
Fast Subspace Fluid Simulation with a Temporally-Aware Basis
SIYUAN CHEN, University of Toronto, Canada and Shanghai Jiao Tong University, China
YIXIN CHEN, University of Toronto, Canada
JONATHAN PANUELOS, University of Toronto, Canada
OTMAN BENCHEKROUN, University of Toronto, Canada
YUE CHANG, University of Toronto, Canada
EITAN GRINSPUN, University of Toronto, Canada
ZHECHENG WANG, University of Toronto, Canada

MC+R

Ours

Relative Error: 0.5268% Relative Error: 0.5293% Relative Error: 0.6637%

t=100 t=200 t=300

Fig. 1. Accurate Koopman-based Fluid Prediction of Vortex Ring Colliding.We compare (above) the ground truth MacCormack + Reflection (MC+R)
solver [Zehnder et al. 2018] to (below) our reduced Koopman-based reconstruction, which leverages a reduced-order temporally-aware subspace with 𝑟 = 150

basis functions. Our approach achieves efficient, near-perfect prediction of arbitrary future fluid states via the 𝑘-th power of the eigenvalue matrix. In this
experiment, parameter 𝑘 = 100.

We present a novel reduced-order fluid simulation technique leveraging

Dynamic Mode Decomposition (DMD) to achieve fast, memory-efficient, and

user-controllable subspace simulation. We demonstrate that our approach

combines the strengths of both spatial reduced order models (ROMs) as well

as spectral decompositions. By optimizing for the operator that evolves a
system state from one timestep to the next, rather than the system state itself,

we gain both the compressive power of spatial ROMs as well as the intuitive

physical dynamics of spectral methods. The latter property is of particular

interest in graphics applications, where user control of fluid phenomena is of

high demand. We demonstrate this in various applications including spatial

and temporal modulation tools and fluid upscaling with added turbulence.

We adapt DMD for graphics applications by reducing computational over-

head, incorporating user-defined force inputs, and optimizing memory usage

with randomized SVD. The integration of OptDMD and DMD with Control

Authors’ addresses: Siyuan Chen, siyuangraphics.chen@mail.utoronto.ca, University

of Toronto, Toronto, Canada and Shanghai Jiao Tong University, Shanghai, China;

Yixin Chen, yixinc.chen@mail.utoronto.ca, University of Toronto, Toronto, Canada;

Jonathan Panuelos, jonathan.panuelos@mail.utoronto.ca, University of Toronto,

Toronto, Canada; Otman Benchekroun, otman.benchekroun@mail.utoronto.ca, Univer-

sity of Toronto, Toronto, Canada; Yue Chang, changyue.chang@mail.utoronto.ca, Uni-

versity of Toronto, Toronto, Canada; Eitan Grinspun, eitan@cs.toronto.edu, University

of Toronto, Toronto, Canada; Zhecheng Wang, zhecheng@cs.toronto.edu, University

of Toronto, Toronto, Canada.

(DMDc) facilitates noise-robust reconstruction and real-time user interac-

tion. We demonstrate the technique’s robustness across diverse simulation

scenarios, including artistic editing, time-reversal, and super-resolution.

Through experimental validation on challenging scenarios, such as collid-

ing vortex rings and boundary-interacting plumes, our method also exhibits

superior performance and fidelity with significantly fewer basis functions

compared to existing spatial ROMs. Leveraging the inherent linearity of the

DMD formulation, we demonstrate a range of diverse applications. This

work establishes another avenue for developing real-time, high-quality fluid

simulations, enriching the space of fluid simulation techniques in interactive

graphics and animation.

CCS Concepts: • Computing methodologies → Modeling and simula-

tion; Physical simulation.

Additional Key Words and Phrases: Model-Reduction, Koopman Theory,

Dynamic Mode Decomposition

1 INTRODUCTION
Fast, responsive, and visually realistic fluid simulation remains a

significant challenge in physics-based animation. Traditional full-

resolution simulations deliver highly detailed fluid flows but are

HTTPS://ORCID.ORG/0009-0009-4309-862X
HTTPS://ORCID.ORG/0000-0001-7547-9587
HTTPS://ORCID.ORG/0009-0005-9643-0965
HTTPS://ORCID.ORG/0000-0001-6966-5287
HTTPS://ORCID.ORG/0000-0002-2587-827X
HTTPS://ORCID.ORG/0000-0003-4460-7747
HTTPS://ORCID.ORG/0000-0003-4989-6971
https://orcid.org/0009-0009-4309-862X
https://orcid.org/0000-0001-7547-9587
https://orcid.org/0009-0005-9643-0965
https://orcid.org/0000-0001-6966-5287
https://orcid.org/0000-0002-2587-827X
https://orcid.org/0000-0003-4460-7747
https://orcid.org/0000-0003-4989-6971

2 • Chen et al.

t=120 t=150 t=180 t=210 t=240 t=270 t=300t=121, t=122, ..., t=148, t=149 t=151, t=152, ..., t=178, t=179 t=181, t=182, ..., t=208, t=209 t=211, t=212, ..., t=238, t=239 t=241, t=242, ..., t=268, t=269 t=271, t=272, ..., t=298, t=299
Traditional Integration

DMD Fast Integration

Λ30
 Λ60
 Λ90
 Λ120
 Λ150
 Λ180

Fig. 2. Long-time Single Step Integration. We demonstrate that our method can perform integration into arbitrary points in time via the exponential
integration of a single matrix (Sec. 4.4). Since the DMD operator is diagonal within the reduced basis, it is trivial to find the matrix that evolves the initial
velocity field to the field at any point in time, significantly accelerating the integration as compared to traditional methods required by PCA. Although the
DMD operator is trained over the velocity field 𝒖, we show the corresponding density field at each time point for clearer visualization.

computationally expensive, limiting their use to offline cinematic

visual effects rather than interactive virtual reality applications.

Reduced-Order Models (ROMs) address this challenge by acceler-

ating simulations through dimensionality reduction. In the context

of fluid dynamics, ROMs approximate the full, high-dimensional fluid
simulation solution space by effectively operating within a reduced,
lower-dimensional subspace. The dynamics of the reduced fluid simu-

lation are then obtained by projecting the high-dimensional solution

space into the reduced space and solving the physical Partial Differ-

ential Equation (PDE) within this subspace. As a result, the subspace

needs to provide a compressed representation of the fluid state, while

also capturing realistic and highly detailed fluid behavior.

Picking which subspace to use for simulation is non-trivial, and

after committing to a subspace, using it for reduced simulation opens

up separate difficulties. First, subspace fluid simulation is notorious

for dissipating high-frequency detail, the kind that is commonly

desired in turbulent flows. Second, it involves computing a static

subspace that can generalize to a diversity of simulation states

expected across a variety of scene interactions and configurations.

Finally, even if one makes use of a linear subspace for simulation,

the advection component of inviscid Euler equations is non-linear

with respect to the fluid state, which requires full-space computation

even with the use of a precomputed subspace.

Instead of committing to the static subspace methodology, we

make use of Dynamic Mode Decomposition (DMD) [Schmid 2010],

a modern flow analysis technique that takes an alternative simpli-

fication to the fluid simulation problem. This formulation linearly

approximates the Koopman operator, which encodes the temporal

evolution of the fluid flow, and performs reduction directly on this

operator [Schmid 2010]. An immediate advantage of reduction on

this operator is that the resulting subspace is imbued with informa-

tion regarding the temporal dynamics of the flow. This temporal

awareness allows us to quickly evaluate the fluid flow at any point

in time directly, without performing any time integration or discrete

fluid advection whatsoever, as shown in Fig. 2.

While DMD has shown great success for use in flow analysis

from the engineering community, we are the first to show how it

can be adapted for use in fluid animation applications in graphics,

such as fluid editing, guiding, interaction, and artistic fluid control.

