the
graph path connecting the two branch nodes.

If there exist valence 2 nodes in the path, we create an n-sided
polygonal face pair centered at these nodes, where n is the size of
the outer boundary of the branch face set. As each mesh element
now has the same outer boundary size, bridging the mesh elements
corresponding to adjacent nodes in the graph path returns a quad
bridge with face loops going around the path geometry.

To construct the bridge between adjacent nodes, we identify an
optimal mapping between vertices of the corresponding face set
boundaries. The mapping aims to minimize torsion and ensure that
the bridge edges are aligned with the underlying graph path. A
bridge constructed in this manner will have the underlying graph
path as their medial axis and face loops which go around graph
edges. Bridging is illustrated in Figure 1 (top row).

1.3 BNP Connectivity Improvement

Planar Junctions. Planar regions in a BNP can be identified as a
collection of faces with a small dihedral angle between them: we
use the specific threshold of 15°. Such regions correspond to a set
of outgoing graph paths which approximately lie within the same
plane, like, say, the fingers of a hand. In terms of this example, we
would expect that a given finger is only connected to the adjacent
fingers, but since the BNP is a triangulation, we also get edges
connecting non-adjacent fingers as illustrated in Figure 3.

To prevent this, we retopologize planar regions in a BNP by intro-
ducing an auxiliary vertex in the center of the planar region and
connecting this new vertex to all of the boundary vertices. This can
be seen as a relatively simple refinement step, similar to normal
Delaunay refinement [Shewchuk 2002]. Returning to the hand exam-
ple, this means that the fingers are now only connected to adjacent
fingers and the auxiliary vertex which roughly corresponds to the
palm.

Fig. 3. The figure illustrates the retopology step for planar regions in a BNP.
We see how undesirable long diagonal edges can form in triangulating the
region. We then remove all the interior edges and triangulate the region by
introducing a central vertex and connecting it to all boundary vertices. The
triangles are visibly more uniform following this process.

Surplus Quad Patches. When open rings are matched, left over
faces appear as surplus quad patches in junctions of the final FEQ.
While such patches are sometimes a necessity for the quad layout
(for instance the pink wedge shaped patch in the hand shown in the
top row of Figure 7) they can often be removed, leading to a simpler
mesh.

To reduce the number of unmatched faces in the bridging step,
the BNP is refined before Catmull-Clark subdivision. We know the
number of faces in the branch face set will be equal to the valence of

the BNP path vertex. Thus, we can increase the number of faces in
the smaller branch face set by splitting one of the BNP edges in the
link of the path vertex and introducing two new edges as illustrated
in Figure 4. It is clear that we thereby increase the valence of both
the path vertex whose valence we intend to increase and the path
vertex that happens to share the link edge.

Splitting is only performed if it leads to a match between closed
rings (i.e. k1 == k3), and it is applied when one of two further
conditions are met.

e both path vertices opposite the edge considered for splitting
come closer to a closed ring match, or

o one of the path vertices comes closer to a closed ring match
whereas the other vertex is associated with a leaf path.

The procedure is applied greedily by performing the splitting to the
configurations that benefit the most until no more improvements
can be made.

Importantly, we do not make changes that would cause a path
vertex to move away from a closed ring match, since that would
propagate the need for edge splitting. Thus, unlike [Beerentzen et al.
2012; Suérez and Hubert 2018; Usai et al. 2015], we avoid searching
for a global solution, e.g. by solving an integer linear programming
problem.

Fig. 4. The figure illustrates the edge splitting step. The edge in red is first
split, to introduce the blue vertex, and then blue edges are introduced
connecting it to its opposite vertices

14 Fitting

Having constructed the inverse skeletonized quad mesh M with the
desired face loop structure, we inflate and fit M to the reference
shape S. Our fitting procedure uses the sparse-linear least-squares
system outlined in Least-Squares Meshes [2004]. In particular, the
system solves for the fitted vertex locations x by minimizing an en-
ergy, ||Ax —b||, consisting of a weighted euclidean distance term for
a selection of control vertices C and a uniform laplacian regularizer

