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Fig. 1. In this paper, we further generalize the winding number to point clouds and propose a hierarchical algorithm for fast evaluation (up to 1000× speedup).
This enables e�icient answers to inside-outside queries for a wider class of shape representations (top) during a variety of tasks (bo�om).

Inside-outside determination is a basic building block for higher-level geom-

etry processing operations. Generalized winding numbers provide a robust

answer for triangle meshes, regardless of defects such as self-intersections,

holes or degeneracies. In this paper, we further generalize the winding num-

ber to point clouds. Previous methods for evaluating the winding number are
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slow for completely disconnected surfaces, such as triangle soups or–in the

extreme case– point clouds. We propose a tree-based algorithm to reduce the

asymptotic complexity of generalized winding number computation, while

closely approximating the exact value. Armed with a fast evaluation, we

demonstrate the winding number in a variety of new applications: voxeliza-

tion, signing distances, generating 3D printer paths, defect-tolerant mesh

booleans and point set surfaces.
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1 INTRODUCTION
“Well, are you in or are you out?”

— Jodi Kramer, Dazed and Confused (1993)

Determining whether a point is inside or outside of a given shape

is one of the most basic geometric questions. Inside-outside seg-

mentation is crucial for: signing distance �elds, tetrahedralizing

or voxelizing volumes, representing smooth surfaces from point

clouds, generating 3D printer path instructions, and surface repair.

For analytic shapes and su�ciently clean discrete surface meshes,

we can answer the question con�dently and quickly. Unfortunately,

most surface representations found in the wild are either completely

unstructured (e.g., point clouds) or riddled with defects such as open

boundaries, duplicated or degenerate geometry, self-intersections

and non-manifold combinatorics.

The classic winding number determines howmany times a planar

curve encircles a query point (see, e.g., [Meister 1769]). Generalized

winding numbers [Jacobson et al. 2013] extend this concept to ori-

ented triangle meshes su�ering from the aforementioned defects.

For oriented triangle meshes, this is computed as a sum of signed

solid angles Ωt (q) of each triangle t subtended at a query point q:

wS (q) =
1

4π

∑
t ∈triangles

Ωt (q). (1)

For closed watertight meshes, this perfectly reproduces the indicator

function (1 inside, 0 outside). For overlapping regions, the winding

number measures how many times the region is inside the surface.

For holey or non-manifold surfaces, the winding number produces

a smoothly varying function revealing a fractional measure of insid-

eness. While simple and robust, a direct evaluation of this sum: 1) is

slow, requiring O(nm) computation for n queries and anm-triangle

mesh; and 2) only applies to triangle meshes.

For large geometries and interactive applications, inside-outside

queries need to be e�cient. Existing optimizations for winding num-

ber computation either merely use parallelization or make heavy

assumptions about mesh connectivity. For large, incoherent triangle

Triangle soup from partial scan Our reconstruction

Fig. 2. This soupy scan of an amputee’s leg has a veritable archipelago
of dangling components, a major challenge for automatic mesh clean up
methods. Details of the scan are maintained, while missing regions are filled
in with smooth minimal surfaces.

3D printed point cloudinput point cloud

Fig. 3. To 3D print the shape represented by the winding field, we convert
it to a stack of 2D polygons, which are then filled with toolpaths by the
3D printer so�ware. We extract the polygons using "marching squares"
[Lorensen and Cline 1987]) again with a continuation approach. The 3D
winding number is used for field evaluations – the 2D winding number
along the slice is not the same for open geometry.

“soups” often encountered during scanning or modeling, existing

methods are too slow.

Meanwhile, determining the smooth surface interpolating ori-

ented point clouds is equivalent to extracting the boundary between

what the points classify as inside or outside. Most existing point

set surface methods are based on grid-dependent discretizations

or custom tailored radial basis functions. These methods focus on

level-set extraction, but knowing the answer to the inside-outside

question has important applications away from the level-set (e.g.,

for signed distances, voxelization, solid 3D printing, etc.).

In this paper, we propose a fast method for computing generalized

winding numbers on arbitrary triangle soups and point clouds. We

begin by deriving a de�nition of the winding number for oriented

point clouds. This directly enables a novel point set surface repre-

sentation from the sum of winding number contributions from each

point. Our function exactly interpolates a cloud of oriented points

— in contrast to smooth surface approximation functions for noisy

points. We then asymptotically improve the performance of this

sum with a tree-based algorithm for computing error-controlled

approximations of far away points.

Analytically integrating our de�nition for points leads to the

familiar generalized winding number for triangles. By applying

the same integration to our approximations, we generalize our fast

evaluation algorithm to triangle soups as well.

We show evidence of the performance and approximation accu-

racy of our method on a large benchmark, where we achieve up to

1000× speed-up for large triangle soups. We test our method in a

variety of applications including: point set surfaces, voxelization,

boolean operations on triangle soups, signing distance �elds, and

mesh cleanup. For an example of mesh cleanup see Fig. 2.

Quickly and robustly answering the inside-outside question al-

lows raw point clouds and triangle soups to travel deeper into the

geometry processing pipeline, avoiding lossy representation con-

versions. As a prototypical example, we show direct 3D printing of

point clouds (see Fig. 3).

