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Fig. 1. The simple rig motions of 26 underwater sea creatures are augmented with our real-time secondary dynamics. The full scene of 330,563 mesh vertices
and 1,293,625 tetrahedra runs at over 60 fps. Throughout our paper, the indicates a corresponding clip in the supplemental video.

We propose a reduced-space elastodynamic solver that is well suited for aug-
menting rigged character animations with secondary motion. At the core of
our method is a novel deformation subspace based on Linear Blend Skinning
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that overcomes many of the shortcomings prior subspace methods face. Our
skinning subspace is parameterized entirely by a set of scalar weights, which
we can obtain through a small, material-aware and rig-sensitive generalized
eigenvalue problem. The resulting subspace can easily capture rotational mo-
tion and guarantees that the resulting simulation is rotation equivariant. We
further propose a simple local-global solver for linear co-rotational elasticity
and propose a clustering method to aggregate per-tetrahedra non-linear en-
ergetic quantities. The result is a compact simulation that is fully decoupled
from the complexity of the mesh.
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Fig. 2. Our reduced complementary dynamics model can reproduce rich
visual details at a fraction of the cost of the original method (10,000 vertices,
42,205 tets).

1 INTRODUCTION
Virtual reality, video games, and digital art increasingly make use
of controllable animated characters. Such characters should provide
interactive responses to user input in order to communicate the action
and emotion of the moment. On the other hand, their motion must be
rich with realistic visual details, which is what brings these characters
to life.
The most widely used construct for authoring animations are de-

formation rigs mapping low-dimensional parameters (e.g., skeleton or
cage positions) to static geometric deformations. Managing these rigs
can quickly overwhelm an artist. Simple rigs are easy to animate, but
their deformations lack detail; complex rigs provide rich, fine-grained
detail, but they are daunting to manipulate.
Zhang et al. [2020] offer a way out of this dilemma; they employ

a physics simulation whose role is to supplement rig motions with
secondary dynamics that are orthogonal — in the algebraic sense —
to the motion of the rig. The resulting complementary dynamics are
exactly those motions not producible by the rig itself.

Unfortunately, complementary dynamics is poorly suited to interac-
tive applications for two reasons. First, enforcing rig complementarity
introduces significant computational overhead. Second, the runtime
of the method grows with the mesh resolution. Adding secondary
motion even on a modestly sized mesh requires computation that
lags far from real-time rates. As shown in Fig. 2, a complementary
dynamics animation on a modestly sized mesh of 10,000 vertices,
42,000 tetrahedra requires 3 seconds of compute time for each frame.
Attempting to accelerate this method by embedding a high resolution
display mesh inside of a coarse simulation (see Fig. 3) comes at the
cost of visible cage artifacts.

To accelerate any high-dimensional optimization problem, a popu-
lar approach is to solve the problem in a low-dimensional, representa-
tive subspace. The de-facto subspace for elastodynamics in graphics
is the one spanned by the first few eigenvectors of the elastic energy
Hessian [Pentland and Williams 1989]. We call these eigenvectors
displacement modes because—for elasticity—they correspond to the
set of least energy-incurring infinitesimal displacements about the
rest state.
Our use case exposes the pitfalls of this classical subspace. First,

it is well known that this subspace does not represent rotational de-
formations, leading to warping or shearing artifacts [Choi and Ko
2005]. Second and (as we will show) distinctly, this subspace induces
simulations lacking rotation equivariance. In a nutshell, a rotation
equivariant optimization produces a rotated version of the same min-
imizer when the problem geometry is rotated. The absence of this

important property leads to frame-dependent artifacts. This is par-
ticularly noticeable in our application, where local rotations form a
primary degree of freedom of the interactive rig. As the user interacts
with the rig, the secondary physics exhibit non-physical dampened
motion, and the mesh gets stuck in local minima as shown in Fig. 4
and Fig. 11.

To address these challenges, we propose skinning eigenmodes for
reduced simulation. Inspired by linear blend skinning, the subspace
spanned by our skinning modes yields rotation equivariant secondary
elastodynamics. Indeed, we prove that it meets the necessary and
sufficient conditions for doing so. Our subspace is fully parameterized
by a compact set of skinning weights, which we derive through a phys-
ically motivated, material aware and simple to implement generalized
eigenvalue problem.

The formulation of our skinning modes as the solution to an eigen-
value problem has many advantages. A user can easily explore the
cost versus richness tradeoff of the resulting dynamics by simply trun-
cating the eigenspace. We also benefit from a large array of work that
aims at promoting different qualities from eigen problems, such as
enforcing locality and sparsity in our modes [Brandt and Hildebrandt
2017; Houston 2017; Nasikun et al. 2018], or enforcing homogeneous
linear equality constraints [Golub 1973]. In particular we benefit from
the latter to make our skinning subspace orthogonal to the input rig-
space. This effectively makes our modes rig-sensitive, allowing them
to more efficiently capture the space of secondary motions available
given an input rig.

However, skinningmodes alone are insufficient for achieving realistic-
looking real-time dynamics. This is because secondary elastodynamics
look best with non-linear elastic models. Simulating such materials,
even with a deformation subspace, still requires the computation
of per-tetrahedron quantities [Choi and Ko 2005]. This once again
ties our runtime complexity to the resolution of the mesh. To ac-
commodate this, we adopt clustering [Jacobson et al. 2012], which
approximates these per-tet quantities to per-cluster ones. We also
extend Jacobson et al. [2012]’s local-global solver to approximate a
co-rotational elastic potential. The result is an iterative solver that
harmonizes well with our subspace and allows rich non-linear sec-
ondary motions in a simulation step that is entirely decoupled from
the mesh resolution. Additionally, by virtue of being based on linear
blend skinning, projecting from our low dimensional subspace to the
full space can be done efficiently in the vertex shader.

Fig. 1 demonstrates our reduced elastodynamics augmenting a large
scene with secondary motion in real-time. We further demonstrate
the success of our method through a variety of comparisons to the
original (offline) complementary dynamics and against alternative
real-time acceleration methods. We additionally highlight how our
skinning modes can be used for a wide range of standard deformation
tasks (not just complementary dynamics). Finally, we show successful
application of our real-timemethod to scenarios with rapidly changing
rig-input, such as rigid-body enrichment, VR puppetry, and rigged
character secondary effects.

2 RELATED WORK
There are many choices for accelerating (full-space) elastodynamic
simulation, such as Position Based Dynamics [Müller et al. 2007],
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Fig. 3. A coarse embedded simulation groups motion across vertices that are
close in Euclidean space. Instead, our subspace groups motion across vertices
that share elastic energy properties (cage constructed via [Sellán et al. 2021]).

Projective Dynamics [Bouaziz et al. 2014], or Mixed FEM [Trusty et al.
2022]. Elastodynamic simulations usually require the solution to a
linear system of equations. A simple method of accelerating them is
to just use a faster solver such as Multigrid methods [Liu et al. 2021],
Newton and Quasi-Newton methods [Liu et al. 2017] and matrix pre-
factorizations such as Cholesky decomposition. Yet another option
is to reformulate the constitutive equations to allow for a efficient
boundary-only discretization [James and Pai 1999; Sugimoto et al.
2022]. All these methods scale in complexity with the final mesh res-
olution and scale at best linearly with the complexity of the mesh.
This puts an unnecessary burden on the user, forcing them to choose
between fast elastodynamics with coarse meshes, or slow elastody-
namics with fine meshes. To obtain sub-linear rates the simulation
needs to be carried out in a low-dimensional representative subspace.

2.1 Subspace Simulation
The most popular subspace for most graphics tasks is the one com-
posed of the first few eigenvectors of the energy Hessian [Pentland
and Williams 1989], which we call displacement modes.
Unfortunately, displacement modes are not well suited for large

displacements, and in particular they struggle to capture rotational
motion [Barbič and James 2005; James and Pai 2002] . Much work
over the last two decades aims at remedying this short-coming for
subspace simulation, a goal we share. On top of this however, we
also expose another desired property that displacement modes do
not generally satisfy: they lead to simulations that are not rotation
equivariant.

Barbič and James [2005] introduce modal derivatives, later extended
to geometric modelling [Hildebrandt et al. 2011] and structural analy-
sis [Duenser et al. 2022]. This methodology provides extra derivative
modes, whose goal is to correct the primary subspace as it falls out
of date with large deformations. While these methods provide vast
improvements over traditional displacement modes, the added deriv-
ative modes do not represent rotational motion, nor do they ensure
rotation equivariance in the resulting simulation.
To accommodate rotational motion, modes can be warped with

best fit aggregate rotational motion [Choi and Ko 2005] or skinning
motion [Kry et al. 2002]. In a similar vein, sub-structuring (also called
domain decomposition) [Barbič and Zhao 2011; Kim and James 2011],
separates a shape into independent regions, each with their own local
linear subspace. The rotational motion is tracked externally and is

60 displacement modes 5 skinning modes

Both rig-orthogonal

Local minimum

Input rig motion

Fig. 4. Using a vanilla rig-complementary displacement subspace (red) can
lead to kinks and local minima when a user rotates the rig. Our rig-
complementary skinning eigenmodes (cyan) are rotation equivariant and
are much better suited for accomodating this type of motion.

used to update the subspace for each region. Instead of updating
the quality of the linear basis, Rotation Strain coordinates [Huang
et al. 2011] attempt to fix the rotation-lacking motion of the subspace
simulation at the end of each time-step via a non-linear projection
step. Unfortunately all these methods require per timestep "fixes",
which result in a costly simulation step that limits the richness of the
dynamics available for real-time interaction.
The data driven neural subspaces of Zheng et al. [2021] show

promise for real-time applications, but suffer from artifacts when
applied on meshes they are not trained on. They also provide no
guarantee of any energy conserving properties desired of an elasticity
subspace.

Von Tycowicz [2013] expand traditional displacement modes with
each of the 𝑑 × 𝑑 entries of a linear map. Their result also leads to
a rotation spanning subspace that guarantees simulation rotation
equivariance. However, their subspace cannot be trivially made to
accommodate homogeneous linear equality constraints, such as the
one needed to impose rig-complementarity. As a result, this subspace
is inefficient for real-time complementary dynamics.

2.2 Subspace Simulation via Skinning Modes
Linear blend skinning is a popular rigging method used to easily pose
characters. It has also widely been used as a subspace for deformation,
with prior works varying in how they compute their skinning weights.
While prior methods acknowledge that skinning subspaces produce
high quality rotational deformation, we further motivate our use of
this subspace by identifying that it guarantees rotation equivariance,
a key invariant for elastica that pure displacement subspaces break.
Rohmer et al. [2021] propose a method that prescribes secondary

motion directly on the user-provided primary rig. They derive physics-
like behavior that aims to mimic common squash and stretch motions.
For more physically motivated inverse kinematics, Jacobson et al.
[2012] use the user provided skinning rig as a subspace for minimizing
an elasto-static energy. Rig-Space Physics [Hahn et al. 2012] aim to
add secondary motion in a rig subspace, a similar goal to ours. These
works all rely on an artist to specify the rig subspace for secondary
motion themselves. Hahn et al. [2013] mitigates this by fitting the rig
subspace to a target simulation using a least-squares solve. However,
this still requires a previously constructed rig animation as input. In
contrast, we propose a method that derives skinning weights entirely
from the rest-pose geometry of our shape.
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Fig. 5. Our skinning eigenmodes’ closure under rotations ensures that our
subspace complementary dynamics simulations are rotation equivariant. A
user experiences the same dynamics independent of the rig orientation. The
same cannot be said for a complementary subspace built from displacement
modes + modal derivatives (see Section 2.3).

One way to achieve such weights is by requiring them to be smooth.
To this end, Gilles et al. [2011]; Wang et al. [2015] derive skinning
weights as a solution to a Laplace and bi-Laplace equation respec-
tively. Similarly, Lan et al. [2020, 2021] use bounded bi-harmonic
weights [Jacobson et al. 2011] to create smooth, non-negative skin-
ning weights. Instead, Brandt et al. [2018, 2019] compute weights with
simple truncated radial basis functions to obtain similarly smooth and
locally supported bases. While smoothness is an attractive quality for
deformation, it is ill suited to represent motions for more complex
materials with large heterogeneities. Faure et al. [2011] address this by
sampling source points for their weight computation via a compliance
(inverse stiffness) weighed sampling of their shape, for which they rely
on a Voronoi tessellation of their shape. Additionally, just like von Ty-
cowicz et al. [2013], it is unclear how to enforce the complementarity
constraint on the construction of these skinning weights. In contrast,
our weights are derived from a generalized eigenvalue problem on a
weight-space Hessian, which allows them to reflect material proper-
ties and accommodate the rig-complementarity constraint without
requiring additional discretization.

