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Figure 1. Interacting with high-dimensional face parameters using a variety of devices, is a challenging task (a), often resulting in implausible facial

expressions: the eyelids inter-penetrate and the neck muscles are overstretched in (b). We address this problem by interactively projecting user created

expressions onto a subspace of natural or stylized expressions, called a face manifold (c), learned using an autoencoder from existing facial animation

data. Manifold projection enables rapid user exploration of the rich multidimensional subspace of expressive faces (d). These exploratory expressions

can then be further adjusted interactively via a 2D embedding (e) that facilitates incremental refinement of expression on and off the manifold (f).

ABSTRACT

Posing expressive 3D faces is extremely challenging. Typ-
ical facial rigs have upwards of 30 controllable parameters,
that while anatomically meaningful, are hard to use due to re-
dundancy of expression, unrealistic configurations, and many
semantic and stylistic correlations between the parameters.
We propose a novel interface for rapid exploration and re-
finement of static facial expressions, based on a data-driven
face manifold of “natural” expressions. Rapidly explored face
configurations are interactively projected onto this manifold
of meaningful expressions. These expressions can then be
refined using a 2D embedding of nearby faces, both on and off
the manifold. Our validation is fourfold: we show expressive
face creation using various devices; we verify that our learnt
manifold transcends its training face, to expressively control
very different faces; we perform a crowd-sourced study to eval-
uate the quality of manifold face expressions; and we report
on a usability study that shows our approach is an effective
interactive tool to author facial expression.
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INTRODUCTION

Emulating the complex expression conveyed by a human face,
on digital 3D models, is a difficult task for actors and ani-
mators alike. Subtle mistakes in facial nuance can plunge an
animated character into the Uncanny Valley, where the au-
dience loses trust and empathy with the character [40]. The
importance of realistic CG human faces, however, cannot be
overstated. A diverse set of applications ranging from enter-
tainment, medicine, education, and avatars, are all empowered
by the ability to model, pose, and simulate human faces.

The facial rig is often comprised of a large (typically 30+)
set of target blendshapes representing various facial config-
urations, for eg. those of the Facial Action Coding System
(FACS) [17, 34]. Facial expressions result from a user con-
trolled weight interpolation of these targets. The onus of ma-
nipulating these weights to author complex facial expressions,
however, remains tedious in the hands of the user.

Individual blendshapes while semantically meaningful, of-
ten exhibit correlations, conflicts and significant redundancy.
Even identifying a constituent subset of active blendshapes
that model an expression, can be ambiguous and difficult. Se-
quentially experimenting with such a parameter space through
independently operated weight sliders is particularly painful
since only a small non-linear subspace of blendshape weights
correspond to meaningful facial expressions. This makes un-
constrained exploration of all blendshape weight configura-
tions prone to generating implausible expressions. It is useful
to restrict exploration to the subspace of plausible face config-
urations only. This allows users with limited understanding of
blendshapes, face anatomy, or facial animation experience to
produce complex expressions faster and easier.
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Real-world high dimensional data (such as images or blend-
shape weights) lie on a low-dimensional subspace embedded
in the high-dimensional space. In the data science literature
that low-dimensional subspace is referred to as a manifold.
We do not presume any user expertise in facial anatomy or
animation. Instead, we capture this domain expertise as a man-
ifold of “natural” (realistic or stylized) faces, as represented
by a training corpus of sample expressive faces. Our face
manifold is learnt from the corpus using a denoising autoen-
coder, and encoded by the latent space of the network [51].
Restricting interactive manipulated faces to this subspace or
manifold of plausible configurations (see Fig. 1) addresses the
above parameter space problems, and keeps facial expressions
consistent for a given character. Current face manipulation
interfaces ranging from a simple array of weight sliders, to
image or video based performance capture [26, 52], direct ma-
nipulation [35], and sketch-based posing of faces [22], can all
benefit from our approach by minimally altering their output
to project onto a desired face manifold (see Fig. 1(a-c)).

Limiting faces to always lie within the potentially incomplete
space of a data-driven manifold however, can be over constrain-
ing. We therefore allow iterative refinement of expression, by
sampling the neighbourhood of an exploratory face, both on
and off the manifold to create an interactive 2D embedding
of nearby faces, with qualitative feedback on their distance
to the face manifold (see Fig. 1(e)). The refined face can be
used to produce subsequent neighbourhood embeddings, as
well as bookmark specific faces for future use. A collection of
expressive face bookmarks can be added to the data corpus to
re-train the face manifold, bootstrapping the construction of a
character face manifold.

Our implementation of manifold construction, projection and
refinement is shown on a variety of inputs such as a face cam-
era, game controller, and traditional sliders. Our manifold
trained on a FACS-like rig, is also shown to be face agnostic,
i.e. the learnt manifold of blendshape weights can meaning-
fully control face geometries quite different from the one used
in training. We use a crowd-sourced study to evaluate the
quality of the manifold in capturing expressive faces, and its
impact on fixing unnatural faces. Finally, we perform a 10-user
usability study that shows our approach to be an effective inter-
active tool to author facial expression, that compares favorably
to the interactive control of independent face parameters.

Our main contributions are: 1) A data-driven model to cap-
ture a subspace of natural face expressions, and an operator
to project faces onto this manifold; 2) A demonstration that
interactive manifold projection can enable the rapid explo-
ration of meaningful facial expressions by untrained novices;
3) A refinement interface to interactively manipulate the high-
dimensional face space in the vicinity of an expression, both
on and off the manifold.