2 BACKGROUND
The generalized winding number in Equation (2) was introduced

by Jacobson et al. [2013] to robustly segment inside from outside
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for triangle meshes. Acknowledging that a direct summation is too

slow, they propose a divide and conquer algorithm based on cutting

the mesh into connected components and computing a direct sum

on the scale of the component boundaries. Though this method

achieves sub-linear performance for most meshes, the precompu-

tation is involved and overhead during evaluation is much higher

than our method: we show up to 1000× speed-ups over this method.

Meanwhile, in the worst case, triangle soups can have so many

boundaries that their divide and conquer method degenerates into

the slow, direct sum. Our approximation ignores mesh connectivity,

which enables it to achieve O(logm) amortized performance. The

winding number for triangle meshes has been used in many contexts

since its introduction, all of which bene�t from improved e�ciency.

Applications of the winding number. In this paper, we highlight

a number of novel applications of the winding number since its

introduction. Others in the literature have also found winding num-

bers useful. Dionne et al. [2014] use winding numbers to create

voxelizations of triangle meshes; they use a ray stabbing heuristic

as an initial guess and resort to direct winding number computation

for low con�dence voxels, citing poor performance as prohibiting

its use everywhere (see Fig. 4). Autodesk’s Maya software uses this

winding number-based voxelization for computing automatic skin-

ning weights, where faster computation would be “extremely useful”

[de Lasa 2018]. The direct sum in Equation (2) is straightforward

to parallelize (e.g., using the GPU [Dionne and de Lasa 2013]) but

doing so does not change the asymptotic performance. Our fast and

equally parallelizeable approximation does.

Enormous datasets of 3D shapes such as ShapeNet [Chang et al.

2015] or Thingi10k [Zhou and Jacobson 2016] present tantalizing

opportunities for machine learning. Generalized winding numbers

are already used to convert between triangle soup representations

to signed voxel grids for generalized adversarial network training

and shape generation [Jian and Marcus 2017]. Our method provides

faster winding number computation, potentially unlocking training

on larger datasets at higher resolutions. With our uni�ed de�nition,

triangle soups and point clouds could possibly be homogenized for

training purposes. Andrews [2013] advocates for the use of winding

numbers to post-process meshes during user-guided inverse 3D

modeling. Similarly, Le & Deng [2017] use winding numbers for

mesh repair on automatically generated coarse cages for animation

and simulation. Ichim et al. [2017] use winding numbers to compute

tetrahedral meshes robustly for anatomical simulations of faces.

2.1 Related Works
The work of Jacobson et al. [2013] includes a rich review of literature

related to inside-outside segmentation for triangle meshes (e.g.,

[Murali and Funkhouser 1997; Nooruddin and Turk 2003; Zhou

et al. 2008]). We refer to them for a more comprehensive review.

Here we focus on contemporary works as well as those related to

our methodology for fast approximation and our point set surface

representation.

Boundary Element Method. The generalized winding number def-

inition is equivalent to solving the Laplace equation (∆u = 0) using

the boundary element method with jump boundary conditions (i.e.,

mesh with boundaries ray stabbing fast winding number

Fig. 4. A common approximation of the winding number is to shoot a
random ray and count signed intersections (middle). For triangle soups
(le�), this leads to floating misclassified voxels. Our fast evaluation of the
winding number is also an approximation, but with controlled error: no
voxels are misclassified (right).

integrating double layer potentials with constant density) [Evans

1997]. Orzan et al. [2008] di�usion curves also solve a Laplace equa-

tion, where boundary element method can be employed [Ilbery et al.

2013; Sun et al. 2014, 2012; van de Gronde 2010]. Di�usion curve

boundary conditions di�er from the winding number’s, making it

useful for blending colors, but not for inside-outside segmentation.

Wang et al. [2013] parameterize the space exterior to a given solid us-
ing the same boundary element method formulation of the Laplace

equation as our method, though again with di�erent boundary con-

ditions producing a di�erent solution with di�erent appropriate

applications. Da et al. [2016] employ boundary element method for

liquid simulation. Zhang et al. [2014] use fast summation over parti-

cle potentials for �uid simulation, and brie�y mention using their

formulation for Poisson surface reconstruction. Da et al. use direct

summation and Zhang et al. introduce a fast summation similar to

ours, both forgoing “full Fast Multipole Method” (FMM) [Greengard

and Rokhlin 1997] due to overhead and complexity. Our experiments

with FMM lead to a similar conclusion (common in the literature

[Blelloch and Narlikar 1994]). We opt for a more straightforward

tree-algorithm and show applications to inside-outside problems

for triangle soups and point clouds.

Point Set Surfaces. There are compelling reasons to represent
shapes as point clouds [Alexa et al. 2001; Amenta and Kil 2004].

Our method can be used to compute the winding number for point

clouds as easily as it can for triangle surfaces. This frees up practi-

tioners to use the best surface representation for a given application,

or even mix triangles and points. Just as the introduction of the

winding number function in [Jacobson et al. 2013] did not seek to

smooth or change input triangle meshes, we do not change the sur-

face: instead, we simply answer whether a query point is inside or

outside. The winding number represents a surface as a discontinuity,

the de�nition for triangle soups maintains this property and so does

our de�nition for points. Calderon et al. [2014] de�ne morphological

operations for Moving Least Squares point set surfaces, citing gener-

alized winding numbers as a possible way to improve inside-outside

classi�cation. We show signed distance �elds and o�set surfaces

for point sets, indicating that this is indeed possible. Sanchez et al.