2.3 Simulations Embedded in Rotating Frames
A common solution for fixing some of the global rotational artifacts
that occur in free-flying elastodynamic simulation, (as shown in Fig. 14
or Fig. 11) is to embed the elastodynamic simulation in a rotating frame
[Terzopoulos andWitkin 1988]. Here, the elastic response is computed
in a rest frame, while the rotation is tracked explicitly via a rigid body
simulator [Terzopoulos and Witkin 1988]. The two simulations are
then coupled with forces that arise out of angular momentum [James
and Pai 2002], and the rotation is then used to transform the deformed
rest state every time-step. Unfortunately, this approach doesn’t easily
generalize for complementary dynamics since the rigid motions are
not orthogonal to the rig, which is why the artifacts present in Fig. 5
would remain. For rigs that have a global rotation, one could use that as
the rotational degree of freedom [James and Pai 2002], unfortunately
most rigs do not directly have such a global rotation.

3 BACKGROUND: COMPLEMENTARY DYNAMICS
Complementary dynamics provides a methodology for augmenting
rigged animationswith the detailed elastodynamics [Zhang et al. 2020].
They split the total displacement field 𝒖 ∈ R𝑛 (𝑑) for a mesh with 𝑛

vertices in 𝑑-dimensional space into an artist prescribed component
𝒖𝑟 , and a physical component 𝒖𝑐 :

𝒖 = 𝒖𝑟 + 𝒖𝑐 . (1)

The artist-prescribed component is obtained from a rig, which takes
as input low dimensional rig parameters 𝒑 ∈ R𝑝 that are exposed to
the user for interactive manipulation, and maps them to high dimen-
sional rig displacement 𝒖𝑟 :

𝒖𝑟 = 𝑓rig (𝒑) . (2)

The physical motion on the other hand is obtained from a physics
simulation, which can be formulated as an energy minimization prob-
lem:

𝒖𝑐 = argmin
𝒖𝑐

𝐸 (𝒖𝑐 + 𝒖𝑟 + 𝒙0) s.t. 𝑱𝑇 𝒖𝑐 = 0, (3)

We introduce the rig Jacobian 𝑱 =
𝜕𝑓rig (𝒑)
𝜕𝒑 ∈ R𝑛 (𝑑)×𝑝 . Note that com-

plementary dynamics is completely agnostic to the elasto-dynamic
energy used 𝐸 (·). Where it differs from a regular elasto-dynamic
energy minimization is the specification of the complementarity con-
straint 𝑱𝑇 𝒖𝑐 = 0. This constraint enforces that the physical motion
must not be in the space of motions producible by the rig, Col(𝑱 ).
Zhang et al. [2020] enforce the complementarity constraint through
Lagrange multipliers and the resulting energy is minimized using
Newton’s method, requiring the frequent solve of the following KKT
system: [

𝑯 𝑱
𝑱𝑇 0

] [
𝑑𝒖𝑐

𝝀

]
=

[
−𝒈
0

]
, (4)

where 𝑯 ∈ R𝑛 (𝑑)×𝑛 (𝑑) and 𝒈 ∈ R𝑛 (𝑑) are the elasto-dynamic energy
Hessian & gradient, 𝑑𝒖𝑐 ∈ R𝑛 (𝑑) is the Newton search direction, and
𝝀 ∈ R𝑝 collects the Lagrange multipliers enforcing the complemen-
tarity constraint.

Iteratively solving this system is too expensive in real-time applica-
tions for two main reasons:

(1) the system scales with mesh resolution, and
(2) the constraints 𝑱𝑇 𝒖𝑐 = 0 are typically dense, even if 𝑯 is sparse.

4 SKINNING EIGENMODES
Our goal is to derive a suitable linear subspace so that full-space
complementary displacements 𝒖𝑐 ∈ R𝑛 (𝑑) may be approximated with
a smaller𝑚-dimensional linear subspace:

𝒖𝑐 ≈ 𝑩𝒛, (5)

where the columns of 𝑩 ∈ R𝑛 (𝑑)×𝑚 form the subspace basis, and
the vector 𝒛 ∈ R𝑚 are the reduced degrees of freedom optimized at
run-time.

To apply subspace reduction to the complementary dynamics prob-
lem (Eq. (3)), wewould like our subspace𝑩 to simultaneously: deal well
with large (global and local) rotations, well-approximate the space of
low-energy displacements, and accommodate the rig-complementarity
constraints. We make use of a linear blend skinning subspace basis for
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deformation 𝑩lbs [Gilles et al. 2011] and demonstrate in the following
sections how we meet these three desirable criteria.

Linear blend skinning represents displacements as a weighted sum-
mation of𝑚 affine transformations applied to a shape’s rest positions.
The 𝑖th vertex on the shape is displaced via

𝒖𝑖 =
𝑚∑
𝑏=1

𝑤𝑖𝑏𝑻𝑏𝑿𝑖 , (6)

where 𝑤𝑖𝑏 ∈ R is the weight of the 𝑏th transformation at vertex 𝑖 ,
𝑻𝑏 ∈ R𝑑×(𝑑+1) is the 𝑏th transformation, and 𝑿𝑖 ∈ R𝑑+1 is the 𝑖th
vertex’s rest position in homogeneous coordinates. This equation is
linear in 𝑻 and so it follows that it may be rearranged so that the
degrees of freedom in 𝑻 are collected in a single vector 𝒛 = vec(𝑻 ) ∈
R𝑘 with 𝑘 = 𝑑 (𝑑 + 1)𝑚 and the weights𝑤 and rest positions 𝑿 form
the columns of a matrix 𝑩lbs ∈ R𝑛 (𝑑)×𝑘 :

𝑩lbs = 𝑰𝑑 ⊗ ((1𝑇𝑚 ⊗ 𝑿 ) ⊙ (𝑾 ⊗ 1𝑇
𝑑+1)) , (7)

where 𝑾 ∈ R𝑛×𝑚 is a matrix with columns collecting each trans-
formation’s weights and 𝑿 ∈ R𝑛×(𝑑+1) collects homogeneous rest
positions in rows. Since the rest positions are generally given, the only
variables in our subspace design are the weights𝑾 . We now propose
a method for choosing𝑾 to ensure that weights span low-energy mo-
tions and satisfy the complementarity constraints by construction. We
defer discussion of how our choice of linear blend skinning subspace
directly ensures good rotational properties (see Sec. 5).
Our first step follows the process for standard modal subspaces.

We approximate our elastodynamic energy with a Taylor expansion
about the rest state truncated to second order terms,

𝐸 (𝒖 + 𝒙0) = 𝐸0 + 𝒖𝑇𝒈0 +
1
2
𝒖𝑇𝑯 0𝒖 + O(∥𝒖∥3) ,

𝐸 (𝒖 + 𝒙0) ≈
1
2
𝒖𝑇𝑯𝒖 , (8)

where we have dropped the subscript for the elastic energy Hessian
in the second line for readability. Without loss of generality, we have
assumed zero elastic energy and vanishing elastic forces at rest (𝐸0 =

0, 𝒈0 = 0).
We arrive at a standard modal subspace by adding a (mass-) or-

thogonality constraint 𝑩𝑇𝑴𝑩 = 𝑰 ; substituting the subspace 𝒖 = 𝑩𝒛;
assuming 𝒛 ∼ D are sampled from an as-of-yet arbitrary distribution,
and minimize the expected value of the energy over 𝑩:

𝑩disp = argmin
𝑩𝑇𝑴𝑩=𝑰

E𝒛∼D [𝒛𝑇𝑩𝑇𝑯𝑩𝒛] (9)

= argmin
𝑩𝑇𝑴𝑩=𝑰

tr(𝑩𝑇𝑯𝑩E𝒛∼D [𝒛𝒛𝑇 ]) . (10)

We further assume that 𝒛 are independent and identically distributed
(i.i.d.) samples of a normal distribution, then E

𝒛
i.i.d.∼ N(0,1)

[𝒛𝒛𝑇 ] = 𝑰 ,
and

𝑩disp = argmin
𝑩𝑇𝑴𝑩=𝑰

tr(𝑩𝑇𝑯𝑩) . (11)

The optimal 𝑩disp may be found relatively efficiently with a gen-
eralized eigenvalue solver that supports large sparse matrices. The
columns of 𝑩disp can be directly interpreted as minimal-energy dis-
placement eigenmodes.

Our skinning eigenmodes follows a similar derivation butwe replace
the optimization over 𝑩 with an optimization over the weights 𝑾 .
While Eq. (7) may appear to define 𝑩lbs as a complicated function of
𝑾 , it is linear in and separable over the columns of𝑾 . Thus, we may
rewrite it as

𝑩lbs =
[
𝑨𝑖, 𝑗 . . . 𝑨𝑑,(𝑑+1)

]
(𝑰𝑑 (𝑑+1) ⊗𝑾 ), (12)

where we introduce 𝑨𝑖, 𝑗 ∈ R𝑛 (𝑑)×𝑛 , our weight-space skinning Jaco-
bians. These map contributions of each weight for all 𝑑 (𝑑 + 1) affine
parameters to the final skinning Jacobian.
We derive 𝑨𝑖, 𝑗 for the 𝑑 = 2 and 𝑑 = 3 in Appendix B.1, but for

clarity show the result for 𝑑 = 3 here:
𝑨1,1 = 𝑷𝑥 �̄� 𝑨1,2 = 𝑷𝑥𝒀 𝑨1,3 = 𝑷𝑥 �̄� 𝑨1,4 = 𝑷𝑥
𝑨2,1 = 𝑷𝑦�̄� 𝑨2,2 = 𝑷𝑦𝒀 𝑨2,3 = 𝑷𝑦 �̄� 𝑨2,4 = 𝑷𝑦
𝑨3,1 = 𝑷𝑧�̄� 𝑨3,2 = 𝑷𝑧𝒀 𝑨3,3 = 𝑷𝑧 �̄� 𝑨3,4 = 𝑷𝑧

(13)

where the 𝑷∗ ∈ R3𝑛×𝑛 selection matrices concatenate to form the
identity matrix 𝑰 3𝑛 = [𝑷𝑥 𝑷𝑦 𝑷𝑧] and �̄� , 𝒀 , �̄� ∈ R𝑛×𝑛 are diagonal
matrices containing the the 𝑥 , 𝑦 and 𝑧 rest position values.
Following a similar procedure as before, we add a weight space

orthogonality constraint𝑾𝑇𝑴𝑤𝑾 = 𝑰 and assume a generic distri-
bution D on our sampling of 𝒛 ∼ D to obtain

𝑾 = argmin
𝑾𝑇𝑴𝑤𝑾=𝑰

tr(𝑩𝑇lbs𝑯𝑩lbsE𝒛∼D [𝒛𝒛𝑇 ]). (14)

We now need to make assumptions on the distribution of 𝒛, as these
now correspond to flattened affine matrix parameters and so have
some structure to their distribution. Specifically we assume that pa-
rameters belonging to different affine matrices are i.i.d. with respect
to each other, but generally allow for intradependence between pa-
rameters belonging to the same affine matrix, as measured by the
covariance matrix 𝑪 ∈ R𝑑 (𝑑+1)×𝑑 (𝑑+1) .
𝑾 = argmin

𝑾𝑇𝑴𝑤𝑾=𝑰

tr
(
(𝑰𝑑 (𝑑+1) ⊗𝑾 )𝑇𝑨𝑇𝑯𝑨(𝑰𝑑 (𝑑+1) ⊗𝑾 ) (𝑰𝑚 ⊗ 𝑪)

)
.

Expanding out all the Kronecker products and leveraging that the
trace is just a sum of diagonal entries :

𝑾 = argmin
𝑾𝑇𝑴𝑤𝑾=𝑰

tr ©«𝑾𝑇 ©«
𝑑 (𝑑+1)∑

𝑖

𝑑 (𝑑+1)∑
𝑗

(𝑨𝑇𝑖 𝑯𝑨𝑗 )𝑐𝑖 𝑗
ª®¬𝑾ª®¬ . (15)

Leading to the weight-space optimization:

𝑾 = argmin
𝑾𝑇𝑴𝑤𝑾=𝑰

tr
(
𝑾𝑇𝑯𝑤𝑾

)
(16)

where 𝑴𝑤 ∈ R𝑛×𝑛 is the weight-space mass matrix (we use the
diagonal lumped mass matrix) and where we call 𝑯𝑤 ∈ R𝑛×𝑛 the
weight-space elastic energy Hessian.

It is important to note this is overly determined for𝑾 ; The same set
of weights are used to specify 𝑑 (𝑑+1) different types of affine motions:
scales, shears and translations. As a result, the set of weights that leads
to optimal translations may not be the same set of weights that lead
to optimal scales or shears. We can change which of these parameters
we prioritize by modifying our affine parameter covariance matrix 𝑪 .