RELATED WORK

We review frameworks and tools for creating facial expressions
(Fig. 2), and discuss prior work on denoising methods, and
systems for the exploration of large dimensional spaces.
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Figure 2. Comparing our method to other approaches for posing faces.

Figure 3. A face rig in Maya
®

with sliders for blendshape weights.

Animating 3D face geometry

Blendshape rigs are arguably the most popular choice for real-
istic or stylized character animation [34]. Each blendshape is a
target face, such as a smile, pucker, or squint, representing the
result of facial action(s) on a neutral face. A facial expression
or pose is the weighted linear combination of these blend-
shapes. Traditional face posing interfaces in software like
Blender or Autodesk Maya®, are thus simple arrays of sliders
and widgets, for animators to control blendshape weights (Fig.
3). Individually and sequentially manipulating blendshape
weights, and even locating a desired target in the widget array
is tedious. Over time animators thus memorize the function
and layout of hundreds of sliders to efficiently pose a face.
Professional 3D animation unsurprisingly requires about one
hour of labor per second of animation [35].

Face posing systems

Performance or motion capture systems use the motion of a
human actor to drive a 3D face model [53]. These methods
track 3D markers on an actor’s face via a multi-camera system,
and compute time-varying blendshape weights that match the
moving markers, to drive the animated expression of a syn-
thetic 3D face [6, 16, 59]. High-end performance capture
typically requires substantial imaging hardware and manual
clean-up of the resulting face animation. Approaches based on
ordinary web cameras [9, 19, 26] or low-cost depth cameras
[7, 37, 38, 52] have been proposed to overcome cumbersome
motion capture setup. These methods are easier to deploy, but
produce coarser results and can be non-trivial to map to arbi-
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trary 3D face geometry. Motion capture methods are strongly
dependent on camera hardware and actor performance. They
also do not inherently restrict geometry to lie within any sub-
space of meaningful expressions, and can thus benefit from
our work as a post projective step (Fig. 9a).

Sketch-based, and direct manipulation techniques have been
proposed to overcome the tedium of sequentially controlling
individual sliders. Face Poser [31] combines user input with
a facial prior learned from a prerecorded facial expression
database. Such systems use screen-space 2D point, stroke and
curve constraints to pose a 3D facial model. Sketch Express
[43] is a facial sketching interface based on drawing simple
strokes in predefined 2D drawing regions. Direct manipulation
methods [35] pose 3D faces by manipulating points on the
geometry and inverse computing blendshape weights to match
the points. Similarly, the motion of user specified points can
be minimized, when optimizing blendshape weights to miti-
gate self-collisions and geometric mangling due to blendshape
interference [36]. 2D portrait manipulation interfaces [48]
map the manipulation of predefined curves of a 2D portrait, to
drive 3D marker-based facial expressions. These approaches
map user interaction to a subspace of plausible facial expres-
sions using geometric and collision constraints. While these
approaches are better than unconstrained manipulation, they
tend to be face geometry specific and are unable to capture
non-geometric or stylistic constraints. Our data-driven mani-
fold approach addresses both these issues, and integrates well
with existing animation workflows.

Face Manifolds

Face manifolds have been explored in various 2D contexts
based on 2D landmarks or image pixel data [11, 12, 13, 45, 55],
and based on the geometric sampling of the 3D facial surface
in 3D [15]. In contrast, our approach is blendshape based:
an animation-data-driven, sparse, and compact subspace of
blendshape weights that capture facial expression.

Denoising autoencoders

Machine learning denoising methods are increasingly applied
in computer graphics for a variety of purposes. Denoising is
an unsupervised learning technique used to train autoencoders
to detect structure in the given input [51]. Denoising autoen-
coders have been applied to problems such as in-painting
[57, 58], denoising Monte-Carlo renderings [3, 10] and fixing
corrupted animation data [23, 41, 54].

Our work is inspired by recent advances in skeletal-based
animation [24, 25], that use convolutional autoencoders to
learn a manifold from a motion capture database. Projecting
invalid or corrupt data onto this manifold can fix motion errors
and reconstruct natural movement. Additionally, high-level
character constraints such as a locomotion trajectory or the
target of a punch, can be mapped to the motion manifold, to
produce motion that is both goal-directed and natural. We use
a similar approach, utilizing denoising autoencoders to learn a
manifold of static facial expressions.

Exploration of high-dimensional spaces

Exploring high-dimensional design spaces for creative author-
ing tasks is difficult. The baseline approach, is still to manipu-

Figure 4. Multiple conflicting blendshapes are activated which produces

unnatural face (outside of the face manifold). While faces that belong to

the manifold are natural.

late a collection of uni-dimensional sliders. Smart Suggestion
and VisOpt Slider interfaces [29] use a goodness function,
to interactively visualize the distribution of goodness in the
design space. The goodness function is obtained via crowd-
sourcing pairwise comparisons between different parameter
configurations. High-quality 3D models can be created by
estimating the distribution of good models in a design space,
where goodness is based on tracking the modeling activity of
a distributed community of users [49]. In contrast, we directly
learn the space of natural facial expressions from pre-existing
datasets, an approach that is cost-effective and scales well to
high dimensional parameter spaces.

Design galleries present suggestions, to iteratively guide users
towards desired parameter configurations, by asking them to
rank or choose from multiple candidate configurations [20,
33, 8, 60]. In contrast, we want the user to be able to rapidly
explore the face space interactively and experiment with, or
further refine their choices.