[2012] losslessly convert triangle meshes to a distance �eld that

is signed using angle-weighted pseudonormals [Baerentzen and

Aanaes 2005]. This requires not just a closed, watertight mesh but
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also good mesh-quality for numerically trustworthy normal com-

putation. Fryazinov et al. 2011 [2011] convert triangle meshes to

signed distance �elds using BSP-trees. In contrast, we unify triangle

meshes and implicits for point sets through a consistent de�nition

of their winding numbers.

Point set surfaces are closely related to noisy point cloud surface

reconstruction, though with a di�erent objective. State-of-the-art

methods [Boltcheva and Lévy 2017; Fuhrmann and Goesele 2014;

Kazhdan and Hoppe 2013; Mostegel et al. 2017] are robust to noise,

scale, sampling density diversity, and missing data. While our dipole

function is similar in shape to the directional derivative of a Gaussian

used by others [Fuhrmann and Goesele 2014; Zagorchev and Gosh-

tasby 2012], that function is non-singular and thus non-interpolating.

Seversky and Yin [2012] use an inside-outside segmentation for their

surface reconstruction. They create a coarse approximation to the

surface, then apply ray stabbing to approximate both a parity map

for inside-outside, as well as a con�dence map using unsigned solid

angle. Our method avoids ray stabbing, and thresholds the wind-

ing number for surface extraction, rather than using space carving.

Employing a tree-algorithm similar to ours, Carr et al. [2001] ex-

tract a surface from a point cloud by using radial basis functions to

approximate a signed distance function. To break symmetry, this

and other methods create extra “o�set points” near input points

along their normal directions [Ohtake et al. 2003, 2004]. Points and

their normal o�sets are sometimes referred to as “dipoles” in the

surface reconstruction literature [Shalom et al. 2010] In our paper,

we use “dipole” to refer to a single oriented point: we do not use

o�set points, nor inherit their ambiguities and di�culties (see [Shen

et al. 2004]).

Connection to Poisson Surface Reconstruction. Kazhdan et al. [2006]
propose solving a Laplace equation with jump boundary conditions

enforced with a soft constraint, e�ectively blurring the boundary

conditions during discretization, resulting in a discrete Poisson

equation (∆u = f ). Stepping away from the particular discretiza-

tion, solver employed, or soft constraints, the Poisson surface re-

construction problem is equivalent to the winding number. Both

seek solutions to the Laplace equation with a jump of ±1 across

the surface, reproducing the indicator function for solid shapes and

more generally the winding number function for overlapping or

surfaces with boundaries. We do not blur our input data or bound-

ary conditions and formulate our point-based winding number in

the smooth setting. Consequently, we do not need to solve a sys-

tem of linear equations to recover the reconstructed surface, just

a simple summation which we then accelerate. The linear system

solution of [Kazhdan et al. 2006] is only known up to a constant

shift; later, Kazhdan et al. [2013] pull this isovalue toward zero by

adding additional soft constraints, incurring another parameter. The

winding number has an exact value of one inside a solid shape and

zero outside (e.g., in the limit of point sampling) and the surface

neatly follows the
1/2-isovalue. Our de�nition of the winding num-

ber for points is consistent with this and – armed with local area

estimations per point – extracting along the
1/2-isovalue accurately

identi�es the surface.

Contemporary methods to Poisson surface reconstruction have

focused on the di�culties of extracting the isosurface of an indicator

Point cloud Our method’s 
areas

Ground truth 
areas

Uniform
areas

Fig. 5. The area term is crucial to our method. We show the results from
point set surfaces (le�) using our estimated areas (center-le�) the ground-
truth area (center-right) and an evenly-distributed area (right).

function [Calakli and Taubin 2011; Lu et al. 2017]. Lu et al. formu-

late a regularized kernel similar to ours and use the fast multipole

method for fast summation. However, the regularization introduces

a parameter and unnecessary blurring. Ourwinding number also has

a sharp gradient near the extracted surface, but using root �nding

during polygonization alleviates mesh extraction concerns.

3 METHOD
The input to our method is either: a set of m oriented points in

R3, represented as a list of positions {p1, p2, . . . , pm } with corre-

sponding unit normal vectors {n̂1, n̂2, . . . , n̂m } or a set of m ori-

ented triangles, e.g., represented as a list of vertex position triplets

{{v11, v12, v13}, . . . , {vm1, vm2, vm3}}, fromwhich triangle normals

may be readily computed. The output of our method is a function

w̃ : R3 → R that quickly approximates the winding number func-

tion w : R3 → R of the input set. While the winding number for

oriented triangles was de�ned by Jacobson et al. [2013], we �rst

must de�ne what we mean by the winding number function for a

set of oriented points.

3.1 Point Clouds
Intuitively, the winding number of a continuous surface S evaluated

at a query point q ∈ R3 is the sum of signed solid angles subtended

by small surface patches. For meshes, patches correspond to trian-

gles and the signed solid angle formula is easily computed via the

inverse tangent function (atan2) [van Oosterom and Strackee 1983].