We choose to prioritize translations, neglecting shears and scales
entirely, which are poorly suited for deformation subspaces. The
logic is that shears and scales are origin-dependent. This leads the
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Unconstrained

Rig orthogonal

+

-

Weight 1 Weight 2 Weight 3 Weight 4 Weight 5 Weight 6 Weight 7 Weight 8

1m56s

Fig. 6. We generate a linear blend skinning subspace for secondary motion parameterized by a set of skinning weights. Each weight 𝑖 shown is independently
normalized to lie between [−1, 1]abs(𝑾𝑖 ) and centered around 0. (Top) Weights generated by solving the unconstrained generalized eigenvalue problem on a
weight-space elasticity Hessian. (Bottom) Secondary skinning weights that satisfy the weight-space complementarity constraint and are orthogonal to our rig
space. These are naturally rig-aware, leading to higher frequency motion.

Flexing 12 d.o.f.s of a�ine matrix associated with weight #3

2m08s

Fig. 7. One secondary linear blend skinning weight could produce 12 different
motions, corresponding to 12 d.o.f.s of an affine matrix. We showcase this by
flexing those associated with weight #3.

All Scale Shear Translation

+

-

Fig. 8. Prioritizing scaling and shearing (middle left and middle right) provides
weights that are unnaturally centered around the origin. For this reason, we
prioritize translations (right).

optimization in Eq. (16) to see vertices far from the origin as stiffer than
vertices that are close to it, resulting in weights that are unnaturally
concentrated around the origin, and decay far away from it as shown
in Fig. 8.
For 𝑑 = 3, taking i.i.d. samples from the standard normal distri-

bution of each of the three translation parameters, while neglecting

10 clusters 20 clusters 40 clusters 80 clusters

Rig

Fig. 9. We generate clusters to accelerate the computation of per-tet energetic
non-linearities. Our clusters inherit the rig-sensitivity of our skinnning weights.

shears and scales leads to a covariance matrix of the form:

𝑪 = 𝑰 3 ⊗


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (17)

which very conveniently leads to a simplified weight space Hessian:

𝑯𝑤 = 𝑷𝑇𝑥𝑯𝑷𝑥 + 𝑷𝑇𝑦𝑯𝑷𝑦 + 𝑷𝑇𝑧 𝑯𝑷𝑧 . (18)

{
{
{

{{{

x

y

z

x y z

+

=
Hw

H

+

The inset, unburdened
by notation, more clearly
shows the simplicity of de-
riving this final weight-
space Hessian; just take the
diagonal blocks for each
dimension of the Hessian
and sum them up. For co-
rotational elasticity with homogeneous materials, 𝑯𝑤 is proportional
to the mesh’s cotangent Laplacian matrix. Whereas heterogeneous
materials distributions affect 𝑯𝑤 non-trivially and thus also the our
optimal weights𝑾 .

With these matrices defined, our optimal skinning eigenmodes are
solutions to Eq. (16), found efficiently via a genearlized eigenvalue
solver. Each individual skinning eigenmode — as a linear blend skin-
ning weight — corresponds to 𝑑 (𝑑 + 1) degrees of freedom and may
be used to generate 𝑑 (𝑑 + 1) different motions, as shown in Fig. 7 for
𝑑 = 3.
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4.0.1 Weight Space Complementarity Constraint. At run-time, our
secondary-effect displacements should satisfy 𝑱𝑇 𝒖𝑐 = 0, where recall
𝑱 ∈ R3𝑛×𝑝 is the current rig Jacobian. In our subspace, this becomes
𝑱𝑇𝑩lbs𝒛 = 0. Without knowledge of 𝑱 a priori, our optimized skinning
eigenmodes will, in general, not admit non-trivial solutions. Even if
they did, enforcing this constraint at run-time leads to a more difficult
constrained optimization problem. Fortunately, our formulation above
as a generalized eigenvalue problem allows us to easily add constraints
to our skinning weights, thus ensuring that our modes admit non-
trivial solutions but also implicitly satisfy the constraint allowing us
to remove it entirely at run-time.
Zhang et al. [2020] define 𝑓rig (𝒑) generically. For real-time appli-

cations, we will assume that 𝑓rig is linear (single affine handle, linear
blend skinning, blendshapes, etc.) and thus has a constant rig Jacobian
𝑱 . Given 𝑱 , the constraint we need to add is

𝑱𝑇𝑩lbs = 0 (19)

To express this in terms of𝑾 , we can again make use of our weight-
space skinning Jacobian matrices from Eq. (13) (not to be confused
with 𝑱 ) and expand the constraint to act on each weight. This leads to
a series of constraints that our weights need to satisfy:

𝑱𝑇𝑨𝑖, 𝑗𝑾 = 0 ∈ R𝑝×𝑚 ∀𝑖 ∈ {1, ..., 𝑑}, 𝑗 ∈ {1, ..., 𝑑 + 1} (20)

We can stack all our constraint matrices 𝑱𝑇𝑨𝑖, 𝑗 :
𝑱𝑇𝑨1,1

.

.

.

𝑱𝑇𝑨𝑑,𝑑+1

𝑾 = 𝑱𝑤𝑾 = 0 ∈ R𝑝 (𝑑) (𝑑+1)×𝑚 (21)

where we call 𝑱𝑤 ∈ R𝑝 (𝑑) (𝑑+1)×𝑛 our weight-space complementarity
constraint matrix.

We can incorporate this constraint in a standard generalized eigen-
value problem by solving instead[

𝑯𝑤 𝑱𝑇𝑤
𝑱𝑤 0

] [
𝑾
𝝁

]
=

[
𝑴𝑤 0

0 0

] [
𝑾
𝝁

]
𝚲. (22)

Fig. 6 shows how our derived skinning weights change to accom-
modate the rig-complementarity constraint.

5 BUT WHAT ABOUT ROTATIONS?
Interesting elastodynamic effects exhibit rotations: both global, where
the entire shape rotates in space, and local, where part or parts of the
shape rotate relative to the rest/each other. Rotations are notoriously
difficult for previous linear subspaces. For example, it is well known
that displacement modes (𝑩disp defined in Eq. (11)) struggle to rep-
resent local rotational motion (see Fig. 12 and Fig. 13 (Left)) [Barbič
and James 2005; Barbič and Zhao 2011; Choi and Ko 2005; Huang et al.
2011]).
Our use case reveals that issues with rotations go beyond this

and can be more insidious. In the following discussion, we assume
that the elastic potential 𝐸 is rotation invariant. That is, 𝐸 (𝒖 + 𝒙0) =
𝐸 ((𝑹 ⊗ 𝑰 ) (𝒖 + 𝒙0)), where multiplying by (𝑹 ⊗ 𝑰 ) ∈ R𝑛 (𝑑)×𝑛 (𝑑) ap-
plies the same rotation 𝑹 ∈ 𝑆𝑂 (𝑑) to all vertices.

5.1 Rotation Spanning vs. Closure Under Rotations
Rotational problems may be categorized into two separate issues.
First, does a given subspace span rotations? By global rotation

spanning, we mean there always exists some subspace parameters
to reproduce any rotational displacement. If 𝒙0 are the rest positions
then

∃ 𝒛 such that (𝑹 ⊗ 𝑰 ) 𝒙0 − 𝒙0 = 𝑩𝒛 ∀𝑹 ∈ 𝑆𝑂 (𝑑) . (23)

For free-flight objects, failing to span global rotations means the sub-
space will unnaturally deform in an attempt to minimize 𝐸 rather
than rotate. Unfortunately, this problem also occurs locally, too. For
example, if the arms of a character bend in opposite directions, failure
to span these local rotations will disturb (by introducing local shears
and stretches to attempt to minimize 𝐸) or prevent (by the minimiza-
tion of 𝐸 detesting such scales and shears) the desired deformation.
For example, Barbič and James [2005] emphasize how displacement
modes 𝑩disp induce scaling and shearing artifacts when approximat-
ing rotations and bending deformations.
Second, does a given subspace induce a rotationally equivariant

simulation? Treat the simulation as a map from problem specification
parameters (e.g., forces, rig displacements, rest positions) to optimal
(full-space) displacements. Rotation equivariance means that any ro-
tated version of the problem results in a correspondingly rotated
solution:

∀𝑹 ∈ SO(𝑑) , ∀𝒙 ∈ R𝑛 (𝑑) ,
𝑩 argmin

𝒛
𝑬 (𝑩𝒛 + (𝑹 ⊗ 𝑰 ) 𝒙) = (𝑹 ⊗ 𝑰 ) 𝑩 argmin

𝒛
𝑬 (𝑩𝒛 + 𝒙) , (24)

where — without loss of generality — we lump problem specification
parameters into the vector 𝒙 ∈ R𝑛 (𝑑) .
A subspace simulation lacking rotation equivariance may experi-

ence unpredictably different deformations under rotations. This is
especially problematic in a complementary dynamics setting where
the entire object or large subpart may rotate due to the user rig. Users
will expect analagously rotated secondary effects and be surprised by
behavior that depends on global or local rotations coming from the
rig.

X
Y

X
Y

Rotate

1m21s

Fig. 14 shows how this shortcom-
ing expresses itself as overly energetic
deformation, while Fig. 11 showcases
some of the kinky local minima that can
easily arise under simple rotations. The
root of this problem is shown didacti-
cally in the inset: a single displacement
mode describes a completely different
type of motion if its underlying shape
rotates.
Building on this intuition, we prove

(see App. A.1) that a linear subspace
simulation is rotation equivariant if and
only if the subspace basis is closed under rotations:

∀𝑹 ∈ SO(𝑑) and 𝒛 ∈ R𝑚 ∃𝒘 ∈ R𝑚, such that (𝑹 ⊗ 𝑰 ) 𝑩𝒛 = 𝑩𝒘 .
(25)
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dynamics

Rich 
dynamics

+

-

+
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So� body & 
sti� propeller

500X sti�er

4m01s

Fig. 10. A material-aware subspace more efficiently captures the space of motions available to our simulation. This directly leads to richer dynamics.

Rest state

Displacement modes Our skinning modes

Bad local
minimum

Random initial state Sim. converged state

    or rigid frame

1m27s

Fig. 11. We compute the subspace at rest (top-left). A user rotates themesh and
perturbs the system with a random initial deformation. Using displacement
modes creates jarring local minimum artefacts in a rotated frame. Our skinning
modes find the global minimum effortlessly, obtaining the same rest state
than if we had embedded the simulation in a rigid frame.

5.2 Displacement Modes Simulations Are Fragile Under
Rotations

Displacement modes (𝑩disp defined in Eq. (11)) [Pentland andWilliams
1989] and many of their improvements (e.g., [Barbič and James 2005])
are neither rotation spanning nor closed under rotations. Rotations
are a full-spectrum displacement, so any (reasonable) truncated elastic
eigenspace will fail to span arbitrary global rotations (see Fig. 13 (Left)).
While — as discussed above — global rotation spanning has an easy fix,
much effort has been made to improve local rotation spanning such
as data-driven PCA bases [Kry et al. 2002], modal derivatives [Barbič
and James 2005], sub-structuring [Barbič and Zhao 2011], or splitting
the simulation into rigid and deformable components [Terzopoulos
and Witkin 1988].
Nevertheless, large local rotations may still be problematic (see

Fig. 12). Displacement modes — except if truncated to just null modes
or completely non-truncated — are not closed under rotations (see
counterexamples in Fig. 13 (Right) and Fig. 11).

5.3 Skinning Eigenmodes Are Robust to Rotations
In contrast, skinning eigenmodes are both rotation spanning and
closed under rotations (see Fig. 13). When the complementarity con-
straint is absent, the first skinning eigenmode will be a constant func-
tion thus spanning all affine motions including rotations. When used

Full-space sim 60 displacement modes 10 skinning modes

Fail to handle local rotation 

Initial state

Pulling
down Frame 230

3m34s

Fig. 12. No matter how hard a user tries, the eyes of this reduced elastody-
namic alien will never bend when using a small displacement mode subspace
(middle). Our skinning subspace (right) enables the rotational motion. Both
results use 60 degrees of freedom.

for fast complementary dynamics, the rig typically contains global
rotations so we explicitly (and purposefully) avoid global rotation
spanning. We do still want and indeed observe local rotation spanning
(see Fig. 12). We can easily show that the linear blend skinning —
and thus also skinning subspaces — are closed under rotations. Given
some rotation 𝑹 ∈ SO(𝑑), rotating linear blend skinning’s output is
equivalent to rotating all of the input transformations:

𝑹
𝑚∑
𝑏=1

𝑤𝑖𝑏𝑻𝑏𝑿𝑖 =
𝑚∑
𝑏=1

𝑤𝑖𝑏𝑹𝑻𝑏𝑿𝑖 . (26)

Any rotation of its output is producible by its input, as required for
a rotation equivariant subspace simulation. This fact was similarly
utilized in previous works albeit in different settings [Jacobson et al.
2011; Langer and Seidel 2008; Wang et al. 2015]. There are many prior
subspaces [Faure et al. 2011; Gilles et al. 2011; von Tycowicz et al. 2013;
Wang et al. 2015] that do not explicitly mention rotation equivariance
as a criterion for the subspace simulation. In hindsight, leveraging the
machinery of Appendix 34, we can see that since these prior subspaces
are closed under rotations, those methods also maintain a rotation
equivariant simulation.

