
Optimizing UI Layouts for Deformable Face-Rig Manipulation

JOONHO KIM, University of Toronto, Canada
KARAN SINGH, University of Toronto, Canada

Fig. 1. Expressive deformable models like faces have many independently controlled rig parameters (a). Animators increasingly hand-craft in-situ
UI layouts for such face-rigs (b). We distill their design choices into a set of layout principles (c). We then present an algorithm to produce optimal
in-situ UI layouts that match animator expectation (d); enabling a direct on-shape deformation interface (e), where rig parameters can be both
independently manipulated (cursor on white control, top to middle), and best-fit computed (blue controls) to match the direct manipulation of the
shape (cursor on face, bottom) [Lewis and Anjyo 2010]. Our in-situ UI layouts can be further customized and refined by animators (f).

Complex deformable face-rigs have many independent parameters that control
the shape of the object. A human face has upwards of 50 parameters (FACS
Action Units), making conventional UI controls hard to find and operate.
Animators address this problem by tediously hand-crafting in-situ layouts of
UI controls that serve as visual deformation proxies, and facilitate rapid shape
exploration. We propose the automatic creation of such in-situ UI control
layouts. We distill the design choices made by animators into mathematical
objectives that we optimize as the solution to an integer quadratic program-
ming problem. Our evaluation is three-fold: we show the impact of our design
principles on the resulting layouts; we show automated UI layouts for com-
plex and diverse face rigs, comparable to animator hand-crafted layouts; and
we conduct a user study showing our UI layout to be an effective approach to
face-rig manipulation, preferable to a baseline slider interface.

CCS Concepts: • Computing methodologies → Animation; UI.

Additional Key Words and Phrases: facial animation, deformable rigs, UI.

Authors’ addresses: Joonho Kim, University of Toronto, Toronto, Canada, joonho@dgp.
toronto.edu; Karan Singh, University of Toronto, Toronto, Canada, karan@dgp.toronto.
edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART172 $15.00
https://doi.org/10.1145/3450626.3459842

ACM Reference Format:
Joonho Kim and Karan Singh. 2021. Optimizing UI Layouts for Deformable
Face-Rig Manipulation. ACM Trans. Graph. 40, 4, Article 172 (August 2021),
12 pages. https://doi.org/10.1145/3450626.3459842

1 INTRODUCTION
Character rigging is an art that provides a number of meaningful
interactive controls (like strings of a puppet) with which to bring a
character to life [Allen and Murdock 2008]. The creative flow and
expressivity of a puppet-master (animator) is impacted not only by
how the strings manipulate a puppet (control parameters), but by
the relationship between the strings and the puppet-master (control
UI and its layout). While much CG research has focused on the
anatomic, geometric, and dynamic aspects of character rigging, re-
search into the layout and interactive control of rig parameters is
relatively less explored. This paper thus, introduces the problem of
creating animator-optimal, in-situ, layouts of UI controls to facilitate
the manipulation of a deformable character rig (Figure 1).
Motivation
Professional character animation rigs have hundreds of interactive
controls. A Facial Action Coding System (FACS)-based face-rig [Ek-
man 1997] for example has upwards of 50 independently controlled
Action Units (AUs) that define a facial expression. Modern face rigs
often go well beyond FACS to model sub-muscular behavior, sim-
ulate aging, or represent families of faces [Seymour 2016, 2018],
resulting in rigs with hundreds of parameters [Seymour 2019].

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459842
https://doi.org/10.1145/3450626.3459842

172:2 • Tagliasacchi et al.

These rigs are animated by traditional keyframing [Navone 2020],
performance capture [Seymour 2019; Tewari et al. 2017], or even
speech audio [Edwards et al. 2020]. While rigs are increasingly
driven by performance capture, the role of an animator remains
as important as ever: the popular genre of stylized animation is
still tediously keyframed [Navone 2020], and performance captured
animation is still cleaned-up and embellished by animators working
with interactive deformable rigs [Seymour 2018]. Film rigs are also
ephemeral, with base rigs continually evolving to account for context
specific corrections and shot customization [Li et al. 2013].

The default UI for such rigs in commercial animation software like
Maya is a disparate and long scrollable list of deformation parameter
sliders, only a fraction of which might be concurrently viewable
(Figure 1(a)). Interacting with these sliders is woefully inadequate:
knowing which AUs are needed to effect a desired change to the face
is not obvious. These AUs must then be found by name in the slider
list and manipulated while shifting visual focus between the 2D UI
and the 3D face.

Manipulating such a large number of control parameters is chal-
lenging. Direct manipulation techniques such as [Lewis and Anjyo
2010] inverse-fit a configuration of rig parameter values, whose
deformed shape best-matches a user manipulated target shape. Low-
dimensional data-driven manifolds allow users to rapidly explore a
meaningful subspace of the high-dimensional rig parameter space
[Abdrashitov et al. 2020]. While animators appreciate the simplicity
and efficiency of such approaches, they also demand independent
control of rig parameters for the fine control needed to showcase their
skills (similar to the complementary use of both Forward and Inverse
Kinematics in skeletal animation) [Osipa 2010] (Figure 1(e)). As a
result most riggers and animators meticulously hand-craft in-situ UI
layouts to drive their character rigs (Figure 1(b)). Such in-situ/on-
screen interfaces (Figure 2) are also increasingly prevalent in game
engines, and mixed reality platforms: to support expressive charac-
ter posing and animation for film, games, social media and avatar
customization.

Each UI control in Figure 1(b) was hand-crafted in a 2D frontal
view, designed to largely emulate the view-projected deformation
trajectory1 of a representative shape vertex, across extreme values of
a corresponding rig parameter. The UI layout took the rigger about a
day to create, intuitively picking a visually meaningful trajectory for
each parameter, and laying it out respectful of symmetry, occlusion,
and maximizing the use of space around the shape. Creating such a
layout by hand gets significantly harder with 3D curve trajectories
(Figure 16) and evolving rig parameters (Figure 12). Hand-crafted
rig layouts are also brittle to layout re-targeting across characters
with diverse proportions, topology, and rig parameters.

Our primary contribution is thus: an analysis of the artistic insights
in creating hand-crafted face-rig UI layouts and, subsequently, an
optimization algorithm that fully automates the creation of such
UI layouts. Our resulting UI layouts have many applications: they
validate manual layout design choices and can optimally complete
a partially hand-crafted rig; provide an in-situ UI layout for one-
off shot-specific/layered/corrective shapes common in performance

1The blendShape weight parameters in Figure 1 produce linear trajectories, but in general
this trajectory is a parametric 3D curve.

capture; provide in-situ UI layouts for novices, and one-off or non-
standard characters with stylized proportions (animal in Figure 18);
and generalize to arbitrary parametric deformations (Figures 16).
Problem Statement and Overview
We observe that the feel of direct manipulation can be provided by
mapping UI handles to the deformation of a representative vertex of
the shape. Defining an in-situ layout can thus be cast as a mapping
𝐿 : 𝐶 −→ 𝑉 , where 𝐶 is a set of rig parameters/controls, and 𝑉 a set
of 3D shape vertices. We then formulate the various aesthetic and
usability properties that hand-crafted layouts imbibe (Figure 1(c))
as an extendable set of energy terms, defined for any given layout
𝐿. The optimal in-situ layout is thus found by computing the energy
minimizing control to vertex mapping (Figure 1). While our approach
is focused on face-rigs (Figure 17, 18), our technique is designed to
be generally applicable to parametric deformations (Figure 16).

A review of related work (Section 2), is followed by a discussion
of our overall problem space, and development of an extendable set
of in-situ UI layout design principles (Section 3). Section 4 presents
the details of our optimization algorithm. Section 5 presents a user
study comparing our UI layout to a baseline slider interface, and
artist hand-crafted rig UI layout. Further evaluation, limitations and
directions for future work are presented in Section 6, 7.

Fig. 2. Our rig UI layout alongside hand-crafted UI layout for the 24K
vertex Metahuman with 142 parameters ©Epic Games, Inc.