For a smooth surface, patches will be curved. Considering the limit

of shrinking patches to points, we arrive at the de�nition of the

winding number as an integral of the di�erential solid angle dΩ(q)
subtended at q:

wS (q) =
1

4π

∫
S
dΩ(q). (2)

As angles and solid angles are translation invariant, so is the winding

number function. We can shift our coordinate system so that the

query point q lies at the origin, where the di�erential solid angle

dΩ is the di�erential signed surface area of the surface projected

onto the unit sphere:

wS (q) = wS−q(0) =
∫
S−q

x · n̂
4π ‖x‖3

dx =

∫
S

(x − q) · n̂
4π ‖x − q‖3

dx , (3)

where x is a point on the surface with outward facing unit normal

vector n̂.
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The integrand (x − q) · n̂/(4π ‖x − q‖3) is commonly found in

boundary element method and partial di�erential equation litera-

ture, as it is the normal derivative of the Green’s function G(q, x) =
−1/(4π ‖x − q‖) of the Laplace equation in R3 [Evans 1997, pp. 37]:

(x − q) · n̂
4π ‖x − q‖3

= ∇

(
−1

4π ‖x − q‖

)
· n̂ C Gn̂(q, x) (4)

This function is harmonic (∆Gn̂(q, x) = 0) away from q. Because har-
monic functions are closed under summation, the winding number

function of a surface is harmonic away from the surface, whether

the surface is triangulated [Jacobson et al. 2013] or smooth [Narain

2013]. In electrostatics, Gn̂(q, x) appears as the electric potential

induced by a dipole (two oppositely charged points close together).

If the input oriented points lie on a – perhaps unknown – surface,

then we can use them to approximate the integral in Equation (3)

as a discrete summation akin to single-point quadrature:

wS (q) =
∫
S

(x − q) · n̂
4π ‖x − q‖3

dx ≈
m∑
i=1

ai
(pi − q) · n̂i
4π ‖pi − q‖3

C w(q), (5)

where ai is the geodesic Voronoi area of the point pi on the

surface S . We have thus arrived at a de�nition of the winding num-

ber function w : R3 → R for a cloud ofm oriented points as the

area-weighted sum of dipole contributions located at each point

in the cloud. At �rst glance, the ai coe�cients appear to be tun-

able “weighting parameters”, however they actually have de�nitive

meaning and physical units of surface area. They are not arbitrary

parameters that might need tuning (in contrast to parameters of

[Carr et al. 2001; Fuhrmann and Goesele 2014; Kazhdan et al. 2006;

Kazhdan and Hoppe 2013; Shen et al. 2004]). Assuming su�cient

regularity during re�nement, this approximation will converge to

the exact winding number for the smooth surface.

The area ai associated to each point at pi may be known due

to the particular point-cloud acquisition process [Fuhrmann and

Goesele 2014]. Otherwise, they can be approximated using any num-

ber of methods in the literature (e.g., [Belkin et al. 2009]). In our

examples, we project each point and its k-nearest neighbors (�lter-
ing out those with opposite normals) onto the best-�t plane, and

compute that point’s associated 2D Voronoi area using Triangle

[Shewchuk 1996]. Our results are insensitive to the exact value of

k . We use k = 20, matching the general range used in point cloud

Laplace/mass matrix literature. Accounting for Gaussian curvature

using a quadratic �t [Cazals and Pouget 2003] should improve ac-

curacy, but we leave this as an incremental improvement as our

method is not too sensitive to area accuracy (see Fig. 5).

For unoriented point clouds we can also use the plane to de�ne

normals ni (up to sign, [Berger et al. 2017]).

3.2 Fast approximation
Most applications require evaluating the winding number at a large

number of query points. Evaluatingw via direct summation over the

m dipoles for n queries would result in O(nm) complexity. We now

describe a fast approximation based on the observation that while

dipoles have large local in�uence they �atten out quickly (1/r2) far
away.

Consider the winding number �eld of a cluster ofm points (see

Fig. 6). The �eld is locally complex, but zooming out the �eld looks

Winding number of 20 points Single representative

Log of absolute value

Fig. 6. A cluster of 20 dipoles has an intricate winding number field nearby
(le�), but far away their function is quite tame (middle) and well approxi-
mated by a single, stronger dipole (right).

like a single, more heavily weighted, dipole. For a far away query

point, rather than computing the contribution of all dipoles (O(m)
computation), we can compute the contribution of a single pre-

constructed representative dipole with appropriate orientation and

area (O(1) computation).

w(q) =
m∑
i=1

ai
(pi − q) · n̂i
4π ‖pi − q‖3

≈
(p̃ − q) · ñ
4π ‖p̃ − q‖3

C w̃(q) (6)

ñ =
m∑
i=1

ai n̂i , p̃ =
∑m
i=1 aipi∑m
i=1 ai

, (7)

where ñ, and p̃ are the (non-unit) total area-weighted normal and

area-weighted average position, respectively. The formula for ap-

proximation function w̃ for the entire cluster mimics the formula for

a single dipole. The only modi�cation is that length of the normal

vector ñ acts as the collective area or strength.

This works for query points far from all of the input points, but,

presumably, most query points will lie near some part of the input

point cloud.

We can apply this approximation in a divide and conquer fash-

ion using a tree data structure to separate points into smaller and

smaller clusters with more and more accurate single-dipole approxi-

mations [Barnes and Hut 1986] (see Fig. 7). We provide a pseudocode

implementation in Algorithm 1.

To achieve O(logm) complexity for a single evaluation, we build

a bounding volume hierarchy (e.g., using an octree or axis-aligned

bounding-boxes).

In Algorithm 1, we assume that each node of the tree contains an

approximation of the winding number w̃ for all dipoles contained

in the node’s bounding cell. We now turn to the construction of

this approximation, known in the n-body literature as the “far �eld

expansion.”
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Fig. 7. Our spatial partitioning separates near and far fields, recursively.