FACE MODEL

Creating a particular facial expression usually involves the
manipulation of a face model — a reference face rig featuring
a neutral expression that can be modified using a set of user
controls, which are typically blendshape weights. Mathemat-
ically, such a face model is a simple vector sum as follows:

f = b0 +
n

Â
k=0

wk(bk �b0) (1)

where f 2 Rn is the resulting face, b0 is the neutral face, and
bk 2 Rn are target blendshapes with weights wk 2 R, (usually
[0,1]), that modify b0.

Blendshapes are user intuitive but non-orthogonal, and sparse
representation. This means that different blendshapes may
be redundant in their action as well as conflict with one an-
other, for eg. activating a “squint” and “eyebrows up” sim-
ulataneously (Fig. 5(right)). It is thus important to restrict
exploration to the subspace of plausible face configurations,
which we call the face manifold (Fig. 4).

MANIFOLD LEARNING

Our definition of realistic or stylized “natural” expressions
is a subspace or manifold based on an input corpus of posed
faces. Therefore, the degree of naturalness and plausibility
is fully determined by the training data. Formally, given a
facial expression x 2 Rn where xi is the weight of each of
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Figure 5. Top: Example of the blendshapes affecting the top part of the

face where the last face is a combination of the 4 blendshapes. Bottom:

Example of the blendshapes affecting the bottom part of the face where

the last face is a combination of the 4 bottom blendshapes.

n blendshapes, we wish to learn a manifold projection op-
erator y = F(x),y 2 Rm and an inverse projection operator
x̂ = F̂(y), x̂ 2 Rn. The inverse projection operation F̂ tries to
produce an x̂ which lies within the subspace of valid facial ex-
pressions. We learn the projection operation F and its inverse
F̂ using a denoising autoencoder and therefore x corresponds
to the visible units and the hidden units at the deepest layer
correspond to y (Fig. 6). Propagating the resulting values of
the hidden units at the deepest level backward to reconstruct
visible units corresponds to the inverse operation F̂.

Data pre-processing and representation

In our implementation, we collected facial animation data
from the animated movie Subconscious Password [30], which
encompasses a collection of shots, each ranging from 20 to
1,000 frames at 24 frames per second. We exclude blend-
shapes that were not used in the animation process, obtaining
a final set of 31 blendshapes and the neutral face. We as-
sume that all faces contained in the training data are “natural”
(realistic or stylized) because they were manually authored.

Each frame provides a 31D weight vector, which we separate
into two groups affecting the top (10 blendshapes), and bottom
part (21 blendshapes) of the face (Fig. 5). This decision is
motivated by multiple factors: the motion affecting the top
and bottom parts of the face are largely separable and under
independent anatomic control [1]; input data will likely be
incomplete in terms of capturing all combinations of upper
and lower face expressions; training a manifold where samples
have the same top and varying bottom expressions could lead
to a single average bottom expression as the network output;
users often wish to control the expression on the two parts in
isolation from each other. Following these observations, we
train separate autoencoders for the two parts of the face.

While our dataset contains a large number and variety of facial
expressions, it is imbalanced as some expressions appear more
often that others. For example, close-to neutral expressions
greatly outnumber smiling expressions. Imbalanced datasets
can result in bias and overfitting, where the network learns to
perform well on one set of expressions and ignore others. We
mitigate this problem by first running a k-means algorithm [39]
to separate the data into clusters. We force all clusters to have
a similar number of samples by oversampling the minority
clusters and undersampling the majority clusters, using the
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Figure 6. Overview of our denoising autoencoder. We train two such

autoencoders for the top and bottom part of the face.

Synthetic Minority Over-sampling Technique (SMOTE) [14].
To undersample a cluster, we randomly pick samples to be
removed. We use a balanced set of 10,000 samples to train our
face manifold.

Denoising Autoencoder for Learning Motion Data

Autoencoders exploit the idea that the data is concentrated
around a low-dimensional manifold or a small set of mani-
folds, and aim to learn the structure of those manifolds [21].
Autoencoders impose a bottleneck at the deepest hidden layer
which forces a compressed knowledge representation of the
original input, to capture any structural correlations in the
training data. Denoising autoencoders are an extension of
classical autoencoders but are exposed to partial corruption of
the input pattern during training, to better handle noisy device
input in our context.

We train 2 denoising autoencoders, one for the top and one
for the bottom half of the face. The input size for the top is
10 dimensional and for the bottom is 21. Each autoencoder
contains 3 hidden layers with different number of units (top:
7, 4, 7; bottom: 12, 7, 12). For a single hidden layer k, filter
weights uk and biases tk, the projection operation from input
vector x to hidden units is given by:

Fk(x) = ReLU(uk ⇤x+ tk) (2)

except for the last layer, where we use a sigmoid activation
function (Fig. 6). The number of hidden layers and the size of
each hidden layer in the autoencoder was determined during
training by choosing the best combination that produced the
smallest loss error (Eq. 3) on the validation data.

Training

Denoising autoencoders are typically trained to retrieve an
original input, given an altered version of such input. To train
our denoising autoencoder, we corrupt input vectors x to a new
vector xc by adding Gaussian noise, and the network is trained
to reproduce the original input x. We find network parameters
q = (u, t) for each layer such that the following loss function
measuring the squared reproduction error and the L1 norm of
the output vector of activations (x̂) is minimized. The L1 norm
term acts as a regularizer to ensure that the final output of the
blendshapes weight is sparse. In other words we want the out-
put expressions to be achieved by activating the least number
of blendshapes as possible [34]. The amount of sparsity is
controlled by the l parameter (0.1 in our experiments).