2 RELATED WORK
The problem of rigging and motion control for interactive character
animation is at least three decades old [Badler et al. 1990]. We focus
on character rigging: the interactive set-up that allows animators
to manipulate parameters that control the deformation of character
geometry. The majority of rigging research concerns algorithms
that actually deform a 3D model, based on configurations of rig
parameters. Work relevant to this paper instead addresses the user
interface between rig parameters and the animator, broadly classified
under: deformation proxies and widgets, high-dimensional UIs, and
direct manipulation of deformable shape.
Deformation Proxies and Widgets
UI widgets are visual 3D elements designed to provide an in-situ
interactive interface to manipulating objects and aspects of a virtual
scene [Bier 1987]. Widgets are typically hand-designed to capture
the form/function of parameters they control, like a rotation arc-ball.

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

Optimizing UI Layouts for Deformable Face-Rig Manipulation • 172:3

A variety of general frameworks for 3D widget
design have been developed [Stevens et al. 1994],
including approaches to interactively combine sim-
ple widgets into composite widgets for complex 3D object manipula-
tion [Schmidt et al. 2008]. We automatically create such a composite
widget for deformable shapes. Deformable objects are often inter-
actively manipulated using proxy objects like lattices [Sederberg
and Parry 1986] or wires [Singh and Fiume 1998], whose direct
manipulation is intrinsically responsible for the resulting shape de-
formation. Our approach can augment such deformable proxies by
automating the UI layout of various deformation parameters. While
our optimization objectives are visual design and interaction based
[Agrawala et al. 2011], we also draw inspiration from research on
computing optimal marker configurations to accurately capture facial
deformations [Le et al. 2013].
High-Dimensional User Interfaces
Exploring high-dimensional design spaces in a creative context is a
challenging task. Data-driven techniques, often aimed at novice users,
reduce the dimensionality of the parameter space [Kry et al. 2002],
employ design galleries of good representative examples [Brochu
et al. 2010; Gibson et al. 1997], or use crowd-sourced visualizations
usually to aid novice users [Koyama et al. 2014; Talton et al. 2009].
Recently data-driven manifolds of deformable shape [Bailey et al.
2020] have also been used in the context of rapidly posing expressive
faces [Abdrashitov et al. 2020]. Expert animators are not intimi-
dated by a large number of parameters, as long as their interface
is streamlined for efficient interaction that maintains their creative
flow. Hand-crafted in-situ rig UI layouts (Figure 3) exemplify such
an interface. This paper is the first to automatically create such rig
UI.
Direct Manipulation of Deformable Shapes
Sketch-based and direct manipulation alternatives can streamline
spatially goal-directed animation [Gleicher 1992] and reduce the
tedium of sequentially manipulating individual parameters of a high-
dimensional rig. Inverse Kinematics techniques (IK) for constrained
goals, like walking or grasping [Parent 2012], or aesthetic line-of-
action sketching [Guay et al. 2013] position multiple joint parameters
of a deformable character using high-level animator input. Facial
domain systems like Face-Poser [Lau et al. 2009] use screen-space
input as 2D point, stroke, and curve constraints with a deformation
prior learned from a prerecorded facial expression database. Other
approaches [Miranda et al. 2011; Sucontphunt et al. 2008] use 2D
drawing and curve-editing to drive 3D marker-based facial expres-
sions. Performance capture of the face or body [Williams 1990] is
a popular approach to driving a 3D deformable shape from mark-
ers or video of an actor. Much of this work is not animator-centric,
but techniques such as Weise et al. [2011]; Zell et al. [2017] can fit
performance capture to the parameters of a deformable rig. In this
spirit direct manipulation methods [Cetinaslan and Orvalho 2018;
Lewis and Anjyo 2010] compute rig parameters from the manipula-
tion of vertices on a 3D face, with varying degrees of local spatial
control [Tena et al. 2011]. Direct manipulation techniques perfectly
complement our work, for the same reason that both inverse and
forward kinematics are necessary for animation. Figure 1(e) and ac-
companying video shows our combined interface, where selecting a

UI element controls specific parameters (top, middle), and selecting
the shape elsewhere sets parameters best-fit to direct manipulation.

3 DESIGN PRINCIPLES
Direct, in-situ interfaces keep users immersed and focused on their
creative task in a 3D scene. Our general problem space is vast, with
many design dimensions, including:
Rig parameter structure and mapping: clusters and hierarchies
of rig parameters, and their mapping to UI elements can provide a
trade-off between visual clutter and coarse-to-fine parameter inter-
action. Additionally, parameter structuring can greatly reduce the
computational complexity of layout optimization.
UI element form: the geometric shape of a UI element/widget is
both: an interaction handle for its rig parameter(s), and a visual proxy
for the resulting deformation (for eg. the straight sliders convey a
linear blendShape trajectory, and the eyelash/chin curves convey the
deformation due to squint/jawOpen parameters in Figure 1(b)).
UI element function: the interaction workflow with UI elements can
address design issues ranging from UI clutter, to providing visual
feedback and control over deformation properties and constraints.
UI element layout: a successful layout, for a given mapping of rig
parameters to UI elements, should be optimized for visual meaning,
aesthetic, and ease of interaction.

While we use parameter clustering to aid layout optimization and
show three different rig parameter to UI element mappings, this paper
remains largely focused on UI layout, leaving detailed explorations
of other design aspects to future work.

Fig. 3. Hand-crafted rig UI layouts: the control UI is a mix of manipula-
tion handle shapes, line/curve sliders, and patches in 3D (a) or 2D (b).
The layouts are symmetric, well spread in space, minimally occluded
and correspond directly to the shape deformation. The layouts can
be placed on (a) or off the face (b) and UI elements for global rig
parameters like gender, are typically placed beside the rig UI (b). Ray
Character Rig by CGTarian ©UAB MOCAP.LT.

We distill an understanding of animator intuition in rig UI creation
from conversations with animators and an analysis of hand-crafted
rigs (Figure 3 and near a dozen proprietary professional rigs). In all in-
situ rigs the manipulation handle of a parameter was aligned to at least
approximately track the deformation of a point on the face resulting
from manipulating that parameter. In many instances 2D handles
matched the deformation projected in a front view (Figure 7, 17).

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

172:4 • Tagliasacchi et al.

Fig. 4. UI elements on the eyebrows (left) can remain static (middle) or
interactively adapt (right) to parameter manipulation (white controls).

3.1 Feeling of Direct Manipulation
We thus formalize the UI layout problem as a mapping 𝐿 : 𝐶 −→
𝑉 , where 𝐶 is a set of 𝑚 rig parameters 𝑐1 ..𝑐𝑚 and 𝑉 the set of
𝑛 3D model vertices 𝑣1 ..𝑣𝑛 . Let 𝑃 = {𝑝1 ..𝑝𝑚} be a configuration
of the rig parameter values, where 𝑝 𝑗 lies between 𝑚𝑖𝑛 𝑗 and 𝑚𝑎𝑥 𝑗
values for control parameter 𝑐 𝑗 . Let 𝑙 𝑗 ∈ {1..𝑛} be the vertex index
that 𝑐 𝑗 is mapped to under some layout 𝐿 = {𝑙1 ..𝑙𝑚}, and 𝑑 𝑗 (𝑡)
the parametric 3D trajectory of vertex 𝑙 𝑗 , as it deforms under some
parameter configuration 𝑃 (for eg. the default parameter values) with
only 𝑐 𝑗 changing from 𝑡 = 𝑚𝑖𝑛 𝑗 to 𝑡 = 𝑚𝑎𝑥 𝑗 . For the blendShape
weight parameters seen in Figure 1, this trajectory 𝑑 𝑗 is a straight
line (in general 𝑑 𝑗 (𝑡) is a parametric 3D curve).

Direct manipulation dictates that the UI element 𝐸 𝑗 for any control
𝑐 𝑗 should be shaped by 𝑑 𝑗 . The UI elements in Figure 1,2,17 are
mostly 3D line sliders, but can also conform in shape to the region
being deformed (for eg. eyelash/lip/chin in Figure 1(b)). We thus need
to support general element shapes and trajectories, like parametric
curves, patches, and fans (Figure 5), and our goal is to find a layout
𝐿, whose UI element shape and trajectory optimize certain functional
and aesthetic criteria.