Our key insight is to leverage the inherent spatio-temporal nature

of the linear DMD operator. By encoding both the spatial nature of
flows in the eigenvector basis and their temporal evolution in the

eigenvalues, each eigenvector-eigenvalue pair becomes representa-

tive of a distinct wave mode.

This spectral-like decomposition allows for directable control of

each mode separately, enabling new forms of creative expression,

such as adjusting the amplitude of temporal frequency bands to

control look-and-feel in interactive editing of fluid animation.

Contributions. In summary, in this paper we:

• introduce Dynamic Mode Decomposition (DMD) for fast

control of fluid simulations with exceptional accuracy, com-

putational speed, and memory efficiency;

• identify that the inherent spatiotemporal nature of the DMD

operator enables control of each wave mode by modification

of eigenvector-eigenvalue pairs;

• demonstrate DMD’s versatility and practicality in the con-

text of interaction and artistic control, such as frequency edit-

ing, time-reversal, super-resolution and simulation styling.

2 RELATED WORKS
Following pioneering work by Foster and Metaxas [1996], Stam

[1999], and Fedkiw et al. [2001], the graphics community has made

significant progress in the visual simulation of fluids. Our method

straddles literature from both fluid control and runtime acceleration.

From foundational work, we aim to demonstrate that DMD arises

naturally as a combination of spatial reduced-order modelling and

spectral decompositions, a unique position that makes it well suited

for fluid control applications.

2.1 Fluid Control
The chaotic nature of fluid behaviour makes artist-directed control

a particularly difficult problem, as it often requires balancing ac-

curacy, efficiency, and the user intuition. Of particular interest for

us are applications in fluid snapshotting, where control frames are
provided that fluid flows into and out of. Numerous prior works

have been done using optimization-based techniques, aiming to

compute optimal control forces that guide fluid flows to match user-

specified keyframes [Inglis et al. 2017; McNamara et al. 2004; Pan

and Manocha 2017; Thürey et al. 2009; Treuille et al. 2003]. How-

ever, the high-dimensional optimization problems make most prior

methods computationally expensive, limiting their application to

real-time and interactive control. To further improve the efficiency,

reduced-order fluid control methods have been proposed, such as

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 3

frequency-aware force field reduction [Tang et al. 2021] and control

with Laplacian Eigenfunctions [Chen et al. 2024]. In this work, we

demonstrate that the reversible nature of the DMD operator makes it

particularly suitable for these problems. Time-reversibility has been

prior explored in graphics [Oborn et al. 2018], but requires the solu-

tion of a modified Poisson problem. In comparison, we demonstrate

that the DMD operator is trivially reversible.

We also take influence from resolution-based smoke control

[Nielsen et al. 2009; Sato et al. 2021], which uses an artist-directed

low-resolution input to produce a high-resolution simulation with

secondary motion, such as smaller-scale turbulence. We demon-

strate that the modes provided by DMD allow for direct application

to these problems. We also similarly can preserve the input features

via projection into the input velocity space similarly to Nielsen et al.

[2009], but show that our quadratic problem is precomputable and

resolves into a simple matrix-vector multiply at runtime.

2.2 Fast Fluid Simulation
Amajor computational bottleneck inmost Navier-Stokes (NS) solvers

is the global pressure projection step, which is computationally ex-

pensive when solved directly, especially for high-resolution simu-

lations. To mitigate this cost, iterative solvers such as Conjugate

Gradient (CG) [Saad 2003] and multigrid methods [Briggs et al.

2000] are commonly employed to exploit the sparsity structure of

the linear operators.

Avoiding this global pressure projection step is a key focus of real-

time methods. To this end, Smoothed-Particle Hydrodynamics (SPH)

[Müller et al. 2003], and later Position-Based Fluids (PBF) [Macklin

and Müller 2013], have become the de facto standard for GPU-based
fluid simulation.More recently, the Lattice BoltzmannMethod (LBM)

has emerged as a powerful grid-based alternative [Chen and Doolen

1998; Chen et al. 2021; Li et al. 2020]. All these methods avoid a

global solve, and are thus embarrasingly parallelizable and highly

suitable for modern GPU architectures. In exchange, however, these

methods often require extremely high resolutions and equivalently

high memory consumption during runtime. By comparison, our

method also avoids this global solve, evolving the system via a

single matrix vector multiply, while simultaneously keeping the

memory footprint low via reduction to a small basis.

2.3 Spatial Order Reduction
In addition to the above parallelization approaches, reduced-order

models present another promising direction for accelerating simula-

tions. These methods aim to simplify the underlying computational

models while preserving essential physical dynamics, thus improv-

ing speed and scalability. ROMs generally fall into two categories:

data-free and data-driven methods.

2.3.1 Data-free ROMs. Data-free ROMs rely on simplified physics-

based formulations to reduce computational complexity without

requiring precomputed datasets. Laplacian Eigenfluids [Cui et al.

2018; De Witt et al. 2012; Liu et al. 2015] has emerged as a class of

data-free reduced-order methods for fluid simulations, representing

states using a set of basis functions that best span a given spatial

domain.

This approach demonstrates the feasibility of order reduction for

fluid simulation. However, because their basis attempts to represent

any divergence-free field, handling intricate boundaries or capturing
fine details often requires a large number of basis functions, and

correspondingly large runtime and memory. If the general type of

flow is known a priori, which is often the case when an artist wants

to apply simulation tools, these priors can be a powerful tool for

improving computational efficiency.

2.3.2 Data-driven ROMs. Data-driven ROMs, in contrast, leverage

statistical techniques and precomputed datasets to approximate

complex fluid dynamics. Essentially, precomputed data already en-

codes essential structures of the fluid flow; one only needs to extract

that flow and simplify the representation elsewhere.

Treuille et al. [2006] used principal component analysis (PCA) to

find this reduced basis by minimizing reconstruction error given

some target dimension. Wicke et al. [2009] introduced spatial gen-

eralization by replacing the global basis with ’tiles’ of local bases

coupled with shared boundary bases. A particular drawback for

existing data-driven methods is the lack of intuition for these spatial

bases. This makes it difficult to pick out individual bases and modify

them to manipulate the resulting fluid flow, a key application that

we aim to tackle. General adoption has thus been limited for existing

data-driven ROMs, and are largely relegated to playback.

2.4 Spectral Methods
A key strength of spectral methods is the physical intuition of the

basis functions. Whereas spatial order reductions construct basis

functions based on the domain shape and are thus more physi-

cally intuitive for non-advecting phenomena such as elastic modes

[Brandt and Hildebrandt 2017; Sellán et al. 2023], spectral methods

construct basis functions based on how the field evolves over time,

leveraging the periodicity of fluid flows to represent the system’s

dynamics in the frequency domain. Each mode thus corresponds to

the propagation of a different wave, or coherent groups of waves.

Kim et al. [2008] leveraged this to add smaller-scale turbulence as a

post-processing step, and Chern et al. [2017] used this to directly

modify vortex rings. This type of fluid control greatly motivates

much of our application domains presented in Sec. 6.

Prominently among these are Fourier-based spectral methods.

Stam [2001] solves stable fluids in Fourier space, though only in

a periodic domains due to the global nature of Fourier bases. In

contrast, wavelet-based methods localize these bases into individual

waves [Jeschke et al. 2018], allowing for better expressivity as well as

multiscale features. Fourier methods also greatly simplify advection,

which becomes a linear transform in Fourier space [Chern et al.

2016], further speeding up computation. We adopt a similar scheme,

where advection is encoded directly in our DMD operator.

2.5 Dynamic Mode Decomposition
DMD is a data-driven method that approximates the Koopman

operator, a linear operator that describes the temporal evolution of

a dynamical system [Schmid 2010]. Prior usage of DMD for fluids

application has been limited, and have not been explored at all in

computer graphics and creative applications. Usage has primarily

been limited to playback and short-term forecasting [Proctor et al.