Loss(x) = ||x� F̂(F(x))||22 +l Â
i
|x̂i| (3)
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The relationship between the blendshapes is highly nonlinear.

Figure 8. Comparison of our method vs. PCA. Left: Unnatural face.

Middle: Result of applying the PCA still seems unnatural. Right: Our

method brings the expression closer to the input dataset.

To minimize this function we perform a stochastic gradient
descent. We input the corrupted elements xc from the database,
and using autograd system in Pytorch to calculate derivatives
of each node in the network, we update the network parame-
ters q [44]. We use the adaptive gradient descent algorithm
Adam [27] to improve training speed and quality. Training is
performed for 150 epochs on an Nvidia GeForce GTX 1080
GPU.

Overfitting

Overfitting can be a concern when the training dataset size
is not large. While the size of our dataset is comparable to
other training datasets described in learning literature [50, 2],
we would like our approach to be applicable to smaller or
evolving datasets of character animation data.

We address overfitting by: balancing the dataset to avoid over-
representation of certain expressions; training two separate
autoencoders for the top and bottom face, that have a lower
dimensionality than a single autoencoder for the full face (Fig.
6); and using a Dropout [47] of 0.2 during training.

Design choices

Face manifolds tend to be non-convex in shape and capture
complex non-linear relationships (Fig.7) between blendshapes.
Autoencoders provide a more powerful representation for such
structure than baseline approaches such as PCA (Principal
Component Analysis) (Fig. 8). Variational autoencoders learn
the parameters of a probability distribution representing the
training data. This learned distribution can then be sampled
to produce novel data but is not well suited to our goal of
denoising the corrupted input. We experimented with general
neural networks and autoencoders (without Gaussian noise)
but given that we want our approach to be applicable to a
variety of interfaces and device inputs, we found denoising

autoencoders to produce the smallest reconstruction error and
show the most resilience to imperfect input.
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Figure 9. Slider, Gamepad: Manifold projection augmented slider and

gamepad interfaces for posing faces. Camera: from an image of a face

(a), face muscle activations can be estimated (b), that may produce im-

plausible results (c), corrected by manifold projection (d).

FACE EXPLORATION

Given a face manifold trained on pre-existing data, we can
project any face input onto the manifold. Faces may be posed
using input from sources such as web cameras, hand or face
trackers, game controllers, or a traditional weight slider based
interface. The subspace of meaningful faces is small relative
to space of all configurations and projecting input onto this
manifold keeps a user from getting lost in a sea of meaning-
less and mangled faces. We experimented with 3 manifold
projection augmented interfaces: a face camera, traditional
sliders, and a gamepad controller.

Slider interface

Slider-based interfaces are dominant in facial animation prac-
tice. We augment such interfaces by automatically applying
our manifold projection operator to ensure that users never
leave the subspace of natural facial expression (Fig.9). This en-
ables rapid exploration on the manifold and also aids novices
in understanding blendshape correlations when posing faces.
For example, increasing “Jaw forward”, also visibly increases
“Jaw drop” upon manifold projection, to capture the natural
behavior of an open jaw. The current projected values used to
pose the face are shown beside the slider, and as red bars in
the slider background.

Camera interface

There is extensive research in analyzing facial expressions
from from images [42]. OpenFace [4, 5] is able to estimate
values for 15 blendshapes from an image of a face. Directly
using these blendshape weights to pose 3D faces does not
always produce plausible results since the outcome depends
on quality of the image, lighting conditions, quality of the data
set used for training, and the robustness of analysis algorithm.
We apply our manifold projection technique to produce more
natural facial expressions and fix corrupt input (Fig.9).
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Gamepad controller

Gamepad controllers can simultaneously control multiple
blendshape weights to pose avatar faces in games. Figure
9 shows an example layout for controlling blendshapes using
a gamepad. Simultaneous control of many blendshapes is
fast but more susceptible to producing unnatural faces (see
accompanying video), which are readily corrected by manifold
projection. Our approach thus enables the use of a wider range
of device input for posing faces.

FACE REFINEMENT

Most approaches in facial animation solely encompass a face
exploration stage (without correction by a manifold). How-
ever, regardless of the input method used, and even with our
correction through projection onto the manifold, face posing
via manipulation of blendshape weights remains imprecise due
to the complexity of combining multiple blendshapes. After
posing the face, the user may find that the result is close to an
envisioned facial expression, but may still require fine-tuning
to fit their artistic vision. We thus propose a novel interface
to face refinement by learning a latent space embedding only
within the vicinity of an explored face. This embedding allows
users to visualize and interactively refine the current facial
expression or produce new highly exaggerated expressions.

Latent space embedding

We create a 2D latent space around a given facial expression
where similar expressions can be embedded and intuitively
explored. More formally, given a facial expression x0, we
generate a set of similar expressions [x1,x2,x3, ...,xk] where
xi 2 Rn. A naive approach to generating the set of similar ex-
pressions is to sample the subspace around a given expression.
However, since face expressions are high dimensional, where
x0 2 Rn with possibly n > 30, a lot of samples would need to
be produced and most of them would not look natural. Instead,
we sample the neighbourhood following these 3 rules:

1. We identify the list of activated blendshapes whose weight
is above a certain threshold t = 0.15. We uniformly sample
along each activated blendshape axis, such that if i is an index
of the blendshape verifying xi > t , then the sampling boundary
is defined as [xi � t,xi + t]. We repeat the sampling for each
activated blendshape individually to produces a set of samples
S1. This ensures that users will be able to refine their facial
pose along each activated blendshape individually.