Note that the trajectory 𝐷 = {𝑑1, ..𝑑𝑚} for any layout 𝐿, also de-
pends on the parameter values 𝑃 . Conceptually we can either find
an optimal layout for some default parameter configuration, or con-
stantly recompute an optimal layout as parameter values 𝑃 change.
Animator consultations and HCI principles [Gajos et al. 2006] con-
firm that persistent layouts become familiar and more predictable
for users. Optimal layouts, like hand-crafted layouts, are thus only
computed once, for some neutral/default or user-defined parame-
ter configuration 𝑃 . While the layout mapping remains fixed, all UI
elements should deform to remain attached to the interactively manip-
ulated shape (Figure 4), to provide a feeling of direct manipulation.

3.2 UI Elements
Figure 5 shows various linear UI ele-
ments. A single-parameter slider inde-
pendently manipulates a rig parameter. A
two-parameter patch allows simultane-
ous 2-DOF manipulation of two param-
eters. A multi-parameter fan (inset), extends a patch to allow si-
multaneous 2-DOF manipulation of adjacent fan parameters. The
trajectory tangents (green) for the parameters at the common layout
vertex are projected (blue) onto the tangent plane at the vertex, and
the radial angular order of the projected tangents in this plane, defines
the adjacency of parallelogram patches (angle ≤ 180𝑜) of the fan.

The rig parameters that define multi-parameter elements typically
deform the same region somewhat orthogonally, such as a jaw-open-
close and jaw-left-right. While multiple rig parameters are used to
define patch and fan UI elements, such elements should be repre-
sented by a single representative control in the layout 𝐶, so that the
element can be created at a common vertex in the optimal layout 𝐿.
Below we thus assume each control 𝑐 𝑗 to map to a unique UI element
𝐸 𝑗 .

Fig. 5. Rig UI layouts can be optimized for arbitrary UI elements, such
as the sliders, patches and fans shown. Further, our algorithm can
automatically group rig parameters with large overlapping regions of
deformation, to define 2-parameter patches, and multi-parameter fans.

3.3 UI Layout Design Objectives
We observe that the following extendable set of objectives guide
the functional and aesthetic quality of a UI layout. We discuss these
objectives for single-parameter sliders. For a multi-parameter UI
element (patch or fan), we set the objective to be the worst objective
value computed for each of its mapped parameters independently.
Maximal Displacement
The visual impact of manipulating a rig parameter is best observed
in regions where it invokes large deformations. Functionally, larger
deformation trajectories also produce larger UI elements that are eas-
ier to manipulate with better resolution. A user wishing to squint an
eye in Figure 1 for eg., would expect to tug directly on a UI element
that tracks a vertex on the eyelid, instead of a visually confusing and
unusable zero-length UI element attached to say, a vertex on the chin.
As a down-side, a large UI element may disproportionately occupy
space and interfere with the 3D shape and UI elements of other rig
parameters. We thus model this objective for a candidate layout 𝐿 as
a function of the arc-length of its deformation trajectories 𝐷 .
Minimal Inter-Element Overlap
The UI elements in hand-crafted layouts (Figure 3) are spatially well-
spread. Elements that intersect or have significant spatial overlap
are unattractive, visually cluttered and difficult to select unambigu-
ously. We thus aim to minimize inter-element overlap (or alternately
maximize inter-element distance).

Figure 6 shows the trade-off between the use of maximal displace-
ment, and minimal inter-element overlap in our approach.
Element-Model Occlusion
It is visually desirable for UI elements to remain largely un-occluded
by the 3D shape during interaction (even though they can always be
drawn un-occluded as an overlay). Locally, we thus favour trajec-
tories for control 𝑐 𝑗 whose tangent 𝑑 ′

𝑗
at the default configuration,

aligns well with the 3D vertex normal for the layout vertex 𝑙 𝑗 . This
alignment can be measured as a function of the dot product of the
vectors. We can also address element-model occlusion in a view

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

Optimizing UI Layouts for Deformable Face-Rig Manipulation • 172:5

dependent fashion by limiting candidate layout vertices, to those that
are visible from a given view in the default configuration. Finally if
a view-dependent 2D layout is desired, the optimal layout can fur-
ther be computed after view-projecting elements in 2D, to penalize
strongly foreshortened UI elements (Figure 7).
Symmetric Elements
As characters are inherently symmetric, most rigs have parameter sets
that deform shape symmetrically (for eg. a left-squint and right-squint
control). Such symmetric controls are readily inferred automatically
[Mitra et al. 2012], or can be user annotated. UI elements for symmet-
ric parameters should convey that symmetry visually. Given controls
𝑐 𝑗 , 𝑐𝑘 subject to some symmetry transform 𝑆 , we enforce precise sym-
metry by removing 𝑐𝑘 from the layout optimization, but retaining its
UI element as part of 𝑐 𝑗 (i.e. the UI element for 𝑐 𝑗 is defined as both
𝐸 𝑗 and its symmetric element 𝑆 (𝐸 𝑗)). This ensures that the optimal 𝑙 𝑗
will account for both UI elements it is responsible for creating, and
that the UI elements for 𝑐 𝑗 and 𝑐𝑘 are symmetric. The above trivially
generalizes to multi-fold symmetry by optimizing the UI layout of
one representative control 𝑐 𝑗 for each set of symmetric controls.
Symmetric Deformations
Characters often have individual parameters 𝑐 𝑗 that deform the shape
symmetrically (for eg. a brow-raise control that wrinkles the fore-
head symmetrically). Such controls should visually lie along their
plane or axis of symmetry. We can enforce this by constraining the
set of candidate layout vertices for 𝑙 𝑗 to those that lie precisely on the
plane or axis of symmetry. In the absence of such vertices, the hard
constraint can be replaced with a function that penalizes the distance
of a candidate vertex 𝑙 𝑗 , from the plane or axis of symmetry.
Global Deformations
While most rig parameters are manifested as localized shape defor-
mations, some rig parameters, such as one to customize gender may
deform all vertices of the shape significantly. Placing a UI element
for such a control locally on the shape can be misleading, and the UI
elements for such controls, such as the gender symbols in Figure 3(a),
are often presented as global and off-shape.

4 LAYOUT OPTIMIZATION ALGORITHM
The search for a layout (mapping𝑚 rig controls to 𝑛 shape vertices)
𝐿∗, that optimizes the design objectives in Section 3.3 is an instance
of an integer quadratic programming problem, known to be NP-Hard.
We first describe the quadratic programming formulation below, and
then look at various pre-processing steps in Section 4.2, that reduce
the computational complexity, and make the optimization practical
for state-of-the-art industrial rigs (Figure 2, 12).

4.1 Integer Quadratic Programming
We represent a candidate layout 𝐿 using an 𝑛 ×𝑚 binary matrix X
where 𝑥𝑖 𝑗 = 1 iff control 𝑐 𝑗 maps to vertex 𝑣𝑖 in 𝐿 (i.e. 𝑙 𝑗 is 𝑣𝑖). Each
column 𝑗 of X is thus all zero elements and a single 1 in the row
for vertex 𝑙 𝑗 . We interchangeably write matrix X as a concatenation
of rows into an 𝑛∗𝑚 column vector ®𝑥 = [𝑥11, 𝑥12 ...𝑥𝑛𝑚−1, 𝑥𝑛𝑚]⊺. We
use 𝑥𝑖 𝑗 equivalent to 𝑥 (𝑖−1)∗𝑛+𝑗 , and 𝑥𝑘 as equivalent to 𝑥𝑟𝑜𝑤 (𝑘)𝑐𝑜𝑙 (𝑘) ,
where 𝑐𝑜𝑙 (𝑘) = (𝑘 − 1)%𝑚 + 1; 𝑟𝑜𝑤 (𝑘) = (𝑘 − 𝑐𝑜𝑙 (𝑘))/𝑛 + 1.