6 CLUSTERING
For many rich rotational dynamic properties, an elastic energy usually
requires the use of per-tetrahedron non-linear operations [Kim and
Eberle 2020]. Despite our use of a subspace for our displacement
degrees of freedom, these energies still demand per-tet computation.
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Closed Under Rotations

Fig. 13. Rotation Spanning vs. Closure Under Rotations. Given some initial shape, we optimize for optimal displacements that minimize the squared
distance between each vertex position and its rotated target. (Left) Our skinning modes are rotation spanning, as modulated by the skinning weights. With
a single constant skinning weight, we can perfectly reconstruct (by least squares projection) any rotation of the rest shape. Displacement modes do not span
rotational motion, even with excessively abundant modes. (Right-red) Our skinning modes are closed under rotations, so any deformation in the span of
those can be reconstructed (by least squares projection) under the same set of modes even if the mesh is arbitrarily rotated by a user. The same cannot be said
for even an impractically large number of displacement modes even if augmented with affine degrees of freedom (right-purple).

Our simulations are not yet truly decoupled from the resolution of
the mesh.

Many methods in the past sidestep this issue by making use of cu-
bature [An et al. 2008; Barbič and James 2005; Teng et al. 2014], where
the deformation quantities at each tetrahedra are estimated as a sum
of weighed contributions from a sparse set of pre-determined sample
tetrahedra. These samples and their interpolation weight are usually
obtained through a data-fitting phase. We instead opt for a clustering
[Jacobson et al. 2012] scheme, which estimates these non-linearities
through 𝑟 clusters of tetrahedra. Instead of requiring training data,
we compute our clusters via a deformation prior, obtaining them via
a 𝑘-means clustering [Arthur and Vassilvitskii 2007] of our subspace
secondary skinning weights𝑾 . For a mesh with 𝑡 tetrahedra, we use
𝑟 clusters to build the grouping matrix 𝑮 ∈ R𝑟×𝑡 :

𝑮𝑖 𝑗 =


𝑽𝒋∑C𝑖
𝑞 𝑽𝒒

if 𝑗 ∈ C𝑖

0 otherwise
(27)

where 𝑽 𝑗 is the volume of the 𝑗-th tetrahedron, while C𝑖 contains
the indices of the tetrahedra belonging to cluster 𝑖 . This grouping

matrix computes cluster quantities via a mass weighed averaging of
its member tetrahedra. We use these grouping matrices whenever we
require per-tet evaluations in our solver as outlined in Sec. 7.
We build our clusters via a 𝑘-means++ [Arthur and Vassilvitskii

2007], using features obtained from our secondary weights. Specifi-
cally, we average our vertex weights onto each tetrahedra, then we
scale each of our weights𝒘𝑖 by the inverse-squared of its associated
eigenvalue 𝜆𝑖 , obtained in Eq. (22). Fig. 9 shows clustering results for
a sample mesh with different rigs. Because our skinning subspace
is the only feature we use for building our clusters, our clusters in-
herit many of the properties of the skinning modes, including being
material-sensitive, rig-sensitive. This allows our clusters to provide a
higher resolution in parts of the mesh more likely to exhibit secondary
motion. Because our skinning modes can be global, this results in clus-
ters that could also be global. We detect these in a post processing
step and split clusters into their individual separate components.
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Fig. 14. Simulations making use of displacement modes (left) are not rotation
equivariant. Augmenting displacement modes with modal derivatives (middle),
helps in representing higher quality deformations, but still create different
high energy deformations under rotations. Our skinning modes (right) allow
us to capture both local rotational motion and maintain rotation equivariance
and lead to the lowest energy even without explicitly tracking a rotating frame
[Terzopoulos and Witkin 1988] each timestep (bottom).

7 LOCAL-GLOBAL SOLVER
We make use of a simple local-global solver for the minimization of
our elastodynamic energy. This solver leverages our reduced space
degrees of freedom and our clusters to never make use of any full-space
operations. This solver allows us to avoid recomputing expensive
quadratic energy Hessians each timestep while still accommodating
frequently desired elastic non-linearities, such as rotations.

7.1 Full-Space Local-Global Solver
We assume energies that can be decomposed as

𝐸 (𝒖) = Ψ(𝒖) + Φ(𝒖) ,
where Ψ(𝒖) is quadratic in 𝒖 and Φ is a non-linear in 𝒖 and piecewize
constant over tets. We then need to identify the source of the non-
linearities in Φ, 𝑹, as auxiliary degrees of freedom

𝒖, 𝑹 = argmin
𝒖,𝑹

Ψ(𝒖) + Φ(𝒖, 𝑹) .

We split elastodynamic optimization into two steps [Sorkine and
Alexa 2007]. The local step optimizes for the non-linear sources 𝑹 in
our energy: holding the primary degrees of freedom fixed,

𝑹𝑖 = argmin
𝑹

Φ(𝒖𝑖−1, 𝑹) . (28)

The global step optimizes for the primary degrees of freedom, holding
the auxillary ones fixed:

𝒖𝑖 = argmin
𝒖

Ψ(𝒖) + Φ(𝒖, 𝑹𝑖 ) . (29)

These two steps are repeated iteratively until convergence..

7.2 Hyper-Reduced Local-Global Solver
To ensure our solver never performs any full space operations, we
make use of our subspace 𝒖 ≈ 𝑩𝒛 and our clusters Φ ≈ Φ̃, where
the tilde denotes clustered quantities. While before 𝚽 was piecewise

constant over tets, it is now piecewise constant over clusters, where
clustered physical quantities, (like mass, Lamé parameters, deforma-
tion gradients, etc.) have been averaged over all the tets in each cluster.
Our hyper-reduced energy becomes:

𝐸 (𝒖) = Ψ(𝒛) + Φ̃(𝒛) .

Exposing the per-cluster source of non-linearities as their own auxil-
lary degrees of freedom �̃�:

𝐸 (𝒛) = Ψ(𝒛) + Φ̃(𝒛, �̃�)

Our hyper-reduced local step becomes

�̃�𝑖 = argmin
�̃�

Φ̃(𝒛𝑖−1, �̃�) , (30)

Because the non-linearity is piece-wise constant over clusters, this
per-cluster optimization can additionally be solved in parallel over
all clusters, providing further acceleration. while the hyper-reduced
global step becomes

𝒛𝑖 = argmin
𝒛

Ψ(𝒛) + Φ̃(𝒛, �̃�𝑖 ) . (31)

Depending on the specific energy, different optimization schemes
need to be adopted for both the local step and the global step. The only
criteria we need to maintain on any of these solvers is that they never
perform any full-space operations. Appendix Sec. C.1 and Sec. C.2
show how to implement our reduced local-global solver for elastic
energies such as ARAP [Chao et al. 2010] and Linear Co-Rotational
Elasticity [McAdams et al. 2011].

8 IMPLEMENTATION
Most of our implementation is in C++ with some calls to Matlab rou-
tines for building the subspace. All timings reported were performed
on a Dell XPS i9-12900HK with a 2.90 GHz processor and 64GB of
RAM, equipped with an NVIDIA GeForce 3050Ti graphics card.

8.1 Subspace Construction
Algorithm 1 provides pseudocode for the construction of our subspace.
We require as input the rest state, an elastic energy Hessian, and a
user-defined homogeneous linear equality constraint matrix J , in
our case the complementarity constraint matrix. So far, for concise-
ness, we have stated that our complementarity constraint matrix was
equal to the rig jacobian J = 𝑱 . However, as described by [Zhang
et al. 2020], to make our complementarity constraint sensitive to the
mesh resolution, it is also weighed by a mass-matrix. Additionally
the constraint matrix is weighed by a momentum-leaking matrix 𝑫 .
This diagonal matrix with entries ranging form 0 to 1 specifies where
momentum can leak from the rig to the mesh. By default, we compute
these diagonal entries from a fast diffusion of the surface to the inte-
rior, and renormalize the values to lie between 0 and 1, which easily
gives us standard follow-through and anticipation effects [Zhang et al.
2020]. For additional control, a user can also customize and easily
provide their own scalar field designed by a method of their choice.
The final complementarity constraint matrix is J = 𝑫𝑴𝑱 .

For the GEVP solver, we use Matlab’s eigs. We also remove redun-
dant rows from our weight space complementarity constraint quickly
using Matlab’s rref .
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Algorithm 1: Subspace Construction : given rest positions 𝑿 ,
tet indeces 𝑻 , an elastic energy hessian 𝑯 a complementar-
ity constraint matrix J , compute a subspace composed of m
skinning weights𝑾 and r cluster labels 𝒍 for our tets.
Function computeSubspace(𝑿 , 𝑻 ,𝑯 ,J ,m, r):

𝑯𝑤 ← weightSpaceHessian(𝑯 )
𝑴𝑤 ← massmatrix(𝑿 , 𝑻 )
𝑱𝑤 ← weightSpaceConstraint(J ,𝑿 )

H ←
[
𝑯𝑤 𝑱𝑇𝑤
𝑱𝑤 0

]
M ←

[
𝑴𝑤 0

0 0

]
𝑾 , 𝑽 ← eigs(H ,M,m)
𝑾𝒕 ← averageOntoTets(𝑾𝑽−2, 𝑻 )
𝒍 ← kmeans(𝑾𝑡 , r)
𝒍 ← splitComponents(𝑻 , l)
return𝑾 , 𝒍

Function weightSpaceConstraint(J ,𝑿):
𝑨← []
for 𝑖 ← 0 to dim do

for 𝑗 ← 0 to dim + 1 do
𝑨𝑖, 𝑗 ← weightSkinningJacobian(𝑿 , 𝑖, 𝑗) 𝐸𝑞. (21)

𝑨←
[

𝑨
J𝑇𝑨𝑖, 𝑗

]
𝑱𝑤 ← removeRedundantRows(𝑨)
return 𝑱𝑤

8.2 Simulation Step
Algorithm 2 provides an overview for the simulation step of our
proposed method. We color in blue matrix products that can be com-
puted once at the start of the simulation, cached and then called at
run-time. We color in red vectors that do not change throughout the
multiple iterations of a single local-global solve. Products with these
red vectors can be computed once at the start of the timestep step
and reused throughout the timestep. To solve the linear system for
the Quasi-Newton search direction, we make use of a precomputed
Cholesky Factorization. In the case of vanishing Poisson ratio, where
Co-Rotational Elasticity becomes ARAP, we can safely remove the
line search.

The individual constituents of these matrices are defined as follows:

• 𝑩 = 𝑩lbs is the linear blend skinning Jacobian matrix for our
secondary weights𝑾 , as computed by Eq. (7).
• 𝑮9 ∈ R9𝑟×9𝑡 is our exploded cluster grouping matrix, com-
putable from our per-cluster labels 𝒍 and our rest geometry,
that performs a mass-weighed averaging of the 9 deformation
gradient quantities for all tetrahedra belonging to a cluster.
• 𝑲 ∈ R9𝑡×3𝑛 is a standard vector gradient operator, which maps
displacements of vertices to deformation gradients on tetrahe-
dra [Kim and Eberle 2020].
• 𝑳 = 𝑲𝑇U𝑽𝑲 ∈ R3𝑛×3𝑛 is the heterogeneous Laplacian opera-
tor. (U and 𝑽 are 9𝑡 × 9𝑡 diagonal matrices containing the first
Lamé parameter and volume respectively for each tetrahedron
on their diagonal).
• 𝑴 ∈ R3𝑛×3𝑛 is the vector mass matrix.
• 𝑱 ∈ R3𝑛×𝑝 is the rig Jacobian for our primary rig.