2. We build a set S2 by uniformly sampling along all activated
blendshape axes at the same time. This ensures that we have
samples where multiple blendshape weights are varying.

3. We look at the set of previously user-created faces which
we call bookmarks. We find a set of bookmarked faces that are
within a small threshold away from the given facial expression
to produce a set S3. Adding bookmarks allows user to effort-
lessly bring previous faces that they considered plausible and
quickly generate similar results.

The final set of neighbours S is the union of sets S1� 3. To
enable interactive exploration of this space, we require an
adequate representation that both conveys information to the
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will changed if moving in different directions.

user, while supporting easy navigation. An obvious solu-
tion consists of mapping this result space on a 2D represen-
tation that can be visualized and interacted with. Non-linear
manifold learning techniques come as a natural choice for
this kind of problem. Gaussian process latent variable mod-
els (GPLVM)[32] is a probabilistic dimensionality reduction
method that is able to find a lower dimensional non-linear
embedding of high dimensional data.

Our projection operator can be used to measure the distance
between the facial expression and the face manifold to deter-
mine how plausible the facial expression is. This enables an
informative visualization of the latent space where the distance
to the facial manifold presented in the form of color coding
and highlights regions of the latent space that move far away
or lie closer to the manifold (Fig. 10).

Interactive refinement in latent space

Given the 2D latent space visualized as a distance to manifold
color map, we enable interactive navigation through dragging
a pointer inside the 2D space to generate new latent coordi-
nates which are projected back to the high dimensional blend-
shape space. This output is visualized dynamically, which
provides real-time feedback supporting efficient exploration
of the neighbourhood of the initial facial pose (Fig. 10).

To further guide the user in their exploration, we provide an
additional visual aid in the form of images of the neighbouring
faces. These images are shown when the current face posi-
tion is clicked on, and aim to give an intuitive cue on how
the face would change if the user were to move in that direc-
tion, guiding them the right way to obtain the desired pose.
The location of each image is determined by sampling the
neighbourhood along 5 different directions and determining
the point along each direction that is the furthest distance away
from the current pose. Above each image we show the name
of the muscle that changes the most when moving to that area
from the current position. If the user finds a plausible face but
wants to see additional options, they can click the re-refine
button to generate a new latent space from this face.

Design Choices

While the face manifold can be trained offline on a large
dataset, the face refinement interface needs to be able to gener-
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a b c
Figure 11. The projection operator fails to find a satisfactory result when

the expression is missing from the training data. (a) Neutral expression

(b) Buccinator muscle activated. (c) The projection is far from (b).

ate its latent space “on the fly” with little data of only the neigh-
bouring faces (sets S1-3). Therefore, deep learning approaches
used to build the face manifold are not suitable. GPLVM meets
various criteria needed for our refinement interface: creates
a non-linear mapping between 2D latent space and the blend-
shape space, requires little data (about 10 faces), requires short
training time (seconds) to quickly re-refine around a chosen ex-
pression or add new custom expressions, interpolates between
the embedded expressions for continuous exploration. PCA is
not well suited to model the non-linear mapping from the very
low dimensional latent space to the high dimensional blend-
shape space and other non-linear dimensionality techniques
like Eigenmaps, t-SNE, LLE are less suited to interpolating
between the embedded expressions.

MANIFOLD QUALITY ASSESSMENT

The quality of the produced manifold can be evaluated in mul-
tiple ways: a “good” manifold should be expressive, exclude
unnatural faces, and generalize to a variety of rigs.

Expressiveness. Our manifold captures the expressive range
of the given face, as represented by the input data. A limited
dataset can unintentionally leave out meaningful expressions,
or intentionally impose an expressive style on a face since
the learned manifold is highly representative of the input data.
For example, our training data is missing expressions where
the buccinator muscle—the major facial muscle underlying
the cheek that aids whistling and smiling—is highly activated.
When applying the projection, the resulting face is closer to
a neutral expression (see Fig. 11). Incomplete manifolds can
always be improved with a richer data-set, or by adding novel
expressions created by our refinement interface to the original
training data and recomputing a more expressive manifold.

Unnatural faces. Another quality measure is the represen-
tation of undesired or unnatural faces by the manifold. Our
manifold is trained by minimizing the error difference be-
tween facial expressions in the input data and their corrupted
counterparts. We comprehensively evaluated the presence of
unnatural faces in the manifold and the quality of the projec-
tion operator via a crowd-sourced study on Amazon Mturk (40
participants, excluding subjects who failed the understanding
test below). Each participant was shown a different set of 100
images of facial expressions, one image at a time, and asked
(yes/no) if the face looked natural (example faces were shown
to provide meaning to the word “natural”). Images of facial
expressions were generated as follows:

• Random sample set: 35 randomly sampled faces. Each
expression f 2 Rn ws generated by uniformly sampling the
n dimensional face space.

a b c d

pr
oj
ec
tio
n

Figure 12. Unnatural faces (a,b) are projected onto the manifold to find

the closest natural expression. Natural expressions (c,d) remain natural

after the projection.

• Projection set: projections of the 35 faces from the random
sample set onto the manifold.

• Repeat set: 10 faces repeated from each of the above two
sets, to assess consistency of participant response. Data
of subjects (2) who inconsistently answered on 5 or more
repeats was excluded.