The maximal displacement objective for a given rig parameter
configuration, is also encoded as an 𝑛 ×𝑚 column vector ®𝑑, where

Fig. 6. Design Choices: a random control to vertex mapping produces
visually meaningless and unusable UI layout (a); a layout based on
maximal displacement can result in visually cluttered and occluded UI
elements (b); a layout based on minimal inter-element overlap creates
well spread but small UI elements (c); our approach jointly optimizes
displacement, overlap, occlusion and symmetry criteria (d). Rig by
©Antony Ward (3D World)

Fig. 7. UI layouts can be optimized in 3D, or 2D from a given view.

𝑑𝑘 represents the arc-length of the deformation trajectory of vertex
𝑣𝑟𝑜𝑤 (𝑘) controlled by UI element 𝐸𝑐𝑜𝑙 (𝑘) .

Inter-element overlap is encoded as a symmetric matrix Q of size
𝑛𝑚×𝑛𝑚 where 𝑞𝑟𝑠 is the inter-element overlap 𝜙 (𝑑𝑖𝑠𝑡 (𝑥𝑟 , 𝑥𝑠)), where
𝑑𝑖𝑠𝑡 (𝑥𝑟 , 𝑥𝑠) computes an inter-element distance between element
𝐸𝑐𝑜𝑙 (𝑟) mapped to vertex 𝑣𝑟𝑜𝑤 (𝑟) , and element 𝐸𝑐𝑜𝑙 (𝑠) mapped to
vertex 𝑣𝑟𝑜𝑤 (𝑠) , and 𝜙 is a sigmoid function.

We calculate the inter-element distance to capture the difficulty
of selecting a point on a UI element due to spatial interference with
another element. We thus first discretely sample any 𝑥𝑟 (uniform
parametric sampling): the UI element 𝐸𝑐𝑜𝑙 (𝑟) placed in 3D at shape
vertex 𝑣𝑟𝑜𝑤 (𝑟) is sampled at 𝑢 points 𝑊𝑟 = {𝑤1

𝑟 ...𝑤
𝑢
𝑟 }. We then

compute the shortest distance from every point in 𝑊𝑟 to the point
sample set 𝑊𝑠 for 𝑥𝑠 , and vice versa. The overall average of this

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

172:6 • Tagliasacchi et al.

OutputGroup Parameters Prune Vertices Downsample VerticesCluster Groups Solve

Candidate Vertices in Yellow

Input
Deformable Model

Rig Parameters

Groups in Blue Clusters in Purple

Fig. 8. Algorithm Overview: model vertices are first pruned based on design criteria to a candidate set of layout vertices for each rig parameter; the
parameters are then grouped and clustered based on the overlap and separation of their candidate vertices; candidate vertices in each cluster are
then sampled and used to compute an optimal layout using integer quadratic programming.

shortest distance is a symmetric distance measure 𝑑𝑖𝑠𝑡 (𝑥𝑟 , 𝑥𝑠). This
distance is then inverted to capture overlap using a function 𝜙 (𝑧):

𝜙 (𝑧) = 𝑎 − 𝑎

1 + 𝑒𝑠 (𝑧−𝜏)
(1)

where 𝑎 is the maximum overlap error, 𝜏 is the distance for 𝑧 which
gives 𝑎/2 overlap, and 𝑠 scales how quickly the overlap penalty van-
ishes with increasing distance. In our implementation we used values
𝑎 = 5, 𝜏 = average edge length between adjacent shape vertices, and
𝑠 = 2.

We cast these objectives as Equation 2 in a quadratic program:

min
®𝑥

1 − 𝜆

2
®𝑥⊺𝑄 ®𝑥 − 𝜆𝑑⊺ ®𝑥 (2)

s.t. A®𝑥 = ®1 (3)

B®𝑥 ≤ ®1 (4)

®𝑥1..𝑛𝑚 ∈ 0, 1 (5)

The relative importance of large displacements vs. inter-element
overlap in equation 2 can be controlled using 𝜆 (default 𝜆 = 0.85).
Additional design objectives can be similarly added to equation 2
as quadratic or linear functions of ®𝑥 . The goal of equation 3 is to
ensure that each of the 𝑚 controls gets mapped to exactly one of the
𝑛 vertices. A is thus an 𝑚 × 𝑛𝑚 matrix. Row 𝑗 of A thus needs to
isolate all variables 𝑥𝑖 𝑗 for 𝑖 ∈ {1, ..𝑛}. Row 𝑗 of A is thus all 0’s
except for 𝑛 1’s every 𝑚 elements, starting at index 𝑗 . Inequality 4
ensures that each of the 𝑛 vertices is mapped to by at most one of the
𝑚 controls. B is thus an 𝑛 × 𝑛𝑚 matrix. Row 𝑖 of B is filled with 0’s
except for a block of𝑚 1’s starting at column 𝑖 ∗𝑛. Equation 5 ensures
that all variables in our quadratic program are binary. We found a
quadratic program to be significantly faster and space efficient than
a linear program that needs 𝑛𝑚2 additional variables to capture the
inter-element overlap.

Figure 9 further shows how our algorithm parameters can im-
pact the optimal rig UI layout, by varying the contributions of inter-
element overlap, and occlusion culling (particularly useful when
many parameters are concentrated in local regions of high occlusion
like lip corners).

Fig. 9. FaceScape #393 ©The CITE LAB. Left to right: 𝜆 = 1 (maximal
displacement), 𝜆 = 0.85 (default), 𝜆 = 0.4 (higher inter-element penalty),
occlusion culling.

4.2 Optimization Pre-processing
We now discuss four independent grouping and pruning strategies
that can radically reduce the number of variables we input to our
quadratic layout optimization above.
Pruning Layout Vertex Candidates
Our optimization variables 𝑥𝑖 𝑗 consider all vertices 𝑣𝑖 as layout map-
ping candidates 𝑙 𝑗 for parameter 𝑐 𝑗 , yet many of these variables
would produce undesirable UI elements, and can be omitted from the
pool of candidates. We thus use our design principles based on the
following criteria, to produce a pruned set of candidate vertices and
associated variables ®𝑥𝑝𝑟𝑢 :

• Minimally deformed vertices: We prune variable 𝑥𝑖 𝑗 if the
length of 𝑣𝑖 ’s deformation trajectory for 𝑐 𝑗 is below a thresh-
old (default set to the avg. length of all 𝑣𝑖 with non-zero tra-
jectories). Deformation controls 𝑐 𝑗 for which the minimally
deformed vertices are a small fraction (< 10%) of model ver-
tices are termed global. Such controls, like the gender control
in Figure 3(a), are often laid out adjacent to the shape, and can
optionally be removed from the optimization.

• Occluded Vertices: We prune variables 𝑥𝑖 𝑗 whose deformation
trajectory for parameter 𝑗 is largely occluded by the model.
We can also prune all 𝑥𝑖 𝑗 , that are invisible from a given view.

• Symmetric Deformations: For any parameter 𝑗 that symmetri-
cally deforms the shape, we can prune away all variables 𝑥𝑖 𝑗 ,
whose vertices 𝑣𝑖 do not lie on the plane/axis of symmetry.