Algorithm 2: performs one simulation step of our reduced
Complementary Dynamics using a linear Co-Rotated elasticity
model
Function simulationStep(𝒑, 𝒛ℎ𝑖𝑠𝑡 ,𝒑ℎ𝑖𝑠𝑡 ,𝒇𝑒𝑥𝑡):

𝒛 ← 0
while not converged do

𝜕�̃�
𝜕𝒇 ← localStep(𝒛,𝒑)

𝒛𝑛𝑒𝑥𝑡 ← globalStep(𝒛,𝒑, 𝒛ℎ𝑖𝑠𝑡 ,𝒑ℎ𝑖𝑠𝑡 ,𝒇𝑒𝑥𝑡 ,
𝜕�̃�
𝜕𝒇 )

𝒛 ← 𝒛𝑛𝑒𝑥𝑡
return 𝒛𝑛𝑒𝑥𝑡

Function localStep(𝒛,𝒑):
𝒇 ← 𝑮9𝑲𝑩𝒛 + 𝑮9𝑲 𝑱0𝒑
𝑭 ← reshape(𝒇 , [r, dim, dim])
𝜕�̃�

𝜕𝑭
← zeros(r, dim, dim)

for 𝑖 ← 0 to r do
𝑭 𝑖 ← 𝑭 [𝑖, :, :]
𝑹𝑖 ← PolarSVD(𝑭 𝑖 )
𝜕�̃�

𝜕𝑭
[𝑖] ← −𝑚𝑖𝜇𝑖𝑹𝑖 +𝑚𝑖 𝜆𝑖2 𝑹𝑖𝑡𝑟 (𝑹𝑇𝑖 𝑭 𝑖 − 𝑰 )

𝜕�̃�
𝜕𝒇 ← vec( 𝜕�̃�

𝜕𝑭
)

return 𝜕�̃�
𝜕𝒇

Function globalStep(𝒛, 𝒛ℎ𝑖𝑠𝑡 ,𝒑,𝒑ℎ𝑖𝑠𝑡 ,𝒇𝑒𝑥𝑡 ,
𝜕�̃�
𝜕𝒇 )):

𝒇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 ← 𝑩𝑇 𝑳𝑱𝒑 + (𝑮9𝑲𝑩)𝑇 𝜕�̃�
𝜕𝒇

𝒇 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 ← 1
ℎ2 (𝑩𝑇𝑴𝑱 (𝒑 − 𝒑ℎ𝑖𝑠𝑡 ) − 𝑩𝑇𝑴𝑩𝒛ℎ𝑖𝑠𝑡 )

𝒇 ← 𝒇𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝒇 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝒇𝑒𝑥𝑡
𝑨← 𝑩𝑇 𝑳𝑩 + 1

ℎ2 𝑩
𝑇𝑴𝑩

𝑑𝒛 ← 𝑨𝑑𝒛 = −𝒇 −𝑨𝒛
𝛼 ← lineSearch(𝑑𝒛)
𝒛𝑛𝑒𝑥𝑡 ← 𝒛 + 𝛼𝑑𝒛
return 𝒛𝑛𝑒𝑥𝑡

We can leverage the fact that our subspace just performs linear
blend skinning to project our low dimensional output 𝒛𝑛𝑒𝑥𝑡 to the full
space entirely on the GPU. We implement this projection step in the
vertex shader, where we load the initial skinning weights as vertex
attributes, and then pass the updated 𝒛𝑛𝑒𝑥𝑡 as a uniform in each draw
call.

9 EXPERIMENTS & DISCUSSION
We evaluate the effectiveness of our skinning subspace for deforma-
tion by comparing it to a suite of common deformation subspaces. In
our qualitative comparisons, we consider equal dimensional subspaces
(e.g. 48 displacement modes = 12 degrees of freedom * 4 skinning
eigenmodes). While this puts CPU computation on equal footing, we
emphasize that our skinning eigenmodes use significantly less GPU
memory in a vertex shader implementation (12×).

9.1 Comparison to Modal Derivatives
Modal derivatives [Barbič and James 2005] augment the primary dis-
placement subspace with a second set of modes that aim to correct the
primary modes as they fall out of date with large deformations. This
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Reference 3 skinning modes1 sub-structure
[Barbič and Zhou 2011] 3m52s

Fig. 15. Our skinning subspace (right) can easily represent twisting motions,
something displacement modes struggle with, even with localized rotation
fitting.

effectively makes the subspace quadratic instead of linear. Unfortu-
nately, modal derivatives are not closed under rotations. We show how
this expresses itself in an elastic simulation in Fig. 14. We compare 3
subspace simulations: 60 displacement modes, 11 displacement modes
augmented with 49 modal derivatives, and 10 skinning modes (cor-
responding to 60 total d.o.f.s in 2D). While modal derivatives greatly
enrich the space available to the elasto-dynamics, they provide un-
intuitively different deformations under rotations. By contrast, our
subspace allows for the lowest energy at equilibrium, maintains a
consistent equilibrium shape (and energy) no matter the orientation.

Fig. 5 shows how this shortcoming manifests itself in our use case
of fast complementary dynamics. In this example, a user applies small
repeated rotations about the y-axis on a single affine handle control-
ling the moray eel, mimicking a swiming motion. Rig momentum is
allowed to leak from the rig to the eel to induce secondary motion.
Then, the user rotated the eel about the z-axis 90 degrees, making the
eel swim sideways. As a user performs this rotation they would ex-
pect the resulting simulation to be identical up to a rotation as well, a
property our 14 (168 d.o.f.s) skinning modes guarantee. Unfortunately
the same cannot be said of a simulation using a modal derivative
subspace of slightly greater size than ours. In this example, 17 primary
modes augmented with a full set of 153 modal derivatives (for a total
of 170 d.o.f.s) were used to construct the modal derivative subspace.
Like our skinning eigenmodes, was also constrained to satisfy the
complementarity constraint by construction.

Both methods benefit from performing a full-space projection step
(to update the visualizion) on the GPU. As a linear blend skinning
subspace, we can perform this step at a much smaller memory cost for
the vertex shader. For a full space projection step with 𝑘 = 𝑑 (𝑑 + 1)𝑚
degrees of freedom, modal derivatives would require𝑘-vec4’s in vertex
shader memory, whereas ours would only require𝑚.

9.2 Comparison to Sub-Structuring and Modal Warping
Perhaps the most intuitive way ensuring our subspace is closed under
rotations is by warping the subspace manually with a single best
fit rotation. This corresponds to a simplified version of both sub-
structuring and modal warping [Barbič and Zhao 2011; Choi and Ko
2005; Kim and James 2011]. While this indeed would fix the simulation
rotation equivariance problem, it comes at the cost of not being able
to represent rotational motion within each sub-structure, as shown
didactically in Fig. 15. Increasing the number of sub-structures would
mitigate this, but still requires the user to warp the subspace associated
with each vertex every timestep, a full space operation. Accelerating
this update at each using the Fast Sandwich Transform (FST) proposed
by [Kim and James 2011] is certainly possible for terms linear in

Reference [Huang et al. 2011] 10 skinning modes

Ouch!

3m44s

Fig. 16. Rotation Strain coordinates [Huang et al. 2011] are not well suited for
reconstructing shapes undergoing rotational motion, as is commonly imposed
by control rigs. Our subspace can fit this complex localized rotational motion
with only 10 skinning modes.

Reference

Subspace reconstruction using global modes

Subspace reconstruction using local modes

Fig. 17. Adopting ICCM [Brandt and Hildebrandt 2017] allows us to recon-
struct the higly localized reference deformation (left) using a least squares fit,
a task in which traditional global modes struggle. We build our local modes
(bottom) with a sparsity regularization parameter 𝜂 = 100 and only fit the
first 5 modes for each.

𝑩. However, it requires the reassembly of all linear pre-computed
matrices involving 𝑩, summing the contributions of each of the 9
rotation parameters for each new sub-structure. Albeit accelerated
compared to a naïve update, the FST update nevertheless becomes
the bottleneck of our method, limiting the richness of the overall
dynamics we can get for real-time rates. The FST also incurs a memory
cost; in 3D, the aforementioned precomputed matrices must be stored
separately 9 times for each new rotation cluster. On top of this, the
FST would not allow us to efficientily update terms that are non-
linear with respect to 𝑩, such as our system matrix or our Cholesky
prefactorization.

By contrast, our skinning subspace can represent twisting motions
with a single static subspace computed once in a precomputation
phase and never updated again.

9.3 Rotation Spanning vs. Rotation Equivariance
Fig. 13 highlights the difference between rotation spanning and clo-
sure under rotations. The left side shows a least squares fitting task
carried out in a subspace, attempting to fit a rotation of the rest geome-
try. If the subspace does not span rotations, like standard displacement
modes, it will not be able to reconstruct the target rotated rest geome-
try. Adding rotational degrees of freedom[Terzopoulos and Witkin
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4m27s

Fig. 18. Our rig-complementary subspace (right) composed of 14 skinning
modes provide richer dynamics than an equal sized unconstrained sub-
space(left).

1988] by definition fix this problem and provides an equivalent solu-
tion to using a single constant skinning mode as our subspace. The
right side of this figure does not attempt to fit rotations, but attempts
to fit a subspace displacement applied on top of a user-rotated frame.
Specifically it shows that without closure under rotations, how well
you reconstructing this displacement becomes a frame dependant
process. Even if we added an extra set of affine degrees of freedom
to our subspace (with error shown in purple), these would provide
negligible help.

9.4 Comparison To Rotation Strain Coordinates
Rotation strain coordinates [Huang et al. 2011] fix linearized defor-
mation artifacts that arise out of simulations using linear subspaces
by projecting it to an energetically favorable pose. They decompose
the tetrahedron’s deformation gradient 𝑭 = 𝒓 + 𝒔 + 𝑰 into a symmet-
ric shear part 𝒔 and antisymmetric linearized rotation part 𝒓 . The
linearized rotation is then projected to a full rotation matrix via an
exponential map 𝑹 = exp(𝒓), from which the deformation gradient is
reconstructed as 𝑭 ′ = 𝑹 (𝒔 + 𝑰 ). The vertex positions 𝒙 are determined
by minimizing | |𝑲𝒙 − 𝒇 ′ | |𝑴 , where 𝒇 ′ = vec(𝑭 ′). As Fig. 16 shows
however, this formulation depends on the input deformation to be
composed mainly of shear motions (as a normal displacement sub-
space would). If a user manipulating a shape through a rig created a
rotation on the neck of the giraffe, Rotation Strain coordinates lead to
an undesired reconstruction of the shape, rendering them less suitable
for reconstruction over rig-like motion. In fact, we can verify that for
an input 2D rotational motion about the 𝑧-axis of 𝜋2 leads to a target
deformation gradient

𝑭 ′ =


0 0 0
0 0 0
0 0 1

 ,
which will act to collapse neighboring vertices to lie solely along the
z-axis. Furthermore, the Rotation Strain coordinates position fitting
step may undo any constraints enforced in earlier steps, including
our complementarity constraint. Identifying how to optimally enforce
such constraints in the rotation strain coordinates pipelines remains
an interesting avenue for future work.

9.5 Localized Skinning Subspaces
Thanks to our generalized eigenvalue formulation, we can greatly
benefit from prior work in localizing and sparsifying PCA/Modal anal-
ysis subspaces [Houston 2017; Melzi et al. 2018; Nasikun et al. 2018].
As an example, we can promote sparsity and locality in our modes to
by applying the iterated convexification for compressed modes (ICCM)
[Brandt and Hildebrandt 2017] algorithm. This amounts to simply
adding an L1 regularization term to our minimization in Eq. (22). The
result is a subspace that can faithfully capture local deformations as
shown in Fig. 17. The skinning modes’ closure under rotation, criti-
cal for producing rotation equivariant results, naturally inherits the
locality presented by the skinning weights: observe that Eq. (26) is a
superposition of the closure of every mode 𝑏 in isolation:

𝑤𝑖𝑏 (𝑹𝑻𝑏 )
[
𝒙0𝑖
1

]
= 𝑹

(
𝑤𝑖𝑏𝑻𝑏

[
𝒙0𝑖
1

] )
. (32)

9.6 Difficulty Capturing High Frequency Motion

Pull up

4 skinning modes

24 displacement modes

Every secondary skinning
weight in our subspace is
associated with 12 affine de-
grees of freedom in 3D, as
shown in Fig. 7 (and 6 in
2D). While this is the key to
many of the rotational qual-
ities of our subspace, it also
means that our subspace re-
quires many degrees of freedom to represent certain high frequency
motions. The inset shows a floppy bar being pulled at its left ex-
tremity, creating an elastic wave that ripples from left to right. A
traditional displacement subspace can capture such high frequency
motion, whereas our skinning subspace suffers from global artifacts
with the same number of degrees of freedom.

9.7 Comparison to Coarsening Meshes
A common approach to accelerating elasto-dynamics for real-time
applications is to embed a fine mesh inside a coarse one, solve the
elasto-dynamics on the coarse mesh, and then map the final motion
back to the fine mesh via the embedding.
This corresponds to a very specific subspace 𝐵𝑒𝑚𝑏𝑒𝑑 ; one that is

very sparse, highly localized, can represent rotations, and maintains
simulation rotation equivariance. Unfortunately, its construction from
a coarse mesh embedding groups fine scale features that are close in
Euclidean space whose motion should not be correlated. This leads
to visible embedding artifacts as shown in Fig. 3. To compare, our
subspace couples motion of vertices as measured by the elastic energy.