4 • Chen et al.

2016]. Outside of fluid simulation, DMD has been used to process

large datasets in high-dimensional systems [Williams et al. 2015]

and construct usable operators from noisy data [Askham and Kutz

2018]. This latter extension, called OptDMD, is of significant interest

to us, as the turbulence inherent in fluid fields naturally produces

noisy training data.

Similar to other data-driven ROMs, DMD constructs spatial bases

that encode the different flows present in the training set. Because

it approximates the operator that evolves a state forward in time

rather than the state itself, it also gains the advantages of spectral

methods. In particular, each basis becomes associated with different

turbulent scales, opening the door to fluid control and upscaling

applications. By computing the eigenvalues and eigenvectors of

the Koopman operator, DMD can identify the dominant modes of a

system and predict its future behavior.

We propose the use of Dynamic Mode Decomposition (DMD) as a

tool for compressing and manipulating fluid simulations, combining

the spatial compressive power of data-driven methods with the

physical intuition and control of spectral methods.

3 KOOPMAN OPERATOR AND DYNAMIC MODE
DECOMPOSITION

Consider a system of the form,

𝑑𝒖

𝑑𝑡
= 𝒇 (𝒖), (1)

where 𝒖 (𝒙, 𝑡) ∈ R𝑁
is a time-varying state vector in 𝒙 ∈ R𝑑 , 𝑡 ∈ R,

and 𝒇 : R𝑁 → R𝑁
is a nonlinear operator. Since the right-hand

side is not explicitly dependent on time, this autonomous system
evolves according to the current state 𝒖, not when 𝒖 is evaluated.

Suppose we collect a finite dictionary of observables, and stack

them to yield the measurement vector,

𝒈(𝒖 (𝑡)) =

𝑔1 (𝒖 (𝑡))
𝑔2 (𝒖 (𝑡))

.

.

.

𝑔𝑛 (𝒖 (𝑡))

=

𝒖 (𝒙1, 𝑡)
𝒖 (𝒙2, 𝑡)

.

.

.

𝒖 (𝒙𝑛, 𝑡)

∈ R𝑁𝑛, (2)

where 𝑛 is the total spatial degrees of freedom of our measurements,

andwe take𝑇 ≤ 𝑛+1 independentmeasurements of𝒈(𝒖) at different
times. There exists an operator 𝑲 on this basis that applies the

following linearized time-stepping operation [Brunton et al. 2022],

𝒈𝑘+1 = 𝑲𝒈𝑘 , (3)

where the subscripts {𝑘 ∈ N | 0 ≤ 𝑘 < 𝑇 } indicate the time level

of a given measurement. 𝑲 is known as the restricted Koopman

operator, and is guaranteed to exist and exactly recover the given

input measurements as long as the number of time samples 𝑇 is

fewer or equal to 𝑛 + 1, where 𝑛 is the size of the spatial degrees

of freedom. Moving forward, for practical use, we only require the

understanding that 𝑲 exists, and we defer discussion of Koopman

theory on why this is true to App. A.

3.1 Approximating the Koopman Operator with Dynamic
Mode Decomposition

The restricted Koopman operator 𝑲 has a basis with dimension

on the number of degrees of freedom of the data (i.e. the number

of grid points). In most reasonable simulation resolutions, this is

computationally intractable, considering 𝑲 is almost certainly dense

in this grid basis.

To address this, we follow a strategy similar to prior dimension-

ality reduction approaches such as PCA [Kim and Delaney 2013;

Treuille et al. 2006], and instead approximate the Koopman operator

using Dynamic Mode Decomposition (DMD) [Schmid 2010], con-

structing a reduced, low-dimensional basis to represent the function

space spanned by the input observables. Note that while 𝑲 will ex-

actly reproduce input measurements (and reproduce the continuous

system in Eq. (1) in a least-squares sense on the finite measurement

basis), the dimensionality reduction offered by DMD serves to ap-

proximate 𝑲 , and thus will introduce extra error in exchange for

computational tractability.

As illustrated on the right, a key distinction between PCA and

DMD is their relationship to time. Here, two consecutive snapshots

are shown as two black dots (states recorded by frames) connected

by a timeline. Conventional PCA is data order insensitive as its

singular-value decomposition depends only on the covariance of

the snapshot set, so re-ordering the frames leaves the low-rank

surface where the projected states (red dots) reside unchanged.

DMD, in con-

trast, fits an

operator𝑲 that

advances the

earlier state

to the next

predicted state

(hollow red dot), as indicated by the red arrow. Because this least-

squares fit relies on aligned pairs of samples, shuffling the data

alters 𝑲 . This built-in temporal sensitivity lets DMD capture system

dynamics rather than merely the geometry of the solution manifold,

making it better suited for modelling time-evolving systems. Intu-

itively, PCA models a subspace of the solution space, whereas DMD

models the operator that maps a state to the next—an objective that

naturally requires temporal information.

Given two time-shifted sequence of snapshots𝑿 and𝑿 ′
, a discrete

Koopman operator is defined by:

argmin

𝑲
∥𝑿 ′ − 𝑲𝑿 ∥𝐹 ,

where 𝑿 =
[
𝒖 (0) 𝒖 (1) · · · 𝒖 (𝑇 − 1)

]︸ ︷︷ ︸
𝑇 Frames

,

𝑿 ′ =
[
𝒖 (1) 𝒖 (2) · · · 𝒖 (𝑇)

]︸ ︷︷ ︸
𝑇 Frames

,

(4)

Intuitively, this optimizes 𝑲 ∈ R(𝑁𝑛)×(𝑁𝑛)
to minimize the differ-

ence between the next states 𝒖 (𝑡 +Δ𝑡) and its prediction of the next

states 𝑲𝒖 (𝑡) under a linear model.

We can solve this minimization as follows:

𝑲 = 𝑿 ′𝑽𝚺−1𝑼𝑇 , (5)

where 𝑿 = 𝑼𝚺𝑽𝑇 is the singular value decomposition (SVD) of the

snapshot matrix 𝑿 , with 𝑽 ∈ R(𝑁𝑛)×𝑟
being the left eigenvectors,

𝚺 being the eigenvalues matrix, and 𝑼 ∈ R(𝑁𝑛)×𝑟
being the right

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 5

eigenvectors. We can truncate this eigensystem, taking the top 𝑟

singular values corresponding vectors to form the truncated Koop-

man operator �̃� . We can then project this truncated operator to

the reduced basis 𝑼𝑇 �̃�𝑼 = 𝑼𝑇𝑿 ′𝑽𝚺−1𝑼𝑇 𝑼 = �̂� to produce the

reduced Koopman operator �̂� .

We can see that as long as a mode is representable in the reduced

space, �̂� and �̃� share that mode’s eigenvalue, �̂�𝒘𝑖 = 𝜆𝑖𝒘𝑖 , with
the eigenvector simply being �̃� ’s eigenvector projected onto the

reduced space, 𝒘𝑖 = 𝑼𝑇 𝝓𝑖 . Here, 𝜆𝑖 is a mode’s eigenvalue, 𝝓𝑖 is
its corresponding eigenvector in full space, and wi is its projection
onto reduced space. We thus can find a spectral decomposition of

the truncated Koopman operator: �̃� = 𝚽𝚲𝚽
∗
.