L:

llAx = bI% = [|Lx||* +)" wslxs o] 1)
seC

where v is the control point location corresponding to an input
vertex xs. This formulation allows for an extensive flexibility in the
selection of control points, admitting both sparse or over-determined
correspondences between the vertices of M and S. Given a corre-
spondence, the least-squares system reconstructs a smooth mesh
with the connectivity of M and geometry constrained to adhere as

far as possible to the specified control point correspondence.
In order to fit M to S, we iteratively vary correspondence schemes
to perform three types of geometric updates to M. M is first inflated
by specifying correspondences along vertex normals of M. We then

perform a direct distance-based fit by finding the closest-point on
S for each vertex in M. Finally, we perform an over-determined
inverse distance-based fit, by identifying the closest-point on M for
each vertex in S. Each correspondence is accompanied by a weight
ws which measures the alignment of vertex normals between corre-
sponding vertices. The weights help us ensure that each geometric
update retains the quality of an inflation throughout the process.
The weight, wg(xs,05) = |[N(xs) - N(vs)l], is defined as the dot
product of the normals of the corresponding vertices.

2 COMPARISONS

Fig. 5. The figure illustrates differences in the fitting procedure of Usai et al.
(left) and our method (right).

We have compared our extrusion based remeshing approach to
the related method of Usai et al. [2015] and the recent, feature line-
driven method of Pietroni et al. [2021].

The method produced by Usai et al. produces results similar to
ours as shown in Figure 7. However, there are notable differences.
In the fertility model, Usai et al. produce an additional junction at
the foot of the model, whereas the face loops of the FEQ simply
curve around the bend. The waist of the warrior model highlights
the potential pitfalls of assuming a cube-like symmetry at junctions.
Usali et al. struggle to align with the symmetry of the Y-shaped
junction with a cube, whereas our method is free of such assump-
tions and therefore cleanly reconstructs the Y-shaped junction of
the warriors legs. Usai et al. do allow for manual adjustments which
were used to fix the Y-junction in a post processing step [Usai et al.
2015]. The fitting procedure of Usai et al. seems to lead to artefacts
at extremeties whereas our Laplacian deformation scheme better
preserves the mesh structure in these regions as shown in Figure 5.

Comparing to Pietroni et al. in Figure 6, we mainly observe that it
is often possible for a face loop to self-intersect multiple times and
cover large regions of the model in case of Pietroni et al., thus losing
most, if not all, of the structural information. In contrast, FEQs have
a coherent set of non-self intersecting face loops which encode the
skeletal structure of the shape.

Finally, we tested our fitting using different amounts of subdivi-
sion and with features present in the skeleton or removed from the
skeleton. This is seen in Figure 8.

REFERENCES

J. Andreas Beerentzen, Marek Krzysztof Misztal, and K Welnicka. 2012. Converting
skeletal structures to quad dominant meshes. Computers & Graphics 36, 5 (2012),
555-561.

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, and Marco Tarini.
2021. Reliable Feature-Line Driven Quad-Remeshing. ACM Transactions on Graphics
40, 4, Article 155 (jul 2021), 17 pages. https://doi.org/10.1145/3450626.3459941

Face Extrusion Quad Meshes: Supplementary Material « 3

Jonathan Richard Shewchuk. 2002. Delaunay refinement algorithms for triangular
mesh generation. Computational geometry 22, 1-3 (2002), 21-74.

Olga Sorkine and Daniel Cohen-Or. 2004. Least-squares meshes. In Proceedings Shape
Modeling Applications 2004. IEEE, 191-199.

AJ Fuentes Suarez and Evelyne Hubert. 2018. Scaffolding skeletons using spherical
Voronoi diagrams: Feasibility, regularity and symmetry. Computer-Aided Design 102
(2018), 83-93.

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2015.
Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton.
ACM Transactions on Graphics 35, 1, Article 6 (dec 2015), 13 pages. https://doi.org/
10.1145/2809785

https://doi.org/10.1145/3450626.3459941
https://doi.org/10.1145/2809785
https://doi.org/10.1145/2809785

4 « Pandey, et al.

Fig. 6. Top row: in blue we see a single, particularly long face loop highlighted on meshes from Pietroni et al. Below: the FEQ face loops in regions covered by
the blue face loop above are shown color coded.

Fig. 7. FEQs produced using our method (top), and the quad meshes of Usai et al (below).

Ay

.:..\glrl"’l,l,lf'

Fig. 8. Left: effect of subdivision iterations during the fitting procedure. Right: the effect of using different skeletons on the fitting. In particular, we see that
the spikes of the warrior are captured by the fitting even if not articulated in the skeleton

	Abstract
	1 Extrusion-based Remeshing
	1.1 Branch Node Meshes
	1.2 Graph Path Reconstruction
	1.3 BNP Connectivity Improvement
	1.4 Fitting

	2 Comparisons
	References