• Understanding set: 5 natural (fully activating a single blend-
shape corresponding to a natural expression) and 5 unnat-
ural faces (extreme self-intersecting geometry), manually
chosen to test user understanding of the task. We excluded
the data of participants (4) who incorrectly answered to 2
or more of these trials.

Table 1 shows a summary of the study results. Of the 1,400
random samples (40 participants presented with a different
set of 35 random faces), only a few were found to be natural.
In contrast, after projection on the manifold, these random
faces were largely perceived as natural, suggesting that our
projection operator finds the closest natural expression with an
average distance in blendshape space of 1.8 between to orig-
inal face, and its projected counterpart (Fig. 12a,b). Further,
the faces from the random sample set that were found natural,
were also found natural after projection, with an average dis-
tance of 0.24 between the pairs (Fig. 12c,d). This suggests
that while our manifold is a good proxy for natural faces, there
are also meaningful facial expressions that lie off the manifold,
which can be reached by our refinement interface.

% of natural faces in the Random set 8% (112/1400)
% of natural faces in the Projection set 87% (1218/1400)
% of unnatural faces in the Random set
that became natural after projection 89% (1146/1288)
% of natural faces in the Random set
that remained natural after projection 98% (109/112)

Table 1. Results of the crowd-sourced Amazon Mturk study evaluating

the quality of the manifold based on the unnatural faces criteria.

Generality. Our manifold was trained on the animation data
for the character in Figure 10. However, as long as the source
and target rigs have corresponding/similar blendshape seman-
tics, face manifold does generalize well across different human
rigs (see Fig. 1, 8, 9, 13 and accompanying video).
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Figure 13. Our manifold generalizes well to other facial rigs that are

based on Facial Action Coding System.

INTERFACE EVALUATION

We conducted a study with participants who had a limited
understanding of blendshapes, face anatomy, or any facial
animation experience, in order to evaluate the potential of our
approach in aiding such users in posing facial expressions.
The study lasted 1 hour and we compensated participants with
a $25 Amazon gift card.

Apparatus

We use the Pytorch Python library to perform data pre-
processing tasks and train our autoencoder model. Once the
model is trained it is serialized and ready to be loaded in a C++
application. The main exploration interface was written in
C++/OpenGL using ImGui for the UI components. A separate
Python-based application showed the refinement UI (the 2D
latent space). Both applications were run on the same machine
simultaneously, and utilized web sockets for intercommuni-
cation. The system ran on a computer with Intel Xeon 16
core 3.5Ghz CPU, GTX1080 GPU and 64GB of RAM with
monitor at a 3840x2160 resolution. The participants used a
mouse and a keyboard to interact with the interface.

Participants

Ten participants (6 female, 4 male; Age: 23-29) took part in
our study: 5 graduate students and 5 participants who have full-
time jobs not related to animation. Six participants reported
having some knowledge about computer animation techniques
but no experience with facial animation specifically.

Study protocol

Our study aimed to evaluate three aspects of our interface:
A1. Discoverability: how easy it is for a user to use the
interface with minimal to no guidance.
A2. Usability: how effective it is to pose face expressions.
A3. Expressivity: how hard it is to pose desired, diverse and
meaningful expressions.

To this effect, we designed two tasks. Task 1 compares two
conditions: the projection+refinement condition, using our
slider based interface with manifold projection and the refine-

ment interface together, and the baseline condition, using the
traditional slider interface without manifold projection. Task

2 was an open-ended exploration task, where we only study
the projection+refinement condition.

Task 1 focused on A1 and A2. Participants were given a refer-
ence facial expression (Fig.14(left)), and instructed to produce
an accurate replica. Participants were not instructed to per-
form the task as fast as possible, but were given a time limit

target faces baselineprojection+refinement

f1

f2

f3

f4

best worst best worst

Figure 14. Four faces ( f1, f2, f3, f4) were shown to the participants dur-

ing the comparative study. For each target face we show best (distance

wise) and worst faces created by the participants per condition.

(3min) to perform the task. They could also submit their work
before the countdown when satisfied with the result. Four
different faces f1, f2, f3, f4 were shown to each participant as
follows: f1, f2 were part of the training data set and belong
to the manifold; f3, f4 were not present in the training set and
were a small distance (0.2) off the manifold (Fig. 14). For
every pair ( fi, f j), the distance d( fi, f j) was greater than a di-
versity threshold 1.0. Each participant was randomly assigned
the condition order of projection+refinement ! baseline,
or baseline ! projection+refinement. The order of presen-
tation of the faces ( fi) was generated randomly for each partic-
ipant. Participants completed the task with the first condition,
and then again with the other condition. We chose to use the
same order of presentation of faces for each condition to maxi-
mize the number of trials between two same facial expressions,
to mitigate any learning/memory effects. Each condition was
prefaced with a 3-5 min training session for that interface.
We administered a questionnaire after each condition using a
5-point Likert scale (1–strongly disagree, 5–strongly agree).

Task2 focused on A3 using the projection+refinement con-
dition only. There are 6 universal emotions: happiness, sad-
ness, anger, surprise, fear, and disgust. Participants were each
randomly given two emotions, and instructed to generate two
different variations of each emotion within 5 min. The partici-
pant could generate a new face either from the last recorded
face, or starting from a neutral expression. Figure 16 shows
some of the user created faces.

Results

Overall, all participants successfully completed the tasks and
created facial expressions within the time limit.