Algorithm 1: Fast Approximation of Winding Number

fastwn(q,tree)
Inputs:
q Query point in R3

tree Root of bounding volume hierarchy for points/triangles

β accuracy parameter

Outputs: scalar winding number of all elements in tree at q
// tree.p: center of tree’s winding number approximation, tree.w̃
// tree.r : maximum distance from tree.p to any of its elements
if ‖q − tree.p‖ > β ∗ tree.r then

// q is su�ciently far from all elements in tree
return tree.w̃(q)

else
val← 0

if tree has no children then
// q is nearby; use direct sum for tree’s elements
for each point/triangle e in tree do

//we : area-weighted dipole or solid angle
val += we (q)

else
for each child of tree do

// Recursive call
val +=fastwn(q, child)

return val

3.2.1 Higher-order approximation. The accuracy of our approxi-

mation for a cluster of dipoles can be further improved, allowing an

even tighter de�nition of “nearby” in the algorithm.

The representation of a sum of dipoles as a single representative

dipole in Equation (6) can be understood as the �rst term in a Taylor

series expansion about the center of mass p̃. We can improve the

accuracy by adding more terms to the sum.

Recall: The Taylor expansion for a function f (x) : R3 → R at a

point p̃ is given as

f (x) ≈ f (p̃) + (x − p) · ∇f (p̃) + 1

2
((x − p) ⊗ (x − p)) · ∇2 f (p̃) + . . . ,

where ∇f : R3 → R3 and ∇2 f : R3 → R3×3 are the gradient

and the Hessian of f , producing vectors and symmetric two-tensors

respectively.We use ⊗ and · to mean tensor outer and inner products,

respectively.

We start by considering the Taylor expansion for a single unit-

area dipole function, taking the expansion with respect to the dipole
position x at what will be the center point p̃:

Gn̂(q, x) = n̂ · ∇G(q, x) (8)

= n̂ · ∇G(q, p̃) (9)

+ ((x − p̃) ⊗ n̂) · ∇2G(q, p̃) (10)

+ 1

2
((x − p̃) ⊗ (x − p̃) ⊗ n̂) · ∇3G(q, p̃) (11)

+ higher order terms, (12)

where∇G ,∇2G , and∇3G are the gradient, the Hessian and the three-

tensor of third derivatives of the Green’s function for the Laplace

equation. Formulae for each derivative are located in Appendix A,

for reference.

The derivatives themselves do not depend on the dipole’s actual

center x, so we can apply the Taylor expansion to the sum ofm area-

weighted dipoles to get an approximation of their collective winding

number. We replace x and n in Equations (8-12) with summations

over each point pi and its normal n̂i to obtain our fast winding

number approximation w̃(q):

w(q) ≈

( m∑
i=1

ai n̂i

)
· ∇G(q, p̃) (13)

+

( m∑
i=1

ai (pi − p̃) ⊗ n̂i

)
· ∇2G(q, p̃) (14)

+ 1

2

( m∑
i=1

ai (pi − p̃) ⊗ (pi − p̃) ⊗ n̂i

)
· ∇3G(q, p̃) (15)

C w̃(q). (16)

The coe�cients in front of ∇G, ∇2G and ∇3G terms are vectors,

two-tensors, and three-tensors respectively. These are precomputed
during bounding volume tree construction and stored for each non-

empty node of the tree. The expansion could continue with higher

order terms inde�nitely, in practice we saw diminishing returns

beyond the second-order expansion above.

If we use pth order expansion, we add O(3p ) complexity to our

evaluation. The overall, amortized complexity – assuming a well

formed tree – for pre-computation and evaluation at n queries is

O(3pm logm + 3pn logm).
Our method falls into the Barnes-Hut, tree-algorithm family. The

Fast Multipole Method (FMM) is closely related and achieves O(n)
performance, but precomputation is signi�cantly more involved

and complexity results rely on very strict assumptions about the

input point distribution and the query distribution. We implemented

FMM and found overhead to be excessively costly and that the

typical point set surface extraction does not appear to meet the

input assumptions for good performance.

In comparison to many Fast Multiple Method (FMM) libraries

(e.g., fmmlib3d [Greengard and Gimbutas 2017]), we must (and do)

separate precomputation from evaluation for applications such as

iso-surface polygonization using a continuation method [Wyvill

et al. 1986] (see Fig. 9). This is in contrast to the prototypical applica-

tion of FMM to n-body gravitational systems, where the evaluation

points are the same as the sources and evaluation is done only once.
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Input point cloud 0.75 isosurface 0.25 isosurface 0.5 isosurface (correct)

Fig. 8. Input point cloud (le�), wrong isovalues produce close surfaces (middle). The correct isovalue from the smooth theory is 1/2 and the polygonized
isosurface of our fast approximation agrees (right).

linear 
interpolation

interpolation-based 
root finding

bisection
(recommended)

Fig. 9. Many implicit surface polygonizers use linear interpolation or linear-
interpolation based root-finding. However, the winding number for points
has asymptotic shape near each dipole, leading to poor surface quality.
Iterative bisection, instead, extracts clean isosurfaces.

3.3 Triangle Soups
Along with the introduction of the generalized winding number

for triangle meshes, Jacobson et al. [2013] propose a divide and

conquer algorithm for e�cient evaluation. Their method is also

based on a bounding volume hierarchy, but di�ers from our design

in two major ways: 1) it is exact while ours is approximate, and 2)

its computational complexity strongly coupled to the connectivity

of the input mesh. In the worst case, form triangles and n query

points their method reduces to the direct sum and performs with

O(nm) complexity. Instead, we now describe how to leverage our

fast winding number approximation for triangle soups.