Since applying the truncated Koopman operator �̃� on the full

space has complexity O(𝑁 2𝑛2), we project the full-space velocity
field 𝒖 onto the reduced space spanned by the basis 𝚽:

𝒖 (𝑡 + Δ𝑡) = �̃�𝚽𝚽
+𝒖 (𝑡) = �̃�𝚽𝒛 (𝑡), (6)

where 𝚽
+ = (𝚽∗

𝚽)−1𝚽∗ ∈ R(𝑁𝑛)×𝑟
is the Moore-Penrose pseu-

doinverse of 𝚽 and 𝒛 (𝑡) = 𝚽
+𝒖 (𝑡) ∈ R𝑟

is the reduced state of the

fluid system at time 𝑡 . This projection step reduces the complexity

to O(𝑁𝑛𝑟).
Notice now that taking 𝚲 = 𝚽

∗�̃�𝚽 ∈ R𝑟×𝑟
gives exactly a matrix

that advances the reduced state forward in time by Δ𝑡 :

𝒛 (𝑡 + Δ𝑡) = 𝚲𝒛 (𝑡), (7)

We note that 𝚲 is the diagonal matrix of eigenvalues of �̂� , and 𝚽

are the corresponding eigenvectors. That is to say, �̃� = 𝚽𝚲𝚽
∗
is ex-

actly the spectral decomposition of the reduced Koopman operator.

This low-rank model allows linear simulation of the reduced state,

offering an efficient surrogate for the nonlinear underlying system.

From here, we can once again simply apply the basis 𝚽 to return

back to full space:

𝒖 (𝑡 + Δ𝑡) = 𝚽𝚲𝒛 (𝑡) . (8)

We would like to point out that despite both 𝚲 and �̃� are are

referred to as Koopman operators in the literature, we remark that

in our formulation they act on a subspace of linear observables

derived from state components. Therefore, the dynamics we capture

are strictly linear, and our model is best interpreted as a linear

approximation of the full underlying nonlinear system.

𝚲 in particular gives particular insight into the theory; notice here

that it acts on the function space of𝑔 = 𝚽. Each eigenfunction is thus

a special observable, which clearly behaves linearly by definition.

Since we know that 𝚽
∗
maps observables to observables, �̃� must

necessarily also be a Koopman operator, this time acting on the

identity operator (or more accurately, the 𝒖 observable in Hilbert

space).

In addition, the Λ representation exposes the modes in an easily

manipulatable manner. As a Koopman operator, it represents the

time evolution of some observable. By being a diagonal matrix of

eigenvalues, it turns out that these observables are exactly spatial

modes that rotate with a particular frequency given by the imaginary

part of the eigenvalues.

4 ADAPTING DMD FOR GRAPHICS APPLICATIONS

4.1 Constructing Training Data
We point out that the system solved by Eq. (4) is agnostic to the

structure of the input state 𝒖. As stated, the DMD operator learns a

mapping that evolves the state 𝒖 from one point in time to its state

at a future moment, and the natural description of a fluid state is

to represent 𝒖 as a stacked vector of fluid velocities, which implies

that the DMD operator learns the PDE that governs the evolution

of the fluid velocities over time.

For NS solvers, the evolution of a fluid is described by the inviscid

Euler equations, {
𝜕𝒖
𝜕𝑡 + (𝒖 · ∇)𝒖 = − 1

𝜌 ∇𝑝 + 𝒈

∇ · 𝒖 = 0

(9)

where 𝒖 is the velocity field, 𝑝 is the pressure, 𝜌 is the density, and

𝒈 is the gravitational force. We discretize the domain Ω with the

staggered grid, a standard approach in computer graphics [Harlow

et al. 1965], where the velocity field 𝒖 is defined at the cell faces

and the pressure 𝑝 is defined at the cell centers. This thus provides

snapshots of the fluid velocity field 𝒖 (𝑡), at any point in time 𝑡 .

Note that 𝒖 is a vector of size R𝑁𝑛
. This vector space henceforth

will be our fullspace, as it includes spatially every point in our full

resolution simulation.

Since our training data can be generated from any simulation

method (or even observed from the real world), we utilize several

fluid simulation algorithms to construct our dataset. Specifically,

we include the standard stable fluids [Stam 1999], the MacCormack

[Selle et al. 2008] (MC), the MacCormack + Reflection [Zehnder

et al. 2018] (MC+R) and the Lattice Boltzmann Method with the

Bhatnagar-Gross-Krook collision model [Chen and Doolen 1998]

(LBM-BGK).

4.2 Learning from Noisy Data with Nonlinear
Optimization

Fluid behaviour is inherently chaotic, particularly in highly tur-

bulent systems. Additionally, discretization of such states leads to

noisy data, particularly as structures approach the Nyquist limit of

the sampling grid. Further, simulation speed and artist directability

is of primary concern in graphics application above simulation ac-

curacy, often leading to simulations with CFD-condition-violating

large timesteps and early termination of iterative algorithms. This

further leads to degraded simulation results. As such, we note that

input fluid data in general will be highly noisy.

Standard DMD, as shown in Eq. (5), directly fits the data from the

𝑖-th frame to the (𝑖+1)-th frame without considering the (potentially

coherent) relationships between the 𝑖-th frame and the (𝑖 + 2)-th or

subsequent frames. This short time horizonmakes it highly sensitive

to noise, both spatially as the fluid state changes rapidly at the

Nyquist limit, and at the operator level. As a result, standard DMD

imposes high requirements on data quality.

To address this issue, we choose to use OptDMD [Askham and

Kutz 2018] for our graphics applications. OptDMD processes all

snapshots simultaneously, significantly reducing the impact of noise

by looking at the signal over a longer time horizon. By considering

the 𝑖-th frame, the (𝑖 + 1)-th frame, the (𝑖 + 2)-th frame, and so on

6 • Chen et al.

r=2 r=9

r=28 r=610 300

Plume
128 x 128 x 256 Grid

r=2 r=9

r=28 r=610 300

Plume with Sphere
128 x 128 x 256 Grid

r=2 r=9

r=28 r=610 300

Plume with Bunny
128 x 128 x 256 Grid

Fig. 3. Reconstruction of 3D Plume Simulations. From left to right: standalone plumes, plumes interacting with a sphere, and plumes interacting with a
bunny. For each configuration, the last frame of the original MacCormack [Selle et al. 2008] fluid simulation is shown on the left, alongside the last frame
of our subspace simulation with SVD rank ranging from 𝑟 = 2 to 𝑟 = 61. Remarkably, the fluid dynamics demonstrate strong resilience to low-rank bases,
highlighting a key advantage of our proposed reduced-order pipeline. Additionally, these scenarios illustrate the robustness of our method in handling
increasingly complex boundary conditions. The reconstruction quality improves as the number of basis functions increases, enabling more accurate capture of
finer details around the boundaries. While reasonable results are achieved with a small basis (r=9), increasing the basis significantly enhances the fidelity of
the simulations. More details on the temporal evolution of the flow and other basis configurations can be found in the Fig. 10, Fig. 11 and Fig. 12.

together, the influence of random noise is mitigated. To achieve this,

OptDMD transforms the training of the reduced Koopman operator

into an exponential data fitting problem and utilizes the variable

projection method to solve this optimization problem. Similar to

the procedure described in Sec. 3, we first perform Singular Value

Decomposition (SVD) on the snapshot matrix 𝑿 (see Eq. (4)) to

obtain 𝑼 , 𝚺, 𝑽 such that𝑿 = 𝑼𝚺𝑽𝑻 . Here, 𝚺 is the diagonal singular

value matrix, and 𝑼 , 𝑽 are orthonormal matrices whose columns

are the left and right singular vectors, respectively.

With this decomposition, we can construct the optimization prob-

lem as:

argmin

𝜶 ,𝑩
∥�̄�𝚺 − 𝚽(𝜶)𝑩∥𝐹 (10)

where �̄� denotes the element-wise complex conjugate of 𝑽 , 𝚽(𝜶)
is the parameterized basis matrix with optimizable parameters 𝜶 ,

and 𝑩 is the coefficient matrix corresponding to the basis matrix.