9.8 Discussion on Material Sensitivity
An important feature that distinguishes our skinning weights from
those of Gilles et al. [2011]; Lan et al. [2020]; Wang et al. [2015] is that
our skinning weights are material-aware. We show that this directly
leads to richer dynamics when dealing with subspace simulations of
heterogeneous materials, as shown in Fig. 10.

Because our final weight space Hessian in Eq. (18) does not capture
any coupling interactions between the dimensions of our simulation
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Fig. 19. Our skinning subspace can easily capture volume-preserving effects
for non-zero poisson ratio, and maintains such high quality deformations
under any rotations of the rest frame.

it is invariant to changes in the Poisson ratio, which appear in the off-
diagonal entries of the full space hessian 𝑯 . Fortunately, our skinning
subspace can form non-uniform scales and shears, which allow it to
excellently capture volume preserving effects with very few skinning
modes, as shown in Fig. 19.

9.9 Importance of Constraining Subspace
One big difference between our skinning subspace and prior methods
[Brandt et al. 2018; Faure et al. 2011; von Tycowicz et al. 2013] is that
we can impose homogeneous equality constraints on our skinning
weights by construction. Without this property, we’d have to impose
our constraint at run-time. A user is burdened with having to select
a subspace with more degrees of freedom than the constraint set in
order to avoid an over-constrained system. To make things worse, the
constraints for our primary rig can quickly climb in dimensionality; for
a linear blend skinning control rig, every new bone brings with it𝑑 (𝑑+
1) new columns in our complementarity constraint matrix 𝑱 . Fig. 18
shows a primary control rig composed of 14 bones (168 constraints).
In order for a simulation to avoid being over-constrained, the user
would then have to prescribe over 14 skinning modes (168) degrees of
freedom. In contrast, our subspace frees the user from this dilemma,
and allows the user to pick the dimensionality of the subspace without
worrying about the well-posedness of the simulation.

9.10 Subspace Ablation
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The inset shows an ablation study
on the number of modes (top) and
the number of clusters (bottom). For
both ablations, we compare the dis-
placement incurred after a single
timestep’s displacement to a refer-
ence full space displacement, and com-
pute the L2 error | |𝒖 − 𝒖ref | |2. For
the ablation on the modes, we fix
the number of clusters to 3000. For
the ablation on the clusters, we fix
the number of skinning modes to
200.

Poisson ratio : 0
[Jacobson et. al. 2012] 

Poisson ratio : 0.4
Our reduced solver

Volume gain

Volume preserved

Rest shape

4m38s

Fig. 20. We observe volume preserving effects made possible by accommodat-
ing co-rotational elasticity.

Table 1. Computing 10 of our skinning modes (120 d.o.f.s) is much faster than
computing 120 displacement modes (120 d.o.f.s) subspace of an equivalent
size.

Mesh #Vertices Disp.(s) Ours(s)
Elephant 7842 0.782 0.135
Bulldog 31368 6.76 0.830

XYZ Dragon 99813 62.3 5.14
King Ghidora 294033 143.4 14.07

9.11 Evaluating Co-Rotational Elasticity
We generalize the clustering based local global solver of Jacobson
et al. [2012] to work with a more general material model of Linear
Co-Rotational Elasticity [McAdams et al. 2011]. We show a simple
example in Fig. 19 that shows how our subspace simulation with
50 clusters and 10 skinning modes can incorporate smooth volume
preserving effects.

Fig. 20 highlights that these volume preserving effects have a notice-
able visual impact on the secondary dynamics. Unfortunately, such
non-linear effects aren’t free, a non-zero Poisson’s ratio incurs the
cost of tacking on a line search at the end of our solver’s global step
[Liu et al. 2017]. Evaluating the energy for the line search requires
re-computing per-cluster deformation gradients, a 𝑂 (𝑟𝑚) operation
that corresponds to the slowest part in our simulation pipeline for
large modes and large clusters. While this does sometimes hinder the
speed of our simulation step, we have found that there are large por-
tions of the mode/cluster parameter space that easily accommodate
this computational overhead while still providing rich dynamics.

9.12 Mode/Cluster Pareto-Front
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Cost per timestep tradeo� We evaluate how our per-timestep
cost changes with the size of our
subspace skinning modes and the
number of clusters used. The in-
set highlights the 30 FPS real-time
pareto front. For each trial, the
same timestep was run 100 times
until convergence on an ARAP elas-
ticity model.

9.13 Computing Our Modes
Because our weight space Hessian is 𝑛 × 𝑛, compared to the tradi-
tional full space 𝑛(𝑑) × 𝑛(𝑑) Hessian, solving for our subspace is
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Fig. 21. Augmenting a real-time rigid body simulation with complementary
dynamics in real-time.

naturally faster for higher dimensions, as shown in Table 1. Applying
the complementarity constraint on our modes means augmenting
the weight space Hessian 𝑯𝑤 in our weight computation with our
weight-space complementarity constraint 𝑱𝑤 ∈ R𝑛×𝑝 (𝑑) (𝑑+1) . This
makes mode computation naturally more computationally expensive
for more complicated rigs. The inset shows how changing the number
of rig parameters in a control rig affects how long it takes to compute
10 skinning modes on the elephant mesh.

10 RESULTS

10.1 Rigid Body Augmentation
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Rigid body simulations are
key ingredients in many
video games and virtual re-
ality applications. A rigid
body can also also be inter-
preted as a very simple spe-
cific case of a linear blend
skinning, with only a sin-
gle bone of constant weight
equal to 1 across all the ver-
tices. We exploit this anal-
ogy to augment real-time rigid-body simulations with secondary ef-
fects (Fig. 21 shows screenshots from an interactive bowling game,
where the pins are stylized with secondary effects.)

10.2 Augmenting Mixamo Characters with Secondary
Motion

Animators often design large suites of rig animations, often having to
browse and edit many of these in rapid succession. Adding on to the
tediousness of this process, they also have to foresee how these anima-
tions will look when augmented with secondary motion. Our method
allows a user to browse through any number of rig-animations and im-
mediately observe the secondary secondary dynamics in real-time. We

5m04s

Fig. 22. Augmenting and browsing various Mixamo character animations in
real-time.

demonstrate this for a character downloaded from the Mixamo [2023]
website in Fig. 22.

10.3 Secondary Dynamics for Digital Avatars
Digital avatars are key to expressing personality and style in virtual
environments. We show that our Fast Complementary Dynamics can
be plugged into very simple camera based pose trackersmade available
by mediapipe [Lugaresi et al. 2019] to breath life into these digital
avatars. Fig. 23 demonstrates augmenting human faces tracked by
mediapipe’s Faces solution with secondary motion. Similarly, Fig. 24
augment skeletons tracked by mediapipe’s Pose solution with real-
time secondary motion. In practice the bottleneck of this application
became mediapipe’s own Pose solution, requiring us to separate the
tracker from the dynamics and place them into two separate threads.

6m02s

Fig. 23. Augmenting mediapipe’s face tracking with real-time secondary mo-
tion on digital avatars.

11 LIMITATIONS AND FUTURE WORK
Compared to the original complementary dynamics [Zhang et al.
2020], we assume that the user’s rig is linear. While non-linear rigs
are less common in real-time settings, it would still be interesting to
accommodate them (e.g., [Kavan et al. 2008], perhaps via low-rank
updates to the reduced system matrices in Alg. 2 [Hahn et al. 2012].
Our reduction techniques are in many ways agnostic to the choice
of elastic potential. In future work, we would like to explore beyond
co-rotational models. Our skinning eigenmodes easily facilitate rig-
orthogonality constraints for complementary dynamics; their other
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Fig. 24. Augmenting mediapipe’s posetracking with real-time secondary mo-
tion on digital avatars.

good qualities suggest they could be useful beyond our target appli-
cation, applied to more general elasticity problems (e.g., structural
analysis or inverse design).

We leave comprehensive collision handling as future work. While
rigid-body augmentation provides a drop-in heuristic for collision
effects for relatively stiff or fast moving objects, it would be inter-
esting to explore more accurate methods, perhaps combining our
contributions with cubature techniques [Harmon and Zorin 2013].
For real-time VR avatar, applications we found the bottleneck for qual-
ity lies in the tracking and mapping of user movements to primary
rig controls. Our secondary effects would immediately inherit any
improvements in these active research areas.
We derive skinning eigenmodes by considering distributions of

translations. This sidesteps the issue of determining an origin and
scale associated with each mode. It would be interesting to treat these
as variables (to achieve theoretical optimality over distributions of gen-
eral affine transformations). This appears non-trivial and irreducible
to a generalized eigenvalue problem
We have presented a novel subspace for deformation that is well

suited for augmenting real-time rig animations with secondary, com-
plementary motion. Our computation is well-balanced between fast
small iterations on the CPU and memory-efficient, standard-pipeline
vertex shaders on the GPU. In future work, we are interested in not
just adding features to our elasticity effects, but also considering
complementary dynamics more broadly into domains such as fluid
simulation, electrodynamics, and crowds. We hope that our work also
serves as general recipe for translating complementary dynamics to
real-time scenarios.
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A PROOFS

A.1 A subspace simulation is rotation equivariant if and
only if the subspace is closed under rotations

Consider the minimization of a rotation invariant elastodynamic en-
ergy 𝐸 (𝒖 + 𝒙), where 𝒖, 𝒙 ∈ R3𝑛 . By rotation equivariance we mean
that

∀𝑹 , ∀𝒙 , argmin
𝒖

𝐸 (𝒖 + (𝑹 ⊗ 𝑰 ) 𝒙) = (𝑹 ⊗ 𝑰 ) argmin
𝒗

𝐸 (𝒗 + 𝒙) .

Here and henceforth the domains for 𝑹 and 𝒙 shall be the rotations
SO(3) and the positions R3𝑛 , respectively.

In a full space simulation, the above holds. For a subspace simulation
where 𝒖 = 𝑩𝒛, and Col(𝑩) ⊂ R3𝑛 , the equivalent statement,

∀𝑹 , ∀𝒙 , 𝑩 argmin
𝒛

𝐸 (𝑩𝒛 + (𝑹 ⊗ 𝑰 ) 𝒙) = (𝑹 ⊗ 𝑰 ) 𝑩 argmin
𝒘

𝐸 (𝑩𝒘 + 𝒙) ,

(33)

no longer holds for all subspaces. We shall prove that the above holds
if and only if our subspace is closed under rotations,

∀𝑹 ∈ 𝑆𝑂 (3), ∀ 𝒛 ∈ R𝑚, ∃𝒘 ∈ R𝑚, 𝑩𝒛 = (𝑹 ⊗ 𝑰 ) 𝑩𝒘 . (34)

A.1.1 Forward Proof. Given that our subspace satisfied closure under
rotations (Eq. (34)), we prove that Eq. (33) holds.

Theorem: (34)→ (33). Proof: Consider (without loss of generality)
some rotation 𝑹 and position 𝒙 . Let 𝒛∗ be the minimizer of the left
hand side of Eq. (33):

𝒛∗ = argmin
𝒛

𝐸 (𝑩𝒛 + (𝑹 ⊗ 𝑰 ) 𝒙) (35)

By closure of our subspace under rotations, ∃𝒘∗ , 𝑩𝒛∗ = (𝑹 ⊗ 𝑰 ) 𝑩𝒘∗ .

The minimum energy is thus

𝐸∗ = 𝐸 (𝑩𝒛∗ + (𝑹 ⊗ 𝑰 ) 𝒙) = 𝐸 ((𝑹 ⊗ 𝑰 ) 𝑩𝒘∗ + (𝑹 ⊗ 𝑰 ) 𝒙) = 𝐸 (𝑩𝒘∗ + 𝒙)

where (from left to right) the equalities use that 𝒛∗ is a minimizer, 𝑩
is closed under rotations, and 𝐸 (·) is rotation invariant, respectively.
Consequently,𝒘∗ = argmin𝒘 𝐸 (𝑩𝒘 + 𝒙), which we substitute along
with (35) into (34) to complete the proof. □

A.1.2 Backward Proof. Given our subspace simulation is rotation
equivariant (Eq. (33)), we prove that Eq. (34) holds.
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Lemma.

∀𝑹∗ ∈ SO(3),∀𝒛∗ ∈ R𝑚, (36)

∃𝒙∗ , argmin
𝒛

𝐸 (𝑩𝒛 +
(
𝑹∗ ⊗ 𝑰

)
𝒙∗) = 𝒛∗ . (37)

Proof: Let �̃� be someminimizer of 𝐸 (𝑩𝒛) by construction. To satisfy
the Lemma we choose 𝒙∗ = (𝑹∗ ⊗ 𝑰 )−1 𝑩(�̃� − 𝒛∗), because

argmin
𝒛

𝐸 (𝑩𝒛 +
(
𝑹∗ ⊗ 𝑰

)
𝒙∗) =

argmin
𝒛

𝐸 (𝑩𝒛 +
(
𝑹∗ ⊗ 𝑰

) (
𝑹∗ ⊗ 𝑰

)−1 𝑩(�̃� − 𝒛∗)) = (38)

argmin
𝒛

𝐸 (𝑩(𝒛 + �̃� − 𝒛∗)) .