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

Optimizing UI Layouts for Deformable Face-Rig Manipulation • 172:7

Multi-Parameter Grouping
Rig parameters that deform very similar regions of the model are
often complementary and may benefit from UI-elements like patches
and fans (Figure 5) that provide concurrent multi-parameter control
(Section 3.2). To detect possible parameter groupings of size 𝑘 (for a
𝑘-parameter fan, default 𝑘 = 2 for a patch element), we initialize a
set of groups 𝐺 = [𝑔1 ..𝑔𝑚], associated with with each rig parameter
𝑐1 ..𝑐𝑚 and a vertex set 𝑔 𝑗 .𝑣 that comprises candidate layout vertices
for 𝑐 𝑗 after pruning. We then iteratively combine control groups 𝑔𝑖
and 𝑔 𝑗 , that together can be represented by a 𝑘-parameter fan (i.e.

|𝑔𝑖 ∪ 𝑔 𝑗 | ≤ 𝑘), and whose Jacaard index 𝐽 , where 𝐽 =
|𝑔𝑖 .𝑣∩𝑔𝑗 .𝑣 |
|𝑔𝑖 .𝑣∪𝑔𝑗 .𝑣 | is

the largest (i.e. we pick the 𝑖, 𝑗 pair with he biggest 𝐽 > 𝜖 (default
𝜖 = 0.85). We combine the two control groups by setting 𝑔𝑖 = 𝑔𝑖 ∪𝑔 𝑗
and removing 𝑔 𝑗 from 𝐺 . Likewise, ®𝑥𝑝𝑟𝑢 is reduced to only retain
variables corresponding to vertices 𝑔𝑖 .𝑣 ∩ 𝑔 𝑗 .𝑣 for combined controls
∈ (𝑔𝑖 ∪ 𝑔 𝑗). The final set of parameter groups in 𝐺 , with its corre-
sponding associated variables termed ®𝑥𝑔𝑟𝑝 , can be further reduced
by clustering and down-sampling below, or serve as input to the
quadratic optimization in Section 4.1.

Fig. 10. UI layouts resulting from weighted random down-sampling
of vertices. The UI layout created using 20% of the model vertices is
qualitatively similar to the optimal layout (100%). Quality degrades with
visual clutter at 5% and inter-element overlap at 0.5% down-sampling.

Rig Parameter Clustering
The optimization space of candidate control layouts for 𝑛 model
vertices and 𝑚 rig controls grows exponentially with 𝑚. We note
however, that many pairs of controls locally deform spatially distinct
regions of the model, and their respective UI elements are unlikely
to overlap. Partitioning the controls into such spatial clusters that can
be independently optimized can thus greatly improve efficiency, with
little detriment to the overall UI layout. For example, UI elements
for controls that deform the eyes and mouth are spatially distant in
Figure 1, 11, and could thus be optimized separately.

We thus implement a simple single-link clustering [Murtagh and
Contreras 2012] on the rig control parameters where the distance
metric between two clusters of parameters 𝑈 and 𝑉 :
𝐷𝑖𝑠𝑡 (𝑈 ,𝑉) = ∑

𝑐𝑢 ∈𝑈
∑
𝑐𝑣 ∈𝑉

∑
𝑟

∑
𝑠 𝑑𝑖𝑠𝑡 (𝑥𝑟𝑢 , 𝑥𝑠𝑣),

where 𝑥𝑟𝑢 , 𝑥𝑠𝑣 ∈ ®𝑥𝑔𝑟𝑝 . In other words the distance between two clus-
ters 𝑈 ,𝑉 is the total inter-element distance between all candidate
vertices for all pairs of controls belonging to 𝑈 and 𝑉 respectively.In
practice, replacing the inter-element distance 𝑑𝑖𝑠𝑡 (𝑥𝑟𝑢 , 𝑥𝑠𝑣) by the
distance between vertices | |𝑣𝑟 − 𝑣𝑠 | | produces similar results with bet-
ter efficiency. Let 𝑆 = {𝑆1 ..𝑆𝑜 } be the resulting clusters that partition
the set of rig controls. Consequently, variables ®𝑥𝑔𝑟𝑝 are partitioned
into ®𝑥1𝑔𝑟𝑝 ..®𝑥𝑜𝑔𝑟𝑝 , where 𝑥𝑖 𝑗 ∈ ®𝑥𝑘𝑔𝑟𝑝 iff 𝑐 𝑗 ∈ 𝑆𝑘 .

Figure 11 shows the clustering of rig controls for different values
of 𝑜 . We use a default of 𝑜 = 2 to capture the typical upper/lower half
split on faces. We then compute the UI layout of each cluster of con-
trols in sequence, starting with the largest cluster. The UI elements
computed for former control clusters contribute fixed inter-element
distances as constraints for subsequent clusters and thus impact the
optimal layout when optimizing latter clusters. As shown in Fig-
ure 11, increasing the number of clusters can substantially improve
efficiency, with minimal impact on the optimality of the control UI
layout.
Vertex Down-sampling
High-end production models such as Figure 12 have upwards of 100K
vertices. Rig deformations however, are mostly smooth, and regions
of neighboring vertices tend to have similar deformation trajectories.
We thus note that lower resolution proxies with a fraction of the
original shape vertices, can produce near optimal UI layouts more
efficiently (Figure 10). There are a number of ways to down-sample
the shape including random vertex sampling and model decimation
that retains correspondence to a subset of the original shape vertices
[Botsch et al. 2010]. Unlike typical mesh simplification that opti-
mizes geometric fidelity to the original model, our sample importance
criteria for a vertex favours large displacements (Equation 2). We
thus perform a weighted random sampling on all ®𝑥 variables ®𝑥𝑘𝑔𝑟𝑝
in each cluster 𝑘 ∈∈ {1..𝑜} above. The weights for each variable
are associated with the displacement 𝑑 of its corresponding UI ele-
ment. Our final set of variables down-sampled from ®𝑥𝑘𝑔𝑟𝑝 is termed
®𝑥𝑘
𝑑𝑠𝑝

, 𝑘 ∈∈ {1..𝑜}. Figure 10 shows that 5K+ vertex shapes can be
down-sampled 5-10x before there is noticeable visual degradation in
the control UI layout.

Fig. 11. Partitioning rig parameters significantly improves performance,
while preserving the visual quality of the UI layout. Computation time
(seconds) for 1 (164.43), 2 (13.6), 4 (11.41), and 6 (9.95) clusters.

4.3 Implementation Details
We implemented our approach using a quadratic programming solver
in C++ using IBM CPLEX Optimizer library and control our mod-
els in Autodesk Maya®2020. The results shown in the paper were
generated on a a Windows 10 machine with an Intel Core i5 3.6GHz
processor and NVIDIA®GeForce GTX 1080.

5 USER STUDY
We conducted a within subjects user study with 12 (8 amateur, 4
professional) participants (contacted via email), to evaluate the user
experience of our UI layouts. All participants had access to and
experience with Autodesk Maya®, in which the study was conducted.
Participants were identified as amateur/professional, specific to their

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

172:8 • Tagliasacchi et al.

Fig. 12. UI layout for a 85K vertex, 65 control Allan Henry face-rig
©Weta Digital with neutral (left) and posed parameters (right).

Fig. 13. Expressions set by user 𝑃8 using the three compared inter-
faces, for the common target expression.

experience animating 3D face-rigs. While our in-situ layouts are
designed to be used with direct manipulation [Lewis and Anjyo
2010] within a single interface (Figure 1(e)), our study disabled direct
manipulation to focus on a principled comparison of independent
parameter control: between a baseline slider list, an off-face animator
created gold-standard layout, and our on-face automatic UI layout,
for the model in Figure 13. We note that the artist layout and ours,
could theoretically be interchangeably used as on or off face layouts.

5.1 Experiment Setup and Protocol
The study presented a subject with a posed target face, adjacent to
a neutral face that was interactively manipulated by the subject us-
ing one of the above three interfaces, to visually match the target,
until satisfied (Figure 13). Each participant was presented with the
same sequence of 15 faces to match (3 interfaces * 5 faces). The
interfaces were tested in order (one of 6 permutations of list, off-face
and on-face), fully counter-balanced across the 12 subjects. 12 of the
15 faces were unique and of varying complexity (activating 1-13 rig
parameters) spread across the three interfaces tested. One expression
(13 activated parameters) was repeated for all the 3 interfaces (Fig-
ure 13). Participants were presented with the faces side-by-side in a
frontal view, but were free to manipulate the camera, as desired.

The study instructions and testing itself were driven from a UI
control panel within Maya. Each interface test started with 2 sim-
ple expressions (1-2 rig parameters) followed by 3 more complex
expressions (6+ rig parameters). The study was run uncontrolled,
and completed on average in 28 minutes by participants remotely in
Maya. After the study participants filled-out an online questionnaire
on their experience using the three interfaces (Figure 14).