Here 𝚽(𝜶) ∈ C𝑇×𝑟
is the Vandermonde matrix whose (𝑖, 𝑗)-entry

is [𝚽(𝜶)]𝑖 𝑗 = 𝛼 𝑖−1
𝑗

for 𝑖 = 1, . . . ,𝑇 and 𝑗 = 1, . . . , 𝑟 ; the vector

𝜶 = [𝛼1, . . . , 𝛼𝑟]⊤ collects the (discrete-time) DMD eigenvalues

𝜶 = 𝚲, initialized from the eigenvalue matrix 𝚲 of a standard DMD

solve (Eq. (4)).

Once the coefficient matrix 𝑩 is estimated, we could compute

each column of the basis matrix 𝚽 using:

𝝓𝒊 =
𝑼𝒓𝑩𝑻 (:, 𝑖)

∥𝑼𝒓𝑩𝑻 (:, 𝑖)∥2
(11)

where 𝝓𝒊 denotes the 𝑖-th column of matrix 𝚽.

4.3 Memory Overhead Optimization
DMD can effectively reconstruct datasets, but its training process

requires a significant amount of memory due to the SVD. When the

dataset is large, it becomes necessary to store an 𝑁𝑛 × 𝑁𝑛 matrix

in memory, where 𝑁𝑛 represents the dimensionality of a snapshot,

thus demonstrating a significant memory requirement.

We note that previous DMD literature either has much smaller

datasets afforded by 2D data, or perform training on large clusters

[Askham and Kutz 2018; Proctor et al. 2016; Sashidhar and Kutz

2022; Schmid 2010]. Uniquely in graphics, we expect algorithms to

be able to simulate 3D examples (i.e. large degrees of freedom) but

run on consumer hardware (i.e. limited memory).

To reduce the memory requirements of DMD, we employ random-

ized SVD. Randomized SVD approximates the range of the original

matrix 𝑿 by constructing a matrix 𝑸 . This is done by multiplying

a randomly initialized low-dimensional matrix 𝑸 with the original

matrix 𝑿 and performing decompositions iteratively until a stable

vector matrix 𝑸 is obtained. The goal is to ensure that 𝑿 ≈ 𝑸𝑸𝑻𝑿 .

We then construct the matrix 𝑩 = 𝑸𝑻𝑿 , which applies to the space

spanned by 𝑸 . Traditional SVD can thus be performed on the much

smaller 𝑩 to obtain 𝑩 = 𝑼𝚺𝑽𝑻 , and finally be used to approximate

𝑿 ≈ 𝑸𝑼𝚺𝑽𝑻 .

Emphasize Low Frequency Emphasize High Frequency

Moduli Editing 128 x 128 x 256 Grid

Fig. 4. Editing Temporal Dynamics of the Plume with Bunny with the
Koopman Operator Approximation. In this experiment, we demonstrate
the impact of changing the moduli of low-frequency and high-frequency
modes in a 4:1 (left) and 1:4 (right) ratio. As mentioned in Sec. 6.1, in real
applications, users can modify and manipulate the dynamic of different
scales of vorticity by adjusting the reduced-order parameters.

4.4 Arbitrary Time Step
Since the reduced Koopman operator is a linear operator, as shown

in Fig. 2 we could easily pre-compute the power of the reduced

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 7

Koopman operator and apply it to a reduced state 𝑧, enabling large
time step 𝑘 times of the time step Δ𝑡 that 𝑨 is trained on:

𝒖 (𝑡 + 𝑘Δ𝑡) = 𝚽𝚲
𝑘𝑧 (𝑡) (12)

where 𝑘 is an integer of how many time steps we want to simulate

forward. This can map any state at time 𝑡 to the state at time 𝑡 +𝑘Δ𝑡
in one matrix multiplication.

Notice additionally that because the operator maps velocity fields

to velocity fields, advection of the velocity variable is achieved for

free. Nonlinear advection of the field is encoded directly in the

operator.

4.5 Boundary Conditions and Divergence Free Constraint
The truncated Koopman operator �̃� is trained on a full-space veloc-

ity field 𝒖 which satisfies some boundary conditions and the diver-

gence free constraint. We follow a similar proof to that provided

by Treuille et al. [2006] to demonstrate that the Koopman operator

also satisfies the space boundary conditions and constraints.

First, the boundary conditions and constraints can be represented

as some linear constraint matrix 𝑪 on the time series data 𝑿 such

that 𝑪𝑿 = 0. Any column 𝑏𝑖 in 𝑼𝒓 by definition satisfies 𝑿𝑿𝑻𝒃𝒊 =
𝜆𝑖𝒃𝒊 . We can then conclude that 𝑪𝑿𝑿𝑻𝒃𝒊 = 𝜆𝑖𝑪𝒃𝒊 = 0, and thus

claim that 𝒃𝒊 satisfies the constraint matrix as long as 𝜆𝑖 ≠ 0.

As this is true for all columns, then 𝑪𝑼𝒓 = 0 and consequently

𝑪𝚽 = 0. This means that any velocity field 𝒖 reconstructed from its

reduced representation satisfies any linear constraint satisfied by

the initial data.

4.6 Encompassing External Forces in Reduced Space
The OptDMD method in CFD can only reconstruct the dataset and

cannot respond to user inputs of new external forces. However,

in graphics applications, it is very common to edit or manipulate

existing datasets, such as adding or reducing forces. To address

this, we combine DMD with Control (DMDc) [Proctor et al. 2016]

and OptDMD, marking the first instance of integrating these two

methods. This integration allows user-input external forces to be in-

corporated into the OptDMD framework. Our improved framework

is as follows:

𝒛 (𝑡 + Δ𝑡) = 𝚲𝒛 (𝑡) + 𝚽
+

𝑚∑︁
𝑖=1

𝑩𝒊𝒒𝒊 (𝒕)Δ𝑡 + 𝚽
+

𝑛∑︁
𝑗=1

𝒇𝒋 (𝒕)Δ𝑡 (13)

where 𝑩𝑖 and 𝒒𝑖 can be constructed differently based on the settings

of various scenarios. 𝒇𝑗 ∈ R(𝑁𝑛)×1
represents a user-modifiable

external force. For example, in the 2D standalone plume scenario,

we can define 𝒒1 ∈ R𝑀×1
as the density field, where𝑀 represents

the number of grid cells, and rewrite its impact on the velocity field

in matrix form 𝑩1 ∈ R(𝑁𝑛)×𝑀
. Similarly, we can define 𝒒2 ∈ R𝑀×1

as the temperature field, and rewrite its impact on the velocity field

in matrix form 𝑩2 ∈ R(𝑁𝑛)×𝑀
. These effects can then be projected

onto the reduced space as (𝚽+ (𝑩1𝒒1 + 𝑩2𝒒2)).

5 EVALUATION AND RESULTS
In this section, we demonstrate the results of our approach on base-

line examples and provide detailed numerical evaluations. We con-

duct all numerical experiments on a Linux workstation equipped

reference

r=2 r=9

r=28 r=61

r=105 r=130 r=150

Left: PCA, Right: Ours.

Fig. 5. Comparison of PCA and Our Method for Low-Rank Flow Re-
construction. The leftmost column shows the reference high-resolution
simulation, while the right grid presents reconstructions at different rank
truncations (𝑟). Each pair in the grid compares Principal Component Analy-
sis (PCA) (left) and our method (right). Lower ranks (𝑟 = 2, 9) fail to capture
large-scale turbulence while increasing 𝑟 improves accuracy. Our method
retains more detailed structures at lower ranks than PCA, demonstrating
improved efficiency in capturing complex flow dynamics.

with a 2.10GHz 32-core Intel CPU featuring 120GB of RAM. We

implement our method exclusively in Python, and our DMD im-

plementation is a heavily optimized, memory-efficient version of

PyDMD [Ichinaga et al. 2024]. We use Taichi [Hu et al. 2019] for

interactive examples and parallelization of DMD model inference,

and NumPy [Harris et al. 2020] for numerical validation. Please refer

to Tab. 2 for the experiment setup of the examples presented in this

section.