Thus𝑤 = 𝒛 + �̃�−𝒛∗ minimizes 𝐸 (𝑩𝒘), and so does𝑤 = �̃� (by construc-
tion). Since𝑤 = 𝑤 , then 𝒛 = 𝒛∗ minimizes 𝐸 (𝑩𝒛 + (𝑹∗ ⊗ 𝑰 ) 𝒙∗) □.

Theorem: (33)→ (34). Proof: For any given 𝑹∗, 𝒛∗, we produce𝒘∗
satisfying

𝑩𝒛∗ =
(
𝑹∗ ⊗ 𝑰

)
𝑩𝒘∗ .

Pick a specific 𝑹∗, 𝒛∗. Using the Lemma, we pick 𝒙∗ such that 𝒛∗
minimizes 𝐸 (𝑩𝒛 + (𝑹∗ ⊗ 𝑰 ) 𝒙∗). By the rotation equivariance of our
minimization,

𝑩 argmin
𝒛

𝐸 (𝑩𝒛 +
(
𝑹∗ ⊗ 𝑰

)
𝒙∗) =

(
𝑹∗ ⊗ 𝑰

)
𝑩 argmin

𝒘
𝐸 (𝑩𝒘 + 𝒙∗)

𝑩𝒛∗ =
(
𝑹∗ ⊗ 𝑰

)
𝑩 argmin

𝒘
𝐸 (𝑩𝒘 + 𝒙∗)

=
(
𝑹∗ ⊗ 𝑰

)
𝑩𝒘∗ ,

where we have chosen𝒘∗ = argmin𝒘 𝐸 (𝑩𝒘 + 𝒙∗) . □

B MATRIX DERIVATIONS

B.1 Weight Space Skinning Jacobian Products
The product 𝑱𝑇𝑩𝑙𝑏𝑠 frequently arises in our derivations. Here 𝑱 ∈
R𝑛 (𝑑)×𝑐 can be a generic matrix and 𝑩𝑙𝑏𝑠 ∈ R𝑛 (𝑑)×𝑑 (𝑑+1) (𝑚) is our
Linear Blend Skinning Jacobian matrix, which depends linearly on
some set of weights 𝑾 ∈ R𝑛 (𝑑)×𝑚 . We leverage the relationship
between 𝑩𝑙𝑏𝑠 and 𝑾 to rewrite the entries of the matrix product
𝑱𝑇𝑩𝑙𝑏𝑠 entirely in terms of the weights:

𝑩𝑙𝑏𝑠 = (𝑰𝒅 ⊗ ((1𝑇𝑚 ⊗ [𝑽1𝑛]) ⊙ (𝑾 ⊗ 1𝑇
𝑑+1))︸                                  ︷︷                                  ︸

B

)

We assume the 3D case 𝑑 = 3, and restate the final result 2D. The full
product whose entries we wish to relate linearly to our weights𝑾 is

𝑱𝑇 (𝑰3 ⊗ B) (39)

Separating the mutiplying matrix into its 3 sets of columns:

𝑱𝑇 = [𝑱𝑇𝑥 | 𝑱𝑇𝑦 | 𝑱𝑇𝑧 ] (40)

Expanding the rows of this product:[
𝑱𝑇𝑥B | 𝑱𝑇𝑦B | 𝑱𝑇𝑧 B

]
(41)

We focus on one set of columns 𝑖 ∈ {𝑥,𝑦, 𝑧} at a time:

𝑱𝑇𝑖 B = 𝑱𝑇𝑖 ((1
𝑇
𝑚 ⊗ [𝑿1𝑛]) ⊙ (𝑾 ⊗ 1𝑇4 ))) ∈ R

𝑗×(4)𝑚

𝑱𝑇𝑖 ((1
𝑇
𝑚 ⊗ [𝒙 𝒚 𝒛 1𝑛]) ⊙ ([𝒘1𝒘2 ...𝒘𝑚] ⊗ 1𝑇4 )))

We recall the definition of the Linear Blend Skinning Jacobianwhere
we split

𝑿 = [𝒙 𝒚 𝒛] into its individual columns. Expanding the two Kro-
necker products:

𝑱𝑇𝑖 ( [𝒙 𝒚 𝒛 1𝑛︸  ︷︷  ︸
1

|...| 𝒙 𝒚 𝒛 1𝑛︸  ︷︷  ︸
𝑏

] ⊙ [𝒘1𝒘1𝒘1𝒘1︸      ︷︷      ︸
1

|...|𝒘𝑚𝒘𝑚𝒘𝑚𝒘𝑚︸          ︷︷          ︸
𝑚

])

Distributing the products further:

𝑱𝑇𝑖 [( [𝒙 𝒚 𝒛 1𝑛] ⊙ [𝒘1𝒘1𝒘1𝒘1]︸                            ︷︷                            ︸
1

|...| [𝒙 𝒚 𝒛 1𝑛] ⊙ [𝒘𝑚𝒘𝑚𝒘𝑚𝒘𝑚]︸                               ︷︷                               ︸
𝑚

])

Moving the matrix product inside, and looking at one block 𝑞 ∈
[1, ...𝑚] at a time:

𝑱𝑇𝑖 ( [𝒙 𝒚 𝒛 1𝑛] ⊙ [𝒘𝑞𝒘𝑞𝒘𝑞𝒘𝑞])

= 𝑱𝑇
𝑑
( [𝒙 ⊙𝒘𝑞 |𝒚 ⊙𝒘𝑞 |𝒛 ⊙𝒘𝑞 |1𝑛 ⊙𝒘𝑞])

Rewriting the individual Hadamard products as diagonal matrix multi-
plication where we introduce the capitalized overbar notation �̄� , �̄� , �̄�
to indicate the diagonal matrices whose diagonal entries are 𝒙,𝒚, 𝒛
respectively.

= 𝑱𝑇
𝑑
( [�̄�𝒘𝑞 |�̄�𝒘𝑞 |�̄�𝒘𝑞 |𝒘𝑞])

= [𝑱𝑇
𝑑
�̄�𝒘𝑞 |𝑱𝑇𝑑 �̄�𝒘𝑞 |𝑱

𝑇
𝑑
�̄�𝒘𝑞 |𝑱𝑇𝑑𝒘𝑞]

Applying this for all weights 𝑏:

[𝑱𝑇𝑖 �̄�𝑾 |𝑱𝑇𝑖 �̄�𝑾 |𝑱
𝑇
𝑖 �̄�𝑾 |𝑱

𝑇
𝑖 𝑾 ]

Finally, applying this to all 3 dimensions of 𝑖:

𝑱𝑇𝑩𝑙𝑏𝑠 = [𝑱𝑇𝑥 �̄�𝑾 | 𝑱𝑇𝑥 �̄�𝑾 | 𝑱𝑇𝑥 �̄�𝑾 | 𝑱𝑇𝑥𝑾 ] | ...

𝑱𝑇𝑦 �̄�𝑾 | 𝑱𝑇𝑦 �̄�𝑾 | 𝑱𝑇𝑦 �̄�𝑾 | 𝑱𝑇𝑦𝑾 ] | ...

𝑱𝑇𝑧 �̄�𝑾 | 𝑱𝑇𝑧 �̄�𝑾 | 𝑱𝑇𝑧 �̄�𝑾 | 𝑱𝑇𝑧𝑾 ] (42)

We can derive our weight Skinning Jacobians by rewriting the
entries 𝑩𝑙𝑏𝑠 alone in terms of the weights𝑾 as a special case of the
above result. If we choose 𝑱 to be the identity, and slice out the 3
sets of columns belonging to the identity, we obtain our dimensional
selection matrices 𝑱 = 𝑰 3𝑛 = [𝑷𝑥𝑷𝑦𝑷𝑧]. We can then rewrite :

𝑩𝑙𝑏𝑠 = [𝑷𝑥 �̄�𝑾 | 𝑷𝑥 �̄�𝑾 | 𝑷𝑥 �̄�𝑾 | 𝑷𝑥𝑾 ] | ...
𝑷𝑦�̄�𝑾 | 𝑷𝑦 �̄�𝑾 | 𝑷𝑦 �̄�𝑾 | 𝑷𝑦𝑾 ] | ...
𝑷𝑧�̄�𝑾 | 𝑷𝑧 �̄�𝑾 | 𝑷𝑧 �̄�𝑾 | 𝑷𝑧𝑾 ] (43)

Where we identify 12 weight-Space Skinning Jacobian matrices:

𝑨1,1 = 𝑷𝒙 �̄� 𝑨1,2 = 𝑷𝒙 �̄� 𝑨1,3 = 𝑷𝒙 �̄� 𝑨1,4 = 𝑷𝒙
𝑨2,1 = 𝑷𝒚�̄� 𝑨2,2 = 𝑷𝒚 �̄� 𝑨2,3 = 𝑷𝒚 �̄� 𝑨2,4 = 𝑷𝒚
𝑨3,1 = 𝑷𝒛�̄� 𝑨3,2 = 𝑷𝒛 �̄� 𝑨3,3 = 𝑷𝒛 �̄� 𝑨3,4 = 𝑷𝒛

(44)

We can derive the 2D case of these matrices by following the equiv-
alent steps as above, but with one less set of columns for 𝑰 and one
less column in our rest positions 𝑿 :

𝑨1,1 = 𝑷𝒙 �̄� 𝑨1,2 = 𝑷𝒙 �̄� 𝑨1,3 = 𝑷𝒙
𝑨2,1 = 𝑷𝒚�̄� 𝑨2,2 = 𝑷𝒚 �̄� 𝑨2,3 = 𝑷𝒚

(45)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2023.



Fast Complementary Dynamics via Skinning Eigenmodes • 19

C HYPER-REDUCED LOCAL GLOBAL SOLVERS FOR
DIFFERENT ELASTIC ENERGIES

C.1 Hyper-Reduced ARAP
The full space ARAP elastic energy can efficiently be written as:

𝐸𝐴𝑅𝐴𝑃 (𝒙) =
𝑘∑
𝑡

𝑚𝑡 𝜇𝑡 | |𝑭 𝑡 − 𝑹𝑡 | |2𝐹 , (46)

where 𝑭 𝑡 is our per-tet deformation gradient (a linear function of our
degrees of freedom) and 𝑹𝑡 is a best-fit rotation on the deformation
gradient, a non-linear function of our degrees of freedom. Expanding
the square Frobemius norm, we can identify a quadratic component
and non-linear component to our energy:

𝐸𝐴𝑅𝐴𝑃 (𝒙) =
𝑘∑
𝑡

𝑚𝑡 𝜇𝑡 𝑡𝑟 (𝑭𝑇𝑡 𝑭 𝑡 )︸                 ︷︷                 ︸
Ψ

+
𝑘∑
𝑡

−2𝑚𝑡 𝜇𝑡 𝑡𝑟 (𝑭𝑇𝑡 𝑹𝑡 )︸                     ︷︷                     ︸
Φ

= Ψ(𝒖) + Φ(𝒖) .
We can rewrite this energy in its hyper-reduced form by recalling
𝒙 = 𝑩𝒛 and approximatingΦ ≈ Φ̃. We expand our clustered non-linear
component to the elastic energy:

𝐸𝐴𝑅𝐴𝑃 (𝒛) = Ψ(𝒛) +
𝑟∑
𝑐

−2𝑚𝑐𝜇𝑐𝑡𝑟 (𝑭𝑇𝑐 𝑹𝑐 )︸                     ︷︷                     ︸
Φ̃

= Ψ(𝒛) + Φ̃(𝒛) . (47)

We then expose the source of the non-linearities, the best fit per-cluster
rotation matrices, as auxillary degrees of freedom.

𝐸𝐴𝑅𝐴𝑃 (𝒛, �̃�) = Ψ(𝒛) + Φ̃(𝒛, �̃�) . (48)

The hyper reduced local step becomes:

�̃� = argmin
�̃�

Φ̃(𝒛, �̃�)

= argmin
�̃�

𝑘∑
𝑐

𝑚𝑐𝜇𝑐𝑡𝑟 (𝑭𝑇𝑐 𝑹𝑐 )

= PolarSVD(𝑭 )
which is found through polar decomposition of the per-cluster defor-
mation gradient 𝑭 , obtainable via a reshape operation of 𝒇 = 𝒙𝑇𝑲𝑇 𝑮 .
The hyper reduced global step minimizes

𝒛 = argmin
𝒛

Ψ(𝒛) + Φ̃(𝒛, �̃�)

= argmin
𝒛

𝒛𝑇𝑩𝑇𝑲𝑇U𝑽𝑲𝑩𝒛 + Φ̃(𝒛, �̃�)

= argmin
𝒛

𝒛𝑇𝑩𝑇 𝑳𝑩𝒛 + Φ̃(𝒛, �̃�),

wherewe introduce the heterogeneous Laplacianmatrix 𝑳 = 𝑲𝑇U𝑽𝑲
for brevity. Here, 𝑲 ∈ R9𝑘×3𝑛 is the vector gradient operator over our
mesh, mapping deformed coordinates to per-tet deformation gradients,
𝑽 ∈ R9𝑘×9𝑘 is a diagonal matrix of tetrahedron volumes,U = (𝑰 9 ⊗
diag(𝝁))) ∈ R9𝑘×9𝑘 is a diagonal containing first lamé parameter 𝜇𝑡
for each tet 𝑡 along its diagonal.