5.2 Analysis
All subjects had some familiarity with Maya, and were able to com-
plete the study without any reported difficulty. Our summary finding
was that qualitatively, the overall user experience of the on-screen
interfaces off-face and on-face (both with avg. 4 out of 5) was much
better than the slider list (avg. 2.25 out of 5) (Figure 14(left)). Our
on-face interface also scored highly (avg. 4.83 out of 5) on important
questions like "The system gave me a feeling of directly manipu-
lating the face?" (Figure 14(right)). Quantitatively, the study data
corroborated user response: users were significantly slower with
the slider list (46.87% of their total time on avg.), compared to the
artist created off-face (25.62%), and our on-face interface (27.51%)
(Figure 15(right)); while accuracy in matching target faces was sim-
ilar, since users manipulated the face until satisfied. The list was
marginally, but not consistently more accurate than the on-screen
interfaces, possibly due to finer control resolution of the longer list
sliders (Figure 15(left)).
Quantitative
We measure expression accuracy in both rig parameter space (wt.
error sq.) and model space (vtx. error sq.), as the squared difference
between the values set by the user and the target expression. For
reference, we report these error values as normalized relative to the
difference between the target and neutral expression. In other words,
the relative vertex error squared for a user set expression 𝑢, target 𝑡
and neutral 𝑛 is:

∑
𝑣 (| |𝑣𝑢 − 𝑣𝑡 | |2)/

∑
𝑣 (| |𝑣𝑛 − 𝑣𝑡 | |2). The rig parameter

weight error is formulated similarly. Rig parameter weight errors bet-
ter reflect perceptual changes in expression, but these weight errors
can sometimes be misleading due to redundancy in rig parameter
space (i.e. a user may create a similar visual expression to the tar-
get by using a different rig parameter that produces a similar visual
change in expression). Time spent on an interface is also normalized
as a %𝑎𝑔𝑒 of total time taken by a user (Figure 15).

Figure 13 shows the complex common expression posed in block
order (list, on-face, off-face) by user 𝑃8. The actual time and %𝑎𝑔𝑒
time spent on each interface in block order was (223s, 119s, 80s) and
(17.5%, 9.3%, 6.3%), and the relative weight and vertex sq. errors
were (1.0, 1.01, 1.34) and (0.43, 0.47, 0.57), respectively. These
statistics might suggest a learning effect with users getting quicker
with each block, and that accuracy depends on time spent with the
interface. This however, was not a general trend: for eg., the same
statistics for 𝑃12 (on-face, off-face, list) were (146s, 153s, 186s),
(9.9%, 10.4%, 12.6%), (0.35, 1.36, 1.45) (0.33, 0.9, 0.62). In general
for the common expression, overall participants spent 36% and 12%
more time using list and off-face, than our interface.

Judging, from user comments, the off-screen parameter list takes
consistently longer to find and manipulate than on-screen controls
("moving back and forth between the face and the slider GUI takes
time" 𝑃8, "slider attribute editor interface does not scale, need to
hunt for controls in a scroll list and controls are sometimes not in list
close to similar ones" 𝑃6, "when working with an animated face in a
dynamic scene it is better to have controls close at hand", 𝑃7).

The marginally better accuracy of the slider list could be due to
resolution ("one advantage of the slider interface is that it does seem
to provide finer resolution when interacting with the controls" 𝑃7).
The resolution of on-screen controls can be made finer by zooming

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

Optimizing UI Layouts for Deformable Face-Rig Manipulation • 172:9

Fig. 14. User Study: overall experience with the three interfaces (left);
questions pertaining to the on-face UI (right).

Fig. 15. User Study: avg. relative weight|vertex sq. error (left
top|bottom) and % time the users spent on the three interfaces (right).

into the model but we feel users did not manipulate the camera much
("...this fixed model and camera test setting" 𝑃7).
Qualitative
Figure 14(left) shows that our interface was well-received, relative to
the list and off-face interfaces. The responses to questions (below)
focused on our interface were also largely positive Figure 14(right):
– The system allowed me to create expressions easily.
– Changing slider values caused unexpected results.
– The layout felt cluttered.
– Sliders were placed appropriately with respect to their deformed

regions.
– The system gave me a feeling of directly manipulating the face.
We also received a wealth of both positive and critical feedback:
General (Positive)
– "I really liked the on-the-face slider a lot." 𝑃4.
– "Am not an expert on faces but such an interface (on-face) can be

very useful for any on-object parameter interaction." 𝑃11.
– "The on-face patches are very cool and it would be great to see

more such coupled controls". "Maybe this grouping can even be
dynamic, where I select two or more controls..." 𝑃8.

Direct Manipulation (Positive)
– "On-face sliders are great and direct" 𝑃6.
– "The on-face sliders feels very direct because all the sliders move

and stay stuck to the face. It would be cool to augment the on-face
slider interaction with directly pulling on parts of the face." 𝑃7.

– "Precise and local control with direct face grabbing is a problem,
and the on-face sliders complement direct manipulation beautifully.
I would love to see them work together." 𝑃8.
Our layouts are indeed designed and already implemented to be
used in conjunction with direct manipulation (Figure 1(e)).

Face specific (Critical)
– "It would be useful to show the area of influence when you select

the control to give a sense of what area is affected (similar to
skin weights map). Or the inverse: clicking anywhere on the mesh
would highlight which controls have influence on that area." 𝑃5.

– "All 3 interfaces could benefit from symmetric control toggle." 𝑃6.
Model occlusion (Critical)

Many users found that on-face visually obscured evaluating the ma-
nipulated expression, suggesting off-face transport, and UI element
toggles/transparency as solutions:
– "Perhaps working on a duplicate copy of the face will be better?

So your manipulations feel direct, but you can still see the actual
result well." 𝑃2 (also 𝑃1).

– "It would be useful to be able to move the off-face controls on-face
and vice versa for the on-face sliders." 𝑃7.

– "It felt the most natural to use the on-the-face slider layout, but
I wish I could toggle the visibility of the sliders in this format."
𝑃3 (also suggested by 𝑃5, 𝑃10 and 𝑃6 actually "added a toggle to
hide/show them").

– "On-face sliders need to be very transparent but if not visually
occluding can save time keeping the focus on the face." 𝑃11. (also
𝑃8 did likewise "I made the on-face slider shader very transparent
so I could grab them and evaluate the facial pose simultaneously.").

6 RESULTS AND DISCUSSION
Direct Shape|Parameter Control Interface
While the user study (Section 5) only compared independent parame-
ter control using our on-face UI layout with an off-face hand-crafted
UI layout and a baseline slider list, our layouts provide a homoge-
neous interface to complementary direct-shape and direct-parameter
manipulation (see video and Figure 1(e)).
Gallery of Rig UI layouts
Figures 1,2,17 show a number of rigs, for which our approach pro-
duced UI layouts that matched the aesthetic and functional choices
made by artists in hand-crafting UI layouts for the rig. Figures 9,12,18
show further UI layouts for a number of face rigs for which we had
no hand-crafted comparison.

Table 1 shows the input vertex and control complexity, algorith-
mic parameters, and computation times, for all the face-rigs shown
in the paper. While our core optimization algorithm (Section 4.1)
can be exponential in complexity, the pruning, grouping, clustering
and down-sampling stages in (Section 4.2), allow us in practice to
compute rig UI layouts for high-end face rigs with over a hundred rig
Animator critique
We consulted a professional animator to critique the rig layouts in
Figures 17, 18. He found our rig UI layouts to be compelling, and
was easily able to refine our layout aesthetics in Figure 1(f). He fur-
ther commented on various aspects of our problem space, opining
that our interface was (or could be):

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

172:10 • Tagliasacchi et al.

discoverable and could be manipulated instinctively, without instruc-
tion or labels, in contrast to a baseline list of parameter names;
immersively direct keeping focus on the face in context with UI
elements that tracked the deformed shape during manipulation (Fig-
ure 4(right) and video);
aesthetic, and produced well-spaced layouts, respecting symmetry
and occlusion handling;
localizable, in that the UI layout of a parameter could be forced to
lie in proximity to scene element, for eg., the UI element for a joint
related rig parameter should be mapped to the shape in the vicinity
of the joint Figure 16(right) (also see future work);
customizable, in that animators should be able to provide a partial
rig UI layout for some parameters and let our algorithm automate
the others, which we handle by simply pre-constraining the variables
pertaining to the hand-crafted controls.
General Deformable Rigs
Conceptually, our approach is rig agnostic. Shapes can be driven
by skeletal skinning, blendShapes, or other geometric/data-driven
deformers, as long as rig parameters can be independently sampled to
construct the piece-wise linear deformation trajectories of rig vertices,
required by our algorithm (Section 4). For example, Figure 16 (left)
illustrates a simple rig UI layout from sampling rotation parameters
of the shoulder (green), elbow (red) and wrist (blue) skeletal joints,
and Figure 16 (right) a pose-based UI element.