5.1 Comparison of 2D Plume Reconstruction
To evaluate the reconstruction performance of our method in com-

parison with the prior work [Kim and Delaney 2013], we conducted

experiments on a 2D plume scenario using varying numbers of basis

functions: 2, 9, 28, 61, 105, 130, and 150; shown on Fig. 5. With only 9

basis functions, our method is already capable of reconstructing the

contour of the plume’s top, while the prior method can only capture

basic upward motion of the plume structure without any vortical

structure details. This shows the superior reconstruction capability

of our method even at low ranks. When using 28 basis functions,

our method closely matches the ground truth, whereas the prior

method still misses many details, particularly in the upper regions

of the plume. When the number of basis functions is increased to 61,

our method achieves a near-perfect reconstruction of the ground

truth, and the prior method requires 130 basis functions to produce

a similar level of detail. These results effectively demonstrate that

our method can achieve better reconstruction with significantly

fewer basis functions.

8 • Chen et al.

Runtime: 2D Plume 256 × 512 Grid (⊲ Fig. 5)

Fullspace Solve 754 ms

Subspace Solve

PCA-based [2013] 16.15 ms (47×) / 0.95 ms (794×) †
Ours 8.9 𝜇s (84,719×)

Precomputation

PCA-based [2013] 114 s

Ours 79 s

Table 1. Breakdown of Experiment Runtime. The table compares the
runtime and precomputation costs of the full-space ground truth simulation,
the PCA-based approach [2013] and our method on the 2D plume example
(Fig. 5). Leveraging the linear Koopman operator, our method achieves
significantly faster runtime by requiring only a single matrix multiplication
for each reduced-space simulation step.
† = with/without external force.

5.2 Generalization With Vorticity Confinement
To further evaluate generalization and artist-directability of our

method, we revisited the 2D plume example following the experi-

mental setup from the prior work [Kim and Delaney 2013]. Specifi-

cally, we incorporated vorticity confinement [Fedkiw et al. 2001]

into the original MacCormack solver [Selle et al. 2008] and then

applied our method to the modified solver. For training, the vorticity

confinement value was set to 1.5, and we tested both our approach

and the prior method at vorticity confinement values of 1.51, 1.6, and

2.5. To quantify generalization efficacy, we calculated the relative

error of the velocity field with respect to ground truth MacCor-

mack[Selle et al. 2008] simulation results. The results, as shown in

Fig. 6, reveal that our method achieves a lower relative error com-

pared to the prior method. Notably, the prior method required 150

basis functions, whereas our method achieved comparable results

with only 50 basis functions. These findings highlight the reliability

and effectiveness of our Koopman-based approach in adapting to

changes in simulation parameters.

vorticity

confinement

1.51

vorticity

confinement

1.6

vorticity

confinement

2.5

SF PCA Ours

- - PCA (150 basis)
— Ours (50 basis)

0
frames

150 300

15

10

5

0

re
la

tiv
e

er
ro

r (
%

)

confinement = 1.5 (input)

Fig. 6. Comparison of Relative Error and Vorticity Confinement Be-
tween PCA [2013] and DMD (Ours). Left to right: (1) relative error over
time for PCA (150 basis) (dashed) and Ours (50 basis) (solid), showing compa-
rable or lower error with fewer basis functions. (2) reference high-resolution
simulation with vorticity confinement 1.5, with a zoomed-in region marked.
(3) comparison of the zoomed region in (2) under novel unseen vorticity
confinement force 1.51 (magenta), 1.6 (blue), 2.5 (dark green).

5.3 3D Plume Baselines
To benchmark our Koopman-based fluid simulation pipeline in 3D

scenarios, we present simulation results across three progressively

complex scenarios: a standalone plume, a plume interacting with

a sphere, and a plume interacting with a bunny. All original simu-

lations were generated using the MacCormack solver [Selle et al.

2008] at a resolution of 128 × 128 × 256. We demonstrate the recon-

struction results using varying numbers of basis functions. These

cases were designed to benchmark the method’s ability to handle

increasingly intricate fluid dynamics, from simple turbulence in the

standalone plume to complex boundary interactions with the sphere

and bunny.

Plume. The standalone plume serves as a fundamental bench-

mark, as tested in prior work [Kim and Delaney 2013]. Fig. 3 high-

lights the effectiveness of our Koopman-based method in simulating

a plume without solid obstacles. While [Kim and Delaney 2013] ex-

perienced significant high-frequency dissipation at reduced ranks,

our method well captures the swirling and rising behavior, closely

matching the original MacCormack simulations even with a small

number of basis functions (𝑟 = 9). Increasing the basis amount to

𝑟 = 28 or 𝑟 = 61 further enhances the reconstruction, better pre-

serving turbulent vortices and fine flow structures. These results

demonstrate the robustness of our method in capturing the essential

dynamics of the fluid simulation, maintaining high fidelity even at

low ranks.

Plume with Sphere and Bunny. Building on the baseline, we

introduce two more scenarios to evaluate the robustness of our

method in handling complex boundary conditions. When using a

small set of basis (𝑟 = 9), our Koopman-based method still achieves

a reasonable reconstruction of the overall flow dynamics. However,

finer details, especially those near boundaries, are less accurately

represented. Notably, at 𝑟 = 9, there exist noticeable discrepancies

in regions around the bunny, which will be resolved as the num-

ber of basis functions increases. This enhancement demonstrates

how additional basis functions help the Koopman operator to recon-

struct higher-frequency components of the flow and better capture

complex boundary interactions.

5.4 3D Colliding Vortex Rings
The reduced-space Koopman operator is linear and has demon-

strated that it can accurately reconstruct scenarios such as Kármán

vortex street and plumes. However, these datasets feature velocity

fields with relatively smooth variations over time. To test whether

our method can adapt to scenarios with abrupt changes in the veloc-

ity field, we selected a more challenging scenario: colliding vortex

rings. In this experiment, two point vortices are initialized and col-

lide head-on. When the vortices meet, the velocity field undergoes

a sudden change, resulting in finer vortex structures. We tested

our method on this dataset using 150 basis functions. As shown in

Fig. 1, our method can reconstruct the transition from the two point

vortices before the collision to the rapid formation of a divergent

velocity field during the impact, as well as the subsequent emer-

gence of numerous vortical structures around the periphery. This

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 9

experiment shows that our method can effectively handle datasets

with significant and sudden velocity variations.

5.5 Independence on Simulation Schemes
Our reduced simulation method is inherently simulator-agnostic,
allowing it to work seamlessly with a variety of fluid solvers. This

flexibility arises from the fact that our method models only the tran-

sitions between successive fluid states in the reduced space, rather

than being tied to the specific equations or numerical schemes of

a given solver. This allows us to apply our method to any fluid

simulator without the need for additional adjustments. For instance,

in our experiments, we used both the MacCormack [Selle et al.

2008] + Reflection [Zehnder et al. 2018] (MC+R) solver and a Lattice

Boltzmann Method [Chen and Doolen 1998] (LBM) solver. They

are fundamentally different in their discretization and numerical

operations. Specifically, the LBM solver does not directly solve the

Navier-Stokes equations; instead, it solves the approximated Boltz-

mann equation, which models fluid dynamics at the mesoscopic

scale using particle distribution functions. Our method overcame

these challenges by relying solely on the data produced by the solver.

In other words, our method is equation-free. We detailed the base

simulators used for each example in Tab. 2, where our approach

successfully reconstructs the velocity fields in all cases.