Elevating our fast approximation algorithm to input triangle

soups turns out to be straightforward. Referring to Algorithm 1, we

will use a triangle’s solid angle (à la [Jacobson et al. 2013]) for evalua-

tions ofwe in the direct sum, but need to de�ne our approximations

w̃ for a cluster of triangles.

Like any surface, the solid angle of a single �at triangle t is the
integral of the dipole over its area:

Ωt (q) =
∫
t
∇Gn̂t (q, x) · n̂ dA, (17)

thus, the contribution of a triangle can be interpreted as a sum of

point contributions.

Di�erentiation and integration associate, so the summations over

points in the coe�cients of the Taylor expansion in Equation (13) are

replaced with summations over triangles, each summand expanding

into an integral over the corresponding triangle:

w(q) ≈

( m∑
t=1

∫
t
n̂t dA

)
· ∇G(q, p̃) (18)

+

( m∑
t=1

∫
t
(x − p̃) ⊗ n̂t dA

)
· ∇2G(q, p̃) (19)

+ 1

2

( m∑
t=1

∫
t
(x − p̃) ⊗ ((x − p̃) ⊗ n̂t ) dA

)
· ∇3G(q, p̃) (20)

C w̃(q). (21)

The �rst coe�cient

∑m
t=1

∫
t n̂t dA is simply the total area-weighted

normal over the triangles, mimicking the intuition that a cluster of

triangles are being replaced with a single, larger triangle. All terms

have closed form expressions found in Appendix B.

Implementation details. The broad implementation of our alo-

girthm is agnostic to the bounding volume hierarcy used. In prac-

tice, we use an octree as a bounding volume for point clouds and an

axis-aligned bounding box tree for triangle soups. The axis-aligned

bounding box tree allows us to avoid clipping triangles. In the case

of points, our algorithm was fastest when we set no limit to the

depth of our octree – any cell containing more than two points has

children.

For point clouds, we use a continuation method [Wyvill et al.

1986] for voxelization and isosurface extraction. The winding num-

ber function is smooth and very �at away from the input points,

but each point introduces a dipole singularity. Computing values

at each grid corner and relying on linear interpolation to �nd the

surface (as many “marching cubes” [Lorensen and Cline 1987]) will

produce visible pockmarks, isolated small dents and bumps like the

eyes on a potato (see Fig. 9). Root �nding [Wyvill et al. 1986] avoids

this and �nds a more accurate surface. This method begins with a

series of “seed cubes” on the surface then incrementally expands

to neighbouring cubes which contain the isosurface. A standard

problem in continuation polygonizers is �nding initial seed cubes.

However, since our surface is de�ned by point samples which lie

on the surface, we use them as the set of seed points.

For closed surfaces in the smooth setting, the winding number

of the interior is exactly one and the exterior is zero: the value of

1

2
neatly follows the surface. For an area-weighted point set, the

1

2
-level-set converges to the underlying surface in the limit. As such,

we use an isovalue of
1

2
for point set surface polygonizations in our

examples (see Fig. 8).
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Fig. 10. We exhaustively test the performance of our method on ten thousand models [Zhou and Jacobson 2016]. Compared to the divide and conquer method
introduced by Jacobson et al. [2013] our method is significantly faster in both precomputation time (up to 100× faster) and average evaluation time (up to
1000× faster). Both stages empirically demonstrate asymptotically be�er performance.

4 EXPERIMENTS & RESULTS
We implemented our area estimation and fast evaluation in C++

using std::thread and Intel TBB for parallelization, utilizing li-

bigl [Jacobson et al. 2017] and Eigen [Guennebaud et al. 2010]

for geometry processing and linear algebra routines, respectively.

Performance timings are conducted on a Intel i7-6950X CPU with

128GB of DDR4 memory.

In Fig. 1, we demonstrate the versatility of our method both

in terms of output and inputs. We use our fast winding number

evaluation on clean meshes, triangle soups and point clouds of

varying regularity. Using this evaluation to determine what is inside

or outside the given shape regardless of representation, we may

output a clean isosurface, a voxelization, 3D printer path instructions

or signed distance �elds.

We demonstrate simply signing an unsigned distance �eld with

the winding number, as a drop-in robust replacement for pseudonor-

mal testing or ray stabbing (see Fig. 4). This preserves the absolute

value of the distance at the cost of creating a discontinuity along

the winding number threshold level-set. In contrast, Xu et al. [Xu

and Barbič 2014] create a continuous (discretized) signed distance

�eld by e�ectively morphologically closing the input. This comes

at the cost of introducing a parameter. We view our methods as

complementary.

In Fig. 10, we compute winding number values for each of the

ten thousand models in the Thingi10k dataset [Zhou and Jacobson

2016]. We record precomputation and average evaluation time (over

a 50
3
lattice of queries in the bounding box of the shape) for our

fast approximation and the divide and conquer method of Jacobson

et al. [2013]. Their method has a considerably more involved pre-

computation stage; consequently, their method is up to 100× slower

for precomputation alone. While our method’s precomputation em-

pirically follows a slightly sublinear trend, the precomputation of

Jacobson et al. [2013] is superlinear. This is explainable because

their performance is bound by the number of “boundaries” created

while slicing up the input model into a bounding volume hierarchy

(under regularity assumptions, curve boundaries on a surface should

have O(m
1

2 ) complexity). While their method appears to achieve

sublinear average evaluation for a subset of the dataset, there is also

a consistent linear O(n) subset. In constrast, our average evaluation

time more neatly follows a logarithmic trend, as expected.