Fig. 16. Pose-Pose control using rig UI layouts.

Limitations and Future Work
Being an early investigation into automated in-situ UI generation
for 3D deformable models, we only touch upon some aspects of the
problem space, like automating the design of the visual form and
function of UI elements/widgets (Section 3). The focus of our work,
optimizing rig UI layout also has inherent limitations.
– In-production rigs can have highly localized and/or redundant

parameters that cause inevitable UI crowding (Figure 12). While
penalizing inter-element overlap can partly alleviate this problem
(Figure 9), the problem can also be addressed by dynamically
spreading the UI upon interaction, using layouts with diagrammatic
arrows [Agrawala et al. 2011], or by a multi-level user interface.

Model Vertex Count Controls Clusters Sample % Time (s)

Dakar Valley Girl 5064 47 2 100/20/5 249/45/11
Head Rig 1186 26 2 20 <1
Louise 5034 28 2 20 3
Mery 12942 28 2 20 3
Nico 27434 28 2 20 19
Dan 5706 23 2 20 62
Clara 5064 45 2 20 15
Prague Boy 5064 47 2 20 18
Pidoras 5064 25 2 20 62
Angela 4002 22 2 20 <1
Allen Henry 85753 65 4 10/5/1 642/243/108
Metahuman 24049 142 4 5/1 553/162
FaceScape #393 16437 20 2 20 210

Table 1. Shape vertex and control count, algorithmic parameters, and
computation times, for all the face-rigs as shown.

– Rig parameters controlling subtle deformations, even when mapped
to their maximally displaced vertex, may produce tiny UI elements
that have poor resolution for interaction.

– Global rig parameters and those controlling largely hidden regions
of a face like the tongue, may not be ideally suited to our proposed
on-face UI layout.

– Sometimes UI elements enable constrained parameter manipula-
tion such as the focus point cross-hair of an eye-gaze controller.
While we do not design such UI elements, artists can hand-craft
UI elements for some rig parameters, and use our approach to
optimize the remaining rig UI layout, subject to a partial rig UI.

– Some rig parameters, like a sculpting tool deformation radius, are
better conveyed by a circular UI element and not a UI element that
tracks the deformation trajectory of a vertex of the shape.
There are many avenues for future work. Our multi-parameter

groupings at present are simple: either user specified, or simply based
on overlapping spatial regions of influence. Inferring data-driven (rig
+ animation data) grouping, correlation, and independence between
rig parameters is subject to future work. Our user study participants
further suggested dynamic parameter groupings, and suggested that
our approach can form the building block of a more complex posing
system where multiple rig parameters can be posed and controlled in-
situ using our rig UI layouts (Figure 16). Another interesting avenue
for research is customizing the UI elements of the rig parameters
to be visually representative of the region of the shape they deform,
or other rig entities like bones or joints (for eg. the hand-crafted
jaw or eyelid UI in Figure 1(b)). Finally, while our approach can
conceptually define a UI layout for any deformable rig, such as
Figure 16, our claimed contributions to the UI layout of face-rigs,
remain to be validated for general deformable rigs.

7 CONCLUSION
Inspired by animator hand-crafted UI layouts, and increasing on-
screen UI elements seen in games, mixed reality, and graphics appli-
cations, we propose the novel problem of automating rig parameter
UI layouts. We then present an automated solution to creating such
UI layouts for deformable rigs. Our approach seamlessly integrates
into current animation pipelines, in game engines and commercial
software, like Autodesk Maya. Character rigs form the basis for ex-
pressive animation. We believe that automatically streamlining the
interface between the rig and the animator will positively impact the

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

Optimizing UI Layouts for Deformable Face-Rig Manipulation • 172:11

Fig. 17. Hand-crafted layouts (left) compared to our rig UI layouts (right). a) Dakar Valley Girl ©Chris Landreth b) Rig by ©Antony Ward (3D World)
c) Animatable Digital Double of Louise by Eisko© (www.eisko.com)

throughput and quality of animation produced. Beyond character ani-
mation, we hope our work will inspire future research in automatic
creation of in-situ user interfaces.
Acknowledgments
We would like to thank Chris Landreth (JALI Research) and Steve
Cullingford (Weta Digital) for providing us with facial rigs, anima-
tions, and invaluable feedback. We are also grateful to our user study
participants, and to Metahuman (Epic Games), CGTarian, Antony
Ward (3D World), CITE LAB, Eisko, Mery Project, and Chad Vernon
for face rigs. This research was supported by NSERC.

REFERENCES
Rinat Abdrashitov, Fanny Chevalier, and Karan Singh. 2020. Interactive Exploration and

Refinement of Facial Expression Using Manifold Learning. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 778–790. https://doi.org/10.1145/3379337.3415877

Maneesh Agrawala, Wilmot Li, and Floraine Berthouzoz. 2011. Design Principles
for Visual Communication. Commun. ACM 54, 4 (April 2011), 60–69. https:
//doi.org/10.1145/1924421.1924439

Eric Allen and Kelly L. Murdock. 2008. Body Language: Advanced 3D Character
Rigging (pap/cdr ed.). SYBEX Inc., USA.

Norman I Badler, Brian A Barsky, and David Zeltzer. 1990. Making Them Move:
Mechanics, Control & Animation of Articulated Figures. Routledge.

Stephen W. Bailey, Dalton Omens, Paul Dilorenzo, and James F. O’Brien. 2020. Fast
and Deep Facial Deformations. ACM Trans. Graph. 39, 4, Article 94 (July 2020),
15 pages. https://doi.org/10.1145/3386569.3392397

Eric Allan Bier. 1987. Skitters and jacks: interactive 3D positioning tools. In Proceedings
of the 1986 workshop on Interactive 3D graphics. ACM, 183–196.

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
mesh processing. CRC press.

Eric Brochu, Tyson Brochu, and Nando de Freitas. 2010. A Bayesian interactive
optimization approach to procedural animation design. In Proceedings of the 2010

ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics
Association, 103–112.

Ozan Cetinaslan and Verónica Orvalho. 2018. Direct Manipulation of Blendshapes
Using a Sketch-Based Interface. In Proceedings of the 23rd International ACM
Conference on 3D Web Technology (Poznań, Poland) (Web3D ’18). Association
for Computing Machinery, New York, NY, USA, Article 14, 10 pages. https:
//doi.org/10.1145/3208806.3208811

Pif Edwards, Chris Landreth, Mateusz Popławski, Robert Malinowski, Sarah Watling,
Eugene Fiume, and Karan Singh. 2020. JALI-Driven Expressive Facial Animation
and Multilingual Speech in Cyberpunk 2077. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Talks (Virtual Event, USA) (SIG-
GRAPH ’20). Association for Computing Machinery, New York, NY, USA, Article
60, 2 pages. https://doi.org/10.1145/3388767.3407339

Rosenberg Ekman. 1997. What the face reveals: Basic and applied studies of spontaneous
expression using the Facial Action Coding System (FACS). Oxford University Press,
USA.

Krzysztof Z Gajos, Mary Czerwinski, Desney S Tan, and Daniel S Weld. 2006. Exploring
the design space for adaptive graphical user interfaces. In Proceedings of the working
conference on Advanced visual interfaces. 201–208.