In contrast, previous data-driven methods such as [Kim and De-

laney 2013; Treuille et al. 2006] developed a specific numerical

scheme for the subspace constructed from data, essentially binding

the formulation to one specific base simulation framework. As a

result, when switching to a different solver, their method also re-

quires corresponding adjustments. This will introduce significant

limitations for users, as they can only input datasets corresponding

to a specific solver. In particular, this limits artists usage to only so-

lutions of such solvers, whereas our method accepts hand-modified,

or even real-world measured data.

6 APPLICATION: HARNESSING THE LINEARITY
Leveraging the linearity of DMD operator, as well as the intuition

of bases exposed by the spectral decomposition, we have devel-

oped several novel applications that extend the capabilities of our

Koopman-based reduced-order simulation pipeline. In this section,

we explore these applications, demonstrating that our method’s

unique strengths translate into practical tools for graphics and sim-

ulation.

6.1 Direct Editing Temporal Dynamics
Since our method approximates Eq. (9) with a linear operator in the

full space, this allows us to transform the operator acting on the

velocity field into the evolution of different modes under a linear

operator. Therefore, we can directly edit the temporal dynamics of

the fluid system by modifying the modes of the reduced Koopman

operator �̂� : we set 𝑡0 to be the initial time, 𝛀 = log(𝚲)/Δ𝑡 , where Δ𝑡
is the time step of the dataset. With this, we can rewrite Eq. (7) in

(a) Modulus editing with multipliers 0.5, 1.0 and 1.5

(b) Real-part editing with multipliers 0.5, 1.0 and 1.5

(c) Imaginary-part editing with multipliers 0.5, 1.0 and 1.5

1.2

0.0

0.0

5.0

Fig. 7. Editing temporal dynamics of Kármán Vortex Street with the
Koopman Operator Approximation. The modifications are applied to
the DMD basis coefficients: (a) Scaling the modulus of the DMD basis by
factors of 0.5, 1.0, and 1.5, affecting overall amplitude; (b) Adjusting the real
part of 𝛀, influencing growth and decay rates of modal contributions; (c)
Modifying the imaginary part, altering phase dynamics and wave propaga-
tion characteristics.

the following form:

𝒖 (𝑡0 + 𝑘Δ𝑡) = 𝚽 exp(𝛀𝑡)𝒛 (𝑡0)
= 𝚽 exp (𝑘 (log(𝑟) + 𝑖𝜃))𝒛 (𝑡0)

=

𝑛∑︁
𝑖=1

𝑤𝑖𝚽𝒊𝑟
𝑘
𝑖 (cos(𝑘𝜃𝑖) + sin(𝑘𝜃𝑖)) 𝒛𝒊 (𝑡0)

(14)

where𝑤𝑖 is a user-defined scalar weight, 𝑟𝑖 =
√︁
ℜ(𝜆𝑖)2 + ℑ(𝜆𝑖)2 is

the modulus and 𝜃𝑖 = arctan (ℑ(𝜆𝑖),ℜ(𝜆𝑖)) is the phase of the 𝑖-th
eigenvalue 𝜆𝑖 in the diagonal complex eigenvalue matrix 𝚲. Notice

that this implies that the modes of the spectral decomposition rep-

resent different scales of vorticity, completing the physical intuition

of the reduced space modes.

As shown in Eq. (14), our method decomposes a simulation se-

quence into modes with different growth/decay rates and frequen-

cies. The growth/decay rate of a mode is reflected in 𝑟𝑖 , where a

larger 𝑟𝑖 indicates a higher growth rate (or a lower decay rate), and

vice versa. The frequency of a mode is represented by the absolute

value of 𝜃𝑖 , with a larger absolute value corresponding to a higher

frequency mode, and vice versa. Furthermore, the different modes

are decoupled, allowing for the adjustment of the relative propor-

tions between modes. As a result, these properties provide the artist

with powerful tools to edit the simulation playback. The artist can

modify the overall velocity field by adjusting the proportion (𝑤𝑖),

growth/decay rate (𝑟𝑖), and frequency (𝜃𝑖) of specific modes. In the

experiments, we directly adjust the real part of 𝛀𝒊 to control 𝑟𝑖 , mod-

ify the imaginary part of 𝛀𝒊 to control 𝜃𝑖 , and vary the modulus of

𝚽𝒊 to control𝑤𝑖 .

Editing the Kármán Vortex Street. The first example is editing on

the classic Kármán vortex street. We filter the imaginary part of

𝛀 and cluster modes with an absolute value smaller than 0.01 as

low-frequency cluster, and the rest as high-frequency cluster. The low-
frequency mode manifests as a laminar flow, with its phase changing

10 • Chen et al.

Examples Resolution Dim. B.C. Amount of Basis Base Simulator

Smoke Ring (⊲ Fig. 1) 128 × 128 × 256 3D Open 150 MC+R

Rayleigh–Taylor Instability (⊲ Fig. 2) 1024 × 512 2D Dirichlet 100 MC

Plume (⊲ Fig. 3) 128 × 128 × 256 3D Open 2, 9, 28, 61, 105, 130, 150 MC

Plume w/ Sphere (⊲ Fig. 3) 128 × 128 × 256 3D Dirichlet 2, 9, 28, 61, 105, 130, 150 MC

Plume w/ Bunny (⊲ Fig. 3) 128 × 128 × 256 3D Dirichlet 2, 9, 28, 61, 105, 130, 150 MC

Reversibility (⊲ Fig. 8) 512 × 512 2D Open 20 MC

Editing (Kármán Vortex Street) (⊲ Fig. 7) 512 × 512 2D Periodic 100 LBM-BGK

Editing (Bunny) (⊲ Fig. 4) 128 × 128 × 256 3D Dirichlet 50 MC

Table 2. Breakdown of Experiment Setup. The result and experiment setup are detailed in this table, including grid resolution, dimensionality, boundary
conditions (B.C.), the number of basis functions used and the base simulator for each result. As for the base simulators, we employ the MacCormack [Selle
et al. 2008] (MC), the MacCormack + Reflection [Zehnder et al. 2018] (MC+R) and the Lattice Boltzmann Method with the Bhatnagar-Gross-Krook collision
model (LBM-BGK)[Chen and Doolen 1998].

Buoyant 512 x 512 Grid

training forward in time
testing backward in time

Vortical512 x 512 Grid

training forward in time
testing backward in time

2.0

0.0

3.0

0.0

20.0

0.0ki
ne

tic
 e

ne
rg

y

500-500 0
frames

0-300
frames

0.02

0.00
300

ki
ne

tic
 e

ne
rg

y

Fig. 8. Reversibility of Flowswith InversedDMDOperator. We compare the reconstruction of two distinct fluid flows using DynamicMode Decomposition
(DMD). The top row in each panel shows the velocity L2-norm of the field used to train the DMD, while the second and third rows depict the temporal
evolution of the reconstructed flow fields as applied to an initial density field. The forward-time training phase is followed by a backward-time testing phase
to assess predictive accuracy when advecting backward in time. The bottom plots show the evolution of kinetic energy over time. From the buoyant case, we
observe the inverted DMD operator 𝑨−1 can still reasonably trace backward in time without compromising much visual quality. The vortical case exhibits a
more challenging example where the symmetry should be reconstructed backwards in time. We see that the inverse operator indeed recovers this symmetry,
with some acceptable levels of incurred noise. Bottom plots show the evolution of the total kinetic energy over time, demonstrating that our inverse operator
actually correctly reverses the arrow of time, reversing the dissipation-related entropy increase over time. Decreasing kinetic energy also validates the physical
plausibility of our result.

very slowly over time. The high-frequency mode is represented by

vortical structures distributed on both sides of the cylinder, where

the phase of this mode changes relatively quickly over time. As

seen in Fig. 7, when we adjust the modulus of the high-frequency

cluster from 0.5 to 1.5, the intensity of the vortices increases, which

is as we expected. When we set the real part of 𝛀 to 0.5, it can be

observed that the high-frequency motion decays faster than user

input. When we set the real part of 𝛀 to 1.5, it can be observed that

the high-frequency motion decays slower than user input. Similarly,

when we tune the imaginary part of 𝛀 from 0.5 to 1.5, we could

observe the oscillation frequency of the fluid trail transitions from

slow to fast compared to user input.