Input triangle soup Fast and robust voxelization

conflicting edge 
orientation

self-intersection

open 
boundary

Fig. 11. Voxelization requires robust inside-outside segmentation; our fast
evaluation takes 0.021 secs for precomputation and 0.184 secs to evaluate
the winding number at 1003 voxel centers. In contrast, the divide and con-
quer method of Jacobson et al. [2013] takes 0.129 secs of precomputation
and 9.13 secs for the million queries.

For our timings and all other experiments (unless speci�ed), we

set our accuracy parameter to β = 2 for triangles and β = 2.3 for

points. We chose these values to achieve 10
−3

and 10
−2

root mean

squared error for triangles and points respectively. These values

provide a good trade-o� between accuracy (see Fig. 4) and speed

(see Fig. 10). Even a small value of β = 2 produces the identical vox-

elization as the exact winding number (i.e., when thresholding at
1/2).

1

10-6

10-1

10-5

10-4

10-3

10-2

2 84
accuracy parameter

Approximation error on hotdog

β =

Root Mean 
Squared Error

Max Error

In Fig. 11, we compute a

voxelization of a typical tri-

angle soup from virtual 3D

modeling. The surface is

composed of multiple con-

nected components that in-

tersect each other with spu-

rious inconsistent orienta-

tions and open boundaries.

In the inset �gure we show

how the max and average

error follow the β parame-

ter on this hotdog. As β is
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Fig. 12. Holey, non-manifold triangle meshes A and B each induce a
generalized winding number function on the other’s faces, useful for boolean
operations such as A \ B.

Fig. 13. A holey cylinder is subtracted from a holey bunny.

increased, more and more of the computation moves from far �eld

expansions to near �eld recursion and direct summation, increasing

runtime. However, increasing β rapidly decreases the error. For ex-

ample, if we choose β so large that our runtimes are equivalent to

the divide and conquer method of Jacobson et al. [2013], then our

approximation error is already below machine epsilon for single-

precision �oats (10
−7
).

For a measure of quality, we evaluated our fast winding number

on the Thingi10K dataset, using a 100
3
voxel grid. Over 50% of shapes

had exactly zero misclassi�ed voxels using our approximation. The

median number of misclassi�cations is therefore also zero, and the

average is 363 (or, 0.0363%). The average root mean squared error

of the fast winding number value is 8e−3.
Boolean composition operations are a standard tool in the shape

modeling toolbox, and widely used with mesh representations. Geo-

metric mesh Boolean techniques generally operate by computing

intersections of the mesh elements. If there are holes in the mesh in

the intersection regions, then the Boolean operation is mathemati-

cally ill-posed. However, given two “holey” surfaces such as those

in Fig. 12, one can easily imagine what the Boolean result might

be. Our fast winding numbers provide a way to implement such an

operation. Rather than intersect the triangles, we trim each mesh

against the winding �eld of the other [Jacobson 2016]. The result

follows our intuition – where triangles exist, the cut lines follow

them, and where they do not, something sensible happens.

In Fig. 13, we take the di�erence of two very holey meshes. Tri-

angle edges are not stitched in the few areas where they do touch.

While this is possible, it is insigni�cant given the large number of

adjacent holes. This notion of surfaces being closed “within a toler-

ance” is widely accepted in all industry-standard Computer-Aided

input soup body solid harnessharness

=\
Fig. 14. The harness and accessories of this army man were modeled as
mere façades: all have missing backs and are simply placed atop the man’s
body (backfaces shown with red stripes). The body itself also has mesh
defects, but despite these problems, we subtract it from the harness to
create e�ectively solid pieces.

overlay union 3D printsoup

cloud

Fig. 15. A point cloud of St. John the Baptist’s severed head and a “pedestal”
created out of a soup of ribbons are unioned each induce a continuous
winding number field. We quickly approximate this during their Boolean
union and send the result to be 3D printed. Credit for the head model goes
to Geo�rey Marchal [2015].

Design (CAD) tools, where B-Rep “solids” are formed from trimmed

NURBS patches. In the general case it is mathematically impossible

for two adjacent trimmed patches to exactly meet along a 3D curve.

Despite these gaps, the geometry can be rendered, simulated, and

manufactured.

Fig. 14 illustrates another example representative of the kinds of

models commonly found in the �lm and games industries, where

many shape details are open shells that simply intersect. Visually

this assembly forms an apparent solid suitable for display, but ge-

ometrically it is a disaster for many downstream applications. We

can close o� the large open regions of the equipment harness by

subtracting the body of the underlying character. The geometry in

areas away from the intersections remains unmodi�ed. We can now,

for example, render this harness independently in an equipment-

selection screen, apply deformable-body simulation while colliding

it with the character’s clothing, or 3D-print a separate removable

plastic harness during a �gurine-design work�ow.