Sarah Gibson, Paul Beardsley, Wheeler Ruml, Thomas Kang, Brian Mirtich, Joshua
Seims, William Freeman, Jessica Hodgins, Hanspeter Pfister, Joe Marks, et al. 1997.
Design galleries: A general approach to setting parameters for computer graphics and
animation. (1997).

Michael Gleicher. 1992. Integrating constraints and direct manipulation. In Symposium
on Interactive 3 D Graphics: Proceedings of the 1992 symposium on Interactive 3 D
graphics, Vol. 1992. 171–174.

Martin Guay, Marie-Paule Cani, and Rémi Ronfard. 2013. The line of action: an intuitive
interface for expressive character posing. ACM Transactions on Graphics (TOG) 32,
6 (2013), 1–8.

Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi. 2014. Crowd-powered parameter
analysis for visual design exploration. In Proceedings of the 27th annual ACM
symposium on User interface software and technology. ACM, 65–74.

Paul G Kry, Doug L James, and Dinesh K Pai. 2002. Eigenskin: real time large de-
formation character skinning in hardware. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 153–159.

Manfred Lau, Jinxiang Chai, Ying-Qing Xu, and Heung-Yeung Shum. 2009. Face poser:
Interactive modeling of 3D facial expressions using facial priors. ACM Transactions

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

https://doi.org/10.1145/3379337.3415877
https://doi.org/10.1145/1924421.1924439
https://doi.org/10.1145/1924421.1924439
https://doi.org/10.1145/3386569.3392397
https://doi.org/10.1145/3208806.3208811
https://doi.org/10.1145/3208806.3208811
https://doi.org/10.1145/3388767.3407339

172:12 • Tagliasacchi et al.

Fig. 18. Rig UI layouts on models for which no hand-crafted comparison is available. a) Dan b) Angela c) Prague Boy d) Clara e) Pidoras all by
©Chris Landreth f) Mery Project by ©{José Manuel García Alvarez and Antonio Francisco Méndez Lora} g) Nico by ©Chad Vernon (chandmv).

on Graphics (TOG) 29, 1 (2009), 3.
Binh H. Le, Mingyang Zhu, and Zhigang Deng. 2013. Marker Optimization for Facial

Motion Acquisition and Deformation. IEEE Transactions on Visualization and
Computer Graphics 19, 11 (Nov. 2013), 1859–1871. https://doi.org/10.1109/TVCG.
2013.84

John P Lewis and Ken-ichi Anjyo. 2010. Direct manipulation blendshapes. IEEE
Computer Graphics and Applications 30, 4 (2010), 42–50.

Hao Li, Jihun Yu, Yuting Ye, and Chris Bregler. 2013. Realtime Facial Animation with
On-the-Fly Correctives. ACM Trans. Graph. 32, 4, Article 42 (July 2013), 10 pages.
https://doi.org/10.1145/2461912.2462019

José Carlos Miranda, Xenxo Alvarez, João Orvalho, Diego Gutierrez, A Augusto Sousa,
and Verónica Orvalho. 2011. Sketch express: facial expressions made easy. In
Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and
Modeling. ACM, 87–94.

Niloy J. Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. 2012. Symmetry in 3D
Geometry: Extraction and Applications. In EUROGRAPHICS State-of-the-art Report.
https://doi.org/10.1111/cgf.12010

Fionn Murtagh and Pedro Contreras. 2012. Algorithms for hierarchi-
cal clustering: an overview. WIREs Data Mining and Knowledge
Discovery 2, 1 (2012), 86–97. https://doi.org/10.1002/widm.53
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.53

Victor Navone. 2020. Facial Animation for Feature Animated Films: Animating stylized
facial expressions. https://www.thegnomonworkshop.com/tutorials/facial-animation-
for-feature-animated-films (2020).

Jason Osipa. 2010. Stop Staring: Facial Modeling and Animation Done Right (3rd ed.).
SYBEX Inc., USA.

Rick Parent. 2012. Computer animation: algorithms and techniques. Newnes.
Ryan Schmidt, Karan Singh, and Ravin Balakrishnan. 2008. Sketching and composing

widgets for 3d manipulation. In Computer graphics forum, Vol. 27. Wiley Online
Library, 301–310.

Thomas W Sederberg and Scott R Parry. 1986. Free-form deformation of solid geometric
models. In Proceedings of the 13th annual conference on Computer graphics and
interactive techniques. 151–160.

Mike Seymour. 2016. Put your (digital) game face on. (2016). https://www.fxguide.
com/fxfeatured/put-your-digital-game-face-on/

Mike Seymour. 2018. Making Thanos Face the Avengers. (2018). https://www.fxguide.
com/fxfeatured/making-thanos-face-the-avengers/

Mike Seymour. 2019. Bebyface in Bebylon. (2019). https://www.fxguide.com/
fxfeatured/bebyface-in-bebylon/

Karan Singh and Eugene Fiume. 1998. Wires: a geometric deformation technique. In
Proceedings of the 25th annual conference on Computer graphics and interactive
techniques. 405–414.

Marc P Stevens, Robert C Zeleznik, and John F Hughes. 1994. An architecture for an
extensible 3D interface toolkit. In Proceedings of the 7th annual ACM symposium on
User interface software and technology. 59–67.

Tanasai Sucontphunt, Zhenyao Mo, Ulrich Neumann, and Zhigang Deng. 2008. Interac-
tive 3D facial expression posing through 2D portrait manipulation. In Proceedings of
graphics interface 2008. Canadian Information Processing Society, 177–184.

Jerry O Talton, Daniel Gibson, Lingfeng Yang, Pat Hanrahan, and Vladlen Koltun.
2009. Exploratory modeling with collaborative design spaces. ACM Transactions on
Graphics-TOG 28, 5 (2009), 167.

J. Rafael Tena, Fernando De la Torre, and Iain Matthews. 2011. Interactive Region-Based
Linear 3D Face Models. ACM Trans. Graph. 30, 4, Article 76 (July 2011), 10 pages.
https://doi.org/10.1145/2010324.1964971

Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard,
Patrick Perez, and Theobalt Christian. 2017. MoFA: Model-based Deep Convolu-
tional Face Autoencoder for Unsupervised Monocular Reconstruction. In The IEEE
International Conference on Computer Vision (ICCV).

Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. 2011. Realtime performance-
based facial animation. In ACM transactions on graphics (TOG), Vol. 30. ACM.

Lance Williams. 1990. Performance-driven facial animation. In ACM SIGGRAPH
Computer Graphics, Vol. 24. ACM, 235–242.

Eduard Zell, JP Lewis, Junyong Noh, Mario Botsch, et al. 2017. Facial retargeting with
automatic range of motion alignment. ACM Transactions on Graphics (TOG) 36, 4
(2017), 154.

ACM Trans. Graph., Vol. 40, No. 4, Article 172. Publication date: August 2021.

https://doi.org/10.1109/TVCG.2013.84
https://doi.org/10.1109/TVCG.2013.84
https://doi.org/10.1145/2461912.2462019
https://doi.org/10.1111/cgf.12010
https://doi.org/10.1002/widm.53
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.53
https://www.fxguide.com/fxfeatured/put-your-digital-game-face-on/
https://www.fxguide.com/fxfeatured/put-your-digital-game-face-on/
https://www.fxguide.com/fxfeatured/making-thanos-face-the-avengers/
https://www.fxguide.com/fxfeatured/making-thanos-face-the-avengers/
https://www.fxguide.com/fxfeatured/bebyface-in-bebylon/
https://www.fxguide.com/fxfeatured/bebyface-in-bebylon/
https://doi.org/10.1145/2010324.1964971

	Abstract
	1 Introduction
	2 Related Work
	3 Design Principles
	3.1 Feeling of Direct Manipulation
	3.2 UI Elements
	3.3 UI Layout Design Objectives

	4 Layout Optimization Algorithm
	4.1 Integer Quadratic Programming
	4.2 Optimization Pre-processing
	4.3 Implementation Details

	5 User Study
	5.1 Experiment Setup and Protocol
	5.2 Analysis

	6 Results and Discussion
	7 Conclusion
	References