Task 1 – Quantitative results
Figure 15 (left) shows the mean distance error from each of the
target faces fi and overall, per condition. Point estimate and
95% confidence intervals were computed using bootstrapping
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Figure 15. Mean distance error from the target faces ( f1, ..., f4) (left).

Mean distance error difference between the baseline and our method

with and without refinement (right). Error bars are 95% CIs.

face baseline projection projection+refinement

f1 1.24 (std 0.33) 0.76 (std 0.32) 0.70 (std 0.21)
f2 0.57 (std 0.17) 0.30 (std 0.18) 0.22 (std 0.14)
f3 0.95 (std 0.11) 0.69 (std 0.14) 0.54 (std 0.12)
f4 1.04 (std 0.14) 0.63 (std 0.24) 0.50 (std 0.21)

Table 2. Mean distance error in blendshape space.

[28]. The higher values mean higher error, i.e. higher distance
from the target face. The right figure contrasts our approach
with the baseline: point estimates and intervals are estimates of
the difference of mean distance error between the baseline and
our method, computed for each participant (this is possible
given our within-subjects design). In this figure, positive
values mean that our method outperforms the baseline.

On average the participants were able to get closer to the target
faces using our projection slider interface (Fig. 15, Table 2)
with a smaller number of sliders being activated (Table 3). This
can be explained by the manifold activating related muscles
without the user needing to explicitly drag the sliders and
manually activating them. The refinement interface further
allowed participants to fine tune expressions closer to the
target. Additionally, participants were able to reach the coarse
expression resembling the target face (distance to the target 
1.0) faster with our projection slider interface (Table 4).

Discoverability
Participants found the system easy to use (4 strongly agree,
6 agree) and learn (5 strongly agree, 3 agree, 1 neutral, 1
disagree), and that the various functions in the system were
well integrated (3 strongly agree, 5 agree, 2 neutral). As P5
noted, the "learning curve was not hard" and interacting with
the system "felt like playing a game". P1 mentioned that they
can see themselves "spending a lot of time playing with the
system" and that the "lack of previous experience in facial ani-

face baseline projection

f1 9.1 7
f2 6.1 4.9
f3 7.3 6.1
f4 8.7 7.6

Table 3. Mean num-

ber of sliders acti-

vated (value >0.05).

face baseline projection refinement

f1 110 CI[102 ,119] 92 CI[85,99] 21 CI[19,26]
f2 104 CI[96,112] 60 CI[54,66] 26 CI[22,30]
f3 101 CI[92,109] 86 CI[79,92] 25 CI[21,30]
f4 125 CI[117,132] 92 CI[83,102] 22 CI[19,26]

Table 4. Mean time and 95% CIs until the dis-

tance to target reached a threshold of 1.0 and

mean time spent refining the face (in sec).

disgust happines fearanger suprise sadness
Figure 16. Examples of different emotions that were created by the par-

ticipants.

mation didn’t cause any problems". Most participants found
the interface “fun to use” (P1, P2, P3, P5, P7, P8).

Usability and Expressivity
Most participants felt that the interface allowed them to cre-
ate the expression they wanted (4 strongly agree, 5 agree, 1
neutral). A common theme among users was that the projec-

tion slider interface allowed them to create a rough expression
matching the target quicker and easier than the baseline (P1,
P2, P3, P4, P5, P7, P10). P5 liked that the interface "adjusted
related muscles for you, so you don’t have to think afterwards
about additional muscles you need to activate" while P1 men-
tioned that there was "less tweaking involved" and that "they
didn’t have to go through all the sliders to get the result."

The refinement interface proved to be useful for fine tuning
the facial expression with 9/10 participants agreeing that it
helped them create better expressions. P4 and P5 agreed that
the refinement interface "gives you a lot of options that you
didn’t think of before" and that those options were "better than
what they originally created". The distance to manifold color
coding received mixed feedback with 5/10 users saying that
they factored the color coding into their final choice and that
they found faces closer to manifold more natural. 5/10 users
did not use the color coding or used it every other time and
preferred just exploring the the whole space and didn’t mind
choosing faces that were further away from the manifold. Ma-
jority of the participants (8/10) found images of neighbouring
faces useful and often relied on them to navigate the latent
space. Sometimes the images seemed similar and users men-
tioned that they relied on the label (indicating the main muscle
that was changing).

The biggest contrast between the projection slider interface
and the baseline was creation of unnatural faces when chang-
ing slider values. Users found that they were often creating
unnatural faces with baseline interface (1 strongly agree, 6
agree, 2 neutral, 1 disagree) compared to manifold interface
(2 strongly disagree, 7 disagree, 1 agree). While talking about
the posing process, P3 mentioned that manifold projection

"makes the slider adjustment feel more natural".

Slider responsiveness
Most participants (8/10) found that the projection slider in-
terface was more difficult to use once they created a rough
expression of the face and they wanted to make small iso-
lated changes. They often found that making a small change
to one muscle would change other muscles as well that they
didn’t necessarily want. P4 mentioned that "some faces were
harder to make than the others" and it would have been "help-
ful to move sliders in isolation". This was the most common
feedback for faces f3, f4 that are not on the manifold.
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Suggestions for Improvement
Study participants gave useful feedback on how we can im-
prove our system. Some (P3,P4,P6,P7) mentioned that they
wanted to be able to turn off projection for the isolated con-
trol of the individual muscles after posing the face. P5 sug-
gested to add a toggle key-bind to the refinement interface to
quickly switch between the current face and the original face
to see how the face changed/improved. Some users (P2,P4,P8)
wanted to see a more extensive list of muscles that are chang-
ing when moving to certain areas of the latent space instead of
only knowing the one muscle that changes the most.