The examples above illustrate an interesting approach to mesh

modeling, where we no longer depend on having closed, well-

de�ned volumes. Each mesh “part” has an associated winding �eld

that interpolates the existing geometry, while doing something

sensible in any soupy areas. Operations can be formulated using

whichever of these representations is most relevant. We can also

incorporate our point-based winding �eld into this framework, al-

lowing for hybrid operations between point-set surfaces and meshes

(see Fig. 15).
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-4

Winding Number Log₁₀ of absolute error
-1

0

1

-2

-3

0.5

Fig. 16. Here we take a 2D slice through the 3D winding number field of
the octopus model found in Fig. 8

Input cloud Offset surface

Fig. 17. By signing the distance field, we can take an o�set surface that
strictly contains the point cloud.

In Fig. 5 we compare our point-based de�nition of the winding

number using approximated areas and ground truth, demonstrating

robustness. From our area estimation we are able to extract the point

surface from a �xed isovalue of
1

2
.

For point cloud timings on a laptop, refer to the example in Fig. 16.

On a point cloud of 300,000 dipoles, with 250,000 queries, the fast

winding number took 0.578 seconds for the precomputation and an

average evaluation of 3.01 micoseconds per query. In contrast, the

direct evaluation took an average of 4,080 microseconds per query.

The maximum approximation error was less than 0.1, with a root

mean squared error of 0.0191, which was su�cient to produce the

isosurface in Fig. 8.

Using the inside-outside testing of the winding number, we are

able to bestow sign upon an unsigned distance �eld. This can be

done for both triangles and points. In Fig. 1 we sign a distance �eld

of a soupy triangle mesh, and in Fig. 17 we use signed distance to

create an o�est surface for a point cloud.

With our fast winding numbers for points, we are able to 3D

print directly from point clouds and soupy meshes – no meshing

or remeshing required (see Fig. 3). This allows us to save on both

memory and computation. We note that this slicing step is a small

fraction – less than 10% – of the print preparation time. These slices

are then passed to the toolpathing software. At the level of accuracy

of 3D print heads, determining the print paths from both mesh

and point cloud winding number �elds is essentially lossless – the

printing of sharp corners and small features will be indistinguishable

from those generated by slicing triangles.

5 LIMITATIONS & CONCLUSION
The classic and generalized winding numbers require orientation.

This applies to the soups and clouds we consider, too. For unoriented

soups, automatic methods for determining a consistent orientation

exist (e.g., [Borodin et al. 2004; Takayama et al. 2014]). For unori-

ented point clouds, o�-the-shelf normal estimation methods (e.g.,

MeshLab [Cignoni et al. 2008]) complement our method well: a few

incorrectly oriented points will only degrade the overall winding

number �eld locally.

As mentioned in the introduction, our method does not directly

�t the requirements for surface reconstruction of noisy points. Our

point set surfaces are interpolating: dipoles are ±∞ on either side, so

any isovalue will pass through them (see Fig. 8). Early experiments

show that treating noisy points as random variables drawn from

Gaussian distributions is a promising approach (e.g., using Monte

Carlo sampling to generate more points creates a smoothed winding

number). Similarly, we show results for point samplings of complete

surfaces without boundaries. For “partial surfaces”, the level-set iso-
value should be adjusted according to total Gaussian curvature

(analog of a 2D curve’s turning number). Fortunately, curvature
estimation for point clouds is well studied [Belkin et al. 2009; Cazals

and Pouget 2003]. It would also be interesting to consider using

interval trees to improve isosurface extraction [Cignoni et al. 1997].

Our fast evaluation for triangle soups and point clouds will not

only improve the performance of all applications already relying

on generalized winding numbers, but opens the door to new op-

portunities. We foresee a rich topic of research exploring how to

push raw, unstructured geometric data like soups and clouds farther
along the geometry processing pipeline.
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A DIPOLE DERIVATIVES
For convenience, we list the gradient and Hessian of a dipole with

center position x ∈ R3 and normal vector n̂ ∈ R3 at a query point

q ∈ R3. Let I ∈ R3×3 be the identity matrix, ei be its ith column,

and r = x − q. Then

∇G(q, x) =
r

4π ‖r‖3
, (22)

∇2G(q, x) =
I

4π ‖r‖3
−

3r ⊗ r
4π ‖r‖5

, (23)

∇3G(q, x) = −
∑
3

i=1 r ⊗ ei ⊗ ei + ei ⊗ r ⊗ ei + ei ⊗ ei ⊗ r

4π ‖r‖5
(24)

+
15r ⊗ r ⊗ r
4π ‖r‖7

.
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B TRIANGLE INTEGRALS
We also list the closed form expressions for the coe�cients of our

dipole integrated over a triangle t with corner positions xi , xj , xk
and area at expanded about a cluster center p̃. These functions are
constant, linear and quadratic with respect to the position in the

triangle. Consequently, we use single point quadrature for the �rst

two integrals and edge-midpoint quadrature for that last. All are

exact. ∫
t
n̂t dA = at n̂t (25)∫

t
(x − p̃) ⊗ n̂t dA = at

(
1

3

(xi + xj + xk ) − p̃
)
⊗ n̂t (26)∫

t
(x − p̃) ⊗ (x − p̃) ⊗ n̂t dA = atCt ⊗ n̂t , (27)

(28)

where

Ct =
1

3

(
1

2

(xi + xj ) − p̃
)
⊗

(
1

2

(xi + xj ) − p̃
)
+

1

3

(
1

2

(xj + xk ) − p̃
)
⊗

(
1

2

(xj + xk ) − p̃
)
+

1

3

(
1

2

(xk + xi ) − p̃
)
⊗

(
1

2

(xk + xi ) − p̃
)
. (29)
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