For ARAP, the global-step optimization is exactly quadratic in the
degrees of freedom 𝒛 (because Φ̃(𝒛, �̃�) is linear in 𝒛), and can directly
be found every local-global iteration via a single prefactorizable sys-
tem solve:

0 = 2𝑩𝑇 𝑳𝑩𝒛 + 𝜕𝒙

𝜕𝒛

𝜕𝒇

𝜕𝒙

𝜕𝒇

𝜕𝒇

𝜕Φ̃

𝜕𝒇

= 𝑩𝑇 𝑳𝑩𝒛 + 1
2
𝑩𝑇𝑲𝑇 𝑮

𝜕Φ̃

𝜕𝒇

𝑩𝑇 𝑳𝑩𝒛 = −1
2
𝑩𝑇𝑲𝑇 𝑮

𝜕Φ̃

𝜕𝒇
.

Above, we made use of the linear relationships 𝒇 = 𝑲𝒙 , 𝒙 = 𝑩𝒛, and

𝒇 = 𝑮9𝒇 to derive the chained partial derivatives 𝜕𝒙𝜕𝒛 ,
𝜕𝒇
𝜕𝒙 ,

𝜕 ˜𝒇
𝜕𝒇 . The last

unknown 𝜕Φ̃
𝜕 ˜𝒇

changes each local-global iteration and can efficiently
be computed during the local step when looping through each cluster:

𝜕Φ̃

𝜕𝒇
= vec(


.
.
.

− 𝜕

𝜕𝑭𝑐

𝑚𝑐𝜇𝑐𝑡𝑟 (𝑭
𝑇
𝑐 �̃�𝑐 )

.

.

.


) = vec(


.
.
.

−𝑚𝑐𝜇𝑐𝑹𝑐
.
.
.

)

vec
©«


.

.

.

−𝑚𝑐𝜇𝑐𝑹𝑐
.
.
.


ª®®®®¬

(49)

C.2 Hyper-Reduced Co-Rotational Elasticity
A discrete linear co-rotational elastic energy is defined as

𝐸𝐶𝑜𝑅𝑜𝑡 (𝒖) =
𝑘∑
𝑡

𝑚𝑡 𝜇𝑡 | |𝑭 𝑡 − 𝑹𝑡 | |2𝐹 +𝑚𝑡
𝜆𝑡

2
𝑡𝑟2 (𝑹𝑇𝑡 𝑭 𝑡 − 𝑰 )

Where 𝑭 𝑡 is our per-tet deformation gradient (a linear function of our
degrees of freedom) and 𝑹𝑡 is a best-fit rotation on the deformation
gradient, a non-linear function of our degrees of freedom. Expanding
the square Frobemius norm, we can identify a quadratic component
and non-linear component to our energy:

𝐸𝐶𝑜𝑅𝑜𝑡 (𝒖) =
𝑘∑
𝑡

𝑚𝑡 𝜇𝑡 𝑡𝑟 (𝑭𝑇𝑡 𝑭 𝑡 )︸                 ︷︷                 ︸
Ψ

+
𝑘∑
𝑡

−2𝑚𝑡 𝜇𝑡 𝑡𝑟 (𝑭𝑇𝑡 𝑹𝑡 ) +𝑚𝑡
𝜆𝑡

2
𝑡𝑟2 (𝑹𝑇𝑡 𝑭 𝑡 − 𝑰 )︸                                                     ︷︷                                                     ︸

Φ

= Ψ(𝒖) + Φ(𝒖) .

We can rewrite this energy in its hyper-reduced form by recalling
𝒙 = 𝑩𝒛 and approximatingΦ ≈ Φ̃. We expand our clustered non-linear
component to the elastic energy:

𝐸𝐶𝑜𝑅𝑜𝑡 (𝒛) = Ψ(𝒛) +
C∑
𝑐

−2𝑚𝑐𝜇𝑐𝑡𝑟 (𝑭𝑇𝑐 𝑹𝑐 ) +𝑚𝑐
𝜆𝑐

2
𝑡𝑟2 (𝑹𝑇𝑐 𝑭𝑐 − 𝑰 )︸                                                      ︷︷                                                      ︸

Φ̃

= Ψ(𝒛) + Φ̃(𝒛).
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We then expose the source of the non-linearities, the best fit per-
cluster rotation matrices, as auxillary degrees of freedom.

𝐸𝐶𝑜𝑅𝑜𝑡 (𝒛, �̃�) = Ψ(𝒛) + Φ̃(𝒛, �̃�) .

The hyper reduced local step becomes:

�̃� = argmin
�̃�

Φ̃(𝒛, �̃�)

= argmin
�̃�

C∑
𝑐

𝑚𝑐𝜇𝑐𝑡𝑟 (𝑭𝑇𝑐 𝑹𝑐 ) +𝑚𝑐
𝜆𝑐

2
𝑡𝑟2 (𝑹𝑇𝑐 𝑭𝑐 − 𝑰 )

= PolarSVD(𝑭 )

which is found through polar decomposition of the per-cluster defor-
mation gradient 𝑭 , obtainable via a reshape operation of 𝒇 = 𝒙𝑇𝑲𝑇 𝑮
.
The hyper reduced global step minimizes:

𝒛 = argmin
𝒛

Ψ(𝒛) + Φ̃(𝒛, �̃�)

= argmin
𝒛

𝒛𝑇𝑩𝑇𝑲𝑇U𝑽𝑲𝑩𝒛 + Φ̃(𝒛, �̃�)

= argmin
𝒛

𝒛𝑇𝑩𝑇 𝑳𝑩𝒛 + Φ̃(𝒛, �̃�)

wherewe introduce the heterogeneous Laplacianmatrix 𝑳 = 𝑲𝑇U𝑽𝑲
for brevity. Here, 𝑲 ∈ R9𝑘×3𝑛 is the vector gradient operator over our
mesh, mapping deformed coordinates to per-tet deformation gradients,
𝑽 ∈ R9𝑘×9𝑘 is a diagonal matrix of tetrahedron volumes,U = (𝑰 9 ⊗
diag(𝝁)) ∈ R9𝑘×9𝑘 is a diagonal containing first lamé parameter 𝜇𝑡
for each tet 𝑡 along its diagonal.
The above optimization can be performed without recomputing

full space second order terms with an iterative Quasi-Newton method,
where each timestep we solve for the search direction 𝒛 𝑗+1 = 𝒛 𝑗 +𝛼𝑑𝒛:

0 = 2𝑩𝑇 𝑳𝑩𝑑𝒛 + 2𝑩𝑇 𝑳𝑩𝒛 𝑗 +
𝜕𝒇

𝜕𝒛

𝜕𝒇

𝜕𝒇

𝜕Φ̃

𝜕𝒇

= 𝑩𝑇 𝑳𝑩𝑑𝒛 + 𝑩𝑇 𝑳𝑩𝒛 𝑗 +
1
2
𝑩𝑇𝑲𝑇 𝑮

𝜕Φ̃

𝜕𝒇

𝑩𝑇 𝑳𝑩𝑑𝒛 = −𝑩𝑇 𝑳𝑩𝒛 𝑗 −
1
2
𝑩𝑇𝑲𝑇 𝑮

𝜕Φ̃

𝜕𝒇

where we have ignored any of the second order terms buried 𝜕Φ̃
𝜕 ˜𝒇

,
which would normally incur a full space update in the system matrix
every iteration. Because the search direction is no longer perfect, we
make use of a back-tracking line search to figure out the step size we
take along that search direction 𝒛 𝑗+1 = 𝒛 𝑗 + 𝛼𝑑𝒛.

Above, we made use of the linear relationships 𝒇 = 𝑲𝒙 , 𝒙 = 𝑩𝒛, and

𝒇 = 𝑮9𝒇 to derive the chained partial derivatives 𝜕𝒙𝜕𝒛 ,
𝜕𝒇
𝜕𝒙 ,

𝜕 ˜𝒇
𝜕𝒇 . The last

unknown 𝜕Φ̃
𝜕 ˜𝒇

changes each local-global iteration and can efficiently
be computed during the local step when looping through each cluster:

𝜕Φ̃

𝜕𝒇
= vec

©«


.

.

.
𝜕

𝜕𝑭𝑐

−𝑚𝑐𝜇𝑐𝑡𝑟 (𝑭
𝑇
𝑐 �̃�𝑐 ) +𝑚𝑐

𝜆𝑐
2 𝑡𝑟2 (𝑹𝑇𝑐 𝑭𝑐 − 𝑰 )

.

.

.


ª®®®®¬

= vec
©«


.

.

.

−𝑚𝑐𝜇𝑐𝑹𝑐 +𝑚𝑐 𝜆𝑐2 𝑹𝑐𝑡𝑟 (𝑹𝑇𝑐 𝑭𝑐 − 𝑰 )
.
.
.


ª®®®®¬

(50)

C.3 Adding Hyper-Reduced Inertia
To add dynamics to our simulation, we add a Kinetic energy term
to the elastic energies mentioned in the previous section. We em-
ploy a Backward Euler [Baraff and Witkin 1998; Liu et al. 2013] time
integrator:

𝐸𝐾𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2ℎ2 (𝒙 −𝒚)
𝑇𝑴 (𝒙 −𝒚)

Where 𝒚 represents position history 𝒙ℎ𝑖𝑠𝑡 = 2𝒙𝑐𝑢𝑟𝑟 − 𝒙𝑝𝑟𝑒𝑣 and ℎ is
the length of the timestep chosen.
We show we can represent this energy fully in our reduced space,

without having to go to the full space. First we directly rewrite the final
displacement in terms of our reduced complementary displacement,
and our rigged possition. 𝒙 = 𝑩𝒛 + 𝑱𝒑

𝐸𝐾𝑖𝑛𝑒𝑡𝑖𝑐 (𝒛,𝒑) =
1

2ℎ2 (𝑩𝒛 + 𝑱𝒑 − 𝒙ℎ𝑖𝑠𝑡 )
𝑇𝑴 (𝑩𝒛 + 𝑱𝒑 − 𝒙ℎ𝑖𝑠𝑡 )

Expanding this out and only keeping the terms that depend on our
degrees of freedom 𝒛 leads to:

=
1

2ℎ2 𝒛
𝑇𝑩𝑇𝑴𝑩𝒛 + 1

ℎ2 (𝒛
𝑇𝑩𝑇𝑴𝑱𝒑 − 𝒛𝑇𝑩𝑇𝑴𝒙ℎ𝑖𝑠𝑡 ) (51)

Writing 𝒙ℎ𝑖𝑠𝑡 in terms of our subspace and control rig:

𝒚 = 𝑩𝒛ℎ𝑖𝑠𝑡 + 𝑱𝒑ℎ𝑖𝑠𝑡
Where 𝒛ℎ𝑖𝑠𝑡 = 2𝒛𝑐𝑢𝑟𝑟 − 𝒛𝑝𝑟𝑒𝑣 and 𝒑ℎ𝑖𝑠𝑡 = 2𝒑𝑐𝑢𝑟𝑟 − 𝒑𝑝𝑟𝑒𝑣 are

our reduced space complementary and rig displacement histories
respectively.

Plugging the above into our reduced energy so far:

=
1

2ℎ2 𝒛
𝑇𝑩𝑇𝑴𝑩𝒛 + 1

ℎ2 𝒛
𝑇𝑩𝑇𝑴𝑱 (𝒑 − 𝒑ℎ𝑖𝑠𝑡 ) −

1
ℎ2 𝒛

𝑇𝑩𝑇𝑴𝑩𝒛ℎ𝑖𝑠𝑡

(52)

Adding this kinetic energy to the prior elastic energies, then mini-
mizing would simply mean adding 1

ℎ2 𝑩
𝑇𝑴𝑩 to the quadratic terms,

and then 𝒇 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 1
ℎ2 𝒛

𝑇𝑩𝑇𝑴𝑱 (𝒑 −𝒑ℎ𝑖𝑠𝑡 ) − 1
ℎ2 𝒛

𝑇𝑩𝑇𝑴𝑩𝒛ℎ𝑖𝑠𝑡 to the
linear terms, as shown in Algorithm 2.
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