DISCUSSION

Our approach to the authoring and interactive control of fa-
cial expressions differs from prior work in two main ways.
First, we provide dynamic auto-correction of unnatural faces
into similar but meaningful facial expressions through projec-
tion onto a face manifold. Second, we support finer control
of facial expression by interacting with a dynamically com-
puted manifold that captures the neighborhood of the currently
explored face.

Sense of control. Getting a strong sense of control is critical
to creative authoring [46]. Constraining the user/artist to be
on the space of the learnt manifold does take away an element
of control over the output. During our evaluation however,
participants commented on only wanting isolated control of
the weights after coarse posing was done.

Our goal is to support users in their creative endeavour, but
such support comes at the cost of taking away some decisions.
There is a sweet spot between providing enough assistance
so that the tool is actually helpful, and too much assistance
that can take away sense of control and in some cases, sense
of ownership of the created artifact. Prior work supporting
guided authoring of sketches for novices, such as sketch-sketch
revolution [18] and PortraitSketch [56] also discuss these trade
offs. In our case, however, the user can always refine the face
to lie off the manifold.

Expressiveness. Our approach is limited by the quality and
richness of the data used to build the manifold. While it can
seen as a constraint (and it certainly is in some cases), this
also makes it possible for the user to use a specific dataset as a
way to intentionally bias the manifold to generate expressions
that conform to a particular style.

During an informal evaluation of our approach with a senior
professional animator, he pointed out that “large-scale ani-
mation productions commonly impose a character style guide
to ensure the integrity of a character authored by different
animators”. He referred to this as animating “on-model” or

“off-model” in industry parlance, and said it is precisely what
our concept of “on/off-manifold” captures.

User Demographics. Our tool for interactive exploration on
and around a face manifold serves two goals: first, manifold
projection allows users to pose faces quicker, i.e. manipulat-
ing a few parameters is enough for remaining parameters to
automatically conform to produce an expressive face; second,
the manifold itself captures the desired range of expression
or “on-model” for a character’s face. While expert animators

certainly benefit from visualizing how their posed faces re-
late to the given “on-model” character style, they are already
adept at posing nuanced and expressive faces quickly, and
sometimes prefer to control all face parameters independently.
We chose to formally evaluate our approach with novices and
animation enthusiasts, who have little or no understanding
of facial anatomy, to better measure the impact both on the
quality of a posed face, as well the time speed-up that our tool
offers.

We informally evaluated our approach with a professional ani-
mator. He provided a mix of high-level and detailed feedback.
His overall feeling though was very positive. While he felt
that our approach might not improve the quality of his work,
or help him steer clear of unrealistic faces (he knows his rigs
and its realistic subspace), it would certainly make him more
efficient (exploring coarse expression rapidly). It would also
allow him to work more effectively and uniformly with other
animators on the same character, because the manifold would
provide them with a common expressive baseline.

Limitations. The biggest limitation of our work is the re-
liance of our approach on a meaningful facial manifold. In the
absence of a good representative data set of example face con-
figurations, manifold projection will constrain the exploration
to a small subspace of natural faces. Our definition of a “nat-
ural” expression is fully determined by the training data. To
our knowledge, no open-source database of a large number of
facial animations based only on FACS exists yet. Restricting
the dataset to a single stylized character can introduce biases
and force the manifold to adhere to the stylistic limitations.
Ideally, to learn a general manifold, data should come from
multiple characters with different styles. This would enrich
a space of “natural” expressions and potentially improve the
sense of control. However, there is risk of introducing conflicts
between blendshape correlations which could results in the
network outputting the average of different styles. This is a
subject for future work.

Aside from using pre-existing animation data, the corpus can
be built by showing crowd-sourced users random face config-
urations and asking them to accept or reject them as realistic.
Importantly however, manifolds largely generalize across hu-
man faces and it may be easier to use existing face manifolds
as a baseline for novel characters.

Another limitation is the lack of a guarantee that our refine-
ment technique will precisely embed a desired facial expres-
sion. The embedding is however, constructed using a judicious
sampling of the neighbourhood of a face including faces that
are previously bookmarked, and those that lie both on and off
the manifold. Users can further search this neighbourhood by
incrementally re-embedding a refined face.

Given the importance of static expressive faces for applications
like representative freeze or key-frames for film and animation,
advertising billboards, custom emoji’s and profiles for avatars
in social media and games, the modeling of facial prosthetics,
this paper remained focused on static facial expressions. An
extension of this work to a dynamic or animated face manifold
is subject to future work.
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CONCLUSION

We have presented a workflow to address the interactive explo-
ration and refinement of static facial expressions. Our overall
contribution is a workflow for face posing that uses a mani-
fold learnt from existing facial expression data to constrain a
user’s input, and a subsequent 2D interactive embedding of
the neighbourhood of a face to refine its expression. This
allows users with no previous experience in facial animation
to produce natural faces poses with less effort. Our approach
integrates seamlessly with a variety of high-dimensional input
devices such as cameras, sliders and game controllers. Our
evaluation shows the manifold to be a sound representation
of the subspace of plausible faces, that can generalize across
humanoid face models that are different from the training data-
set. Finally, a user study shows our approach to face manifold
exploration and refinement to compare favourably to indepen-
dent slider manipulation. Faces are crucial to human visual
communication and we see our approach to provide a novel
and compelling workflow to aid users in understanding and
authoring expressive 3D digital faces.
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