Editing the Plume with Bunny. To evaluate the editing capabil-

ity of our method, we scale our editing scenario to 3D. With the

same filtering procedure as in the Kármán vortex street example,

we set the low-frequency cluster to high-frequency cluster ratio to

4 : 1, 2 : 1, 1 : 2, and 1 : 4, and compared the results with the user

input. From the results, we observe that when the proportion of

low-frequency cluster is increased, with a ratio of 4 : 1, the top of

the plume lacks "wrinkles" and appears more "fluffy". This is because

the velocity field is dominated by smoother, lower-frequency modes

than the original user input. Conversely, when the proportion of

high-frequency cluster is increased, with ratios of 1 : 4, the plume

developes more detailed plume structure around the top, as the ve-

locity field now emphasizes more high-frequency details compared

to the user input.

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 11

6.2 Reversibility of the Reduced Simulation
Although physically-based fluid simulations have the capability to

generate stunning visuals, when artists aim to direct the fluid’s

evolution toward a predefined target shape, challenges arise. It is a

long standing problem in the community that people aim to enable

users with spatial control. In this example, we aim to enable users to

do temporal control, motivated by a prior work Oborn et al. [2018].

Compared to previous work [2018] where the authors employ a

self-attraction force to replace the arbitrary external forces, pro-

viding a stable, physics-motivated, but time-consuming approach,

we propose a data-driven, fast, and easy to implement method to

address the same problem.

We observe that that given �̃� = 𝚽𝚲𝚽
+
, we could easily compute

the inverse of the truncated Koopman operator �̃�−1 = (𝚽𝚲𝚽+)−1 =
𝚽𝚲

−1
𝚽
+
, which is essentially the approximate inverse time evo-

lution 𝒇−1 (𝒖) of the fluid system. This allows us to reverse the

simulation by applying the inverse truncated Koopman operator to

the current state of the fluid system:

𝒖 (𝑡) = 𝑨−1𝒖 (𝑡 + Δ𝑡),
𝒖 (𝑡) = 𝚽𝚲

−1
𝚽
+𝒖 (𝑡 + Δ𝑡),

𝒖 (𝑡) = 𝚽𝚲
−1𝒛 (𝑡 + Δ𝑡) .

(15)

Similar to Eq. (8), we could train the reduced Koopman operator

on the forward simulation data and then apply the inverse reduced

Koopman operator to reverse the simulation, given a state of the

fluid system.

Reversibility of Buoyant Flow. We experiment our approach on a

simple buoyant flow setup (Fig. 8, left). Our dataset was initialized

with a density field shaped like the SIGGRAPH logo, with the den-

sity value set to 1. A density value of 1 density field was driven by a

velocity field where an upwards velocity of 0.3 is set within the SIG-

GRAPH logo and downwards elsewhere. We run the simulation for

300 frames to construct the dataset, and trained the DMD operator

on this dataset. The inverse operator �̃�−1
was then applied to the

initial velocity field of the dataset at 𝑡 = 0 (frame 0). By iteratively

applying the inverse operator, we obtained the velocity fields for the

preceding frames, starting from frame −1, frame −2, and all the way
back to frame −300. When examining the evolution of the density

field from frame -300 to frame 300, it is evident that the velocity

field remains consistently upward and smooth, indicating that our

method is both reasonable and effective. Further analysis of the

energy of the velocity field obtained through the inverse process

and the velocity field from the dataset reveals a downward trend in

energy, with a smooth and reasonable curve, consistent with fluids

with dissipative properties. This demonstrates that our inverse op-

erator has the ability to predict a physically-plausible velocity field

prior to the dataset.

Reversibility of Vortical Flow. To challenge the method with a

scene of nontrivial vortical structure, we initialized a vortex sheet

by placing four vortices at the corners of the domain (Fig. 8, right).

We generated the dataset using the same procedure as in the previ-

ous experiment, resulting in a collection of 500 frames. Subsequently,

we constructed the inverse operator to recover the velocity fields

preceding the dataset. The results show that the density field (coun-

terclockwise) and the dataset (clockwise) rotate in the opposite

direction, which indicates that the velocity field predicted by the

inverse operator is correct. This is because the vortex sheet velocity

field continuously rotates in a clockwise direction, and by examin-

ing the density field from frame -500 to frame 500, we observe that

the field indeed undergoes continuous clockwise rotation. From the

energy field analysis, the results show that, except for the signifi-

cant energy fluctuation between frames -500 and -450, the energy

consistently decreases in the remaining frames, with a consistent

slope. This further demonstrates the robustness of our method.

6.3 Upsampling with Reduced Koopman Operator
The scale of the imaginary part of eigenvalues in 𝚲 encode differ-

ent scales of turbulent modes, enabling us to use a trained DMD

operator to add in secondary motion to an existing fluid simulation.

This is particularly useful for upscaling a low-resolution fluid, simu-

lated using stable fluid for example, leveraging the DMD basis to

add in turbulent modes that were too small for the low-res sim to

capture. This upscaling problem has been explored in prior work

[Kim et al. 2008; Nielsen et al. 2009], but we show that due to the

linearity of the Koopman operator, and the physical intuition on

each of its reduced bases, this upscaling is essentially attained for

free, amounting to nothing more than a linear combination of two

matrix multiplications.

6.3.1 Evolution. Suppose we have frames of a low-res input ve-

locity field {𝑳0, 𝑳1, 𝑳2, . . . , 𝑳𝑇 }, a high-res initial condition 𝐻0. Ad-

ditionally, we have some DMD basis 𝚽 trained on some high-res

simulation distinct from the low-res simulation, with corresponding

eigenvalues 𝚲, sorted by the length of their imaginary parts in in-

creasing order. At the first frame, we can generate the reduced-space

initial condition by simply using our basis mapping 𝑅0 = 𝚽
𝑇𝐻0.

Now, for every subsequent frame 𝑡 , we generate 𝑅𝑡 by first ap-

plying the DMD evolution on the previous reduced space frame to

produce an intermediate state 𝑅∗𝑡 = 𝚲𝑅𝑡−1. We also produce a repre-

sentation of the current frame of the low-res input in reduced space

𝑃𝑡 = 𝚽
𝑇 𝐿𝑡 . Now, we have a representation of the current frame

of the low-res input, and the DMD time evolution of the previous
reduced space frame. We want to keep the low-order bulk flow of

the low-res input, and augment it with the high-order turbulent

flow learned by the DMD basis. To that end, we split each reduced-

space vector into a low-order and high-order part: 𝑅∗𝑡 =
[
𝑅∗𝐿𝑡 𝑅∗𝐻𝑡

]
,

𝑃𝑡 =
[
𝑃𝐿𝑡 𝑃𝐻𝑡

]
. Now, we take only the low-order modes of the input

flow, and the high-order modes of the DMD-evolved flow, to produce

our new reduced space velocity field 𝑅𝑡 =
[
𝑃𝐿𝑡 𝑅∗𝐻𝑡

]
. From here,

we can just apply the basis to return to high-resolution full-space

𝐻𝑡 = 𝚽𝑅𝑡 .

We note that the composition operators here are linear. We can

simply represent them with selection matrices 𝑆𝐻 , 𝑆𝐿 , for the high-

and low-order bases respectively, such that 𝑅𝑡 = 𝑆𝐿𝑃𝑡 +𝑆𝐻𝑅∗𝑡 . Since
the DMD operator is also linear, we note that this entire upscaling

method is linear by construction.

Results are shown on Fig. 9. We see that even if the initial velocity

field is significantly different from the input field, the low-order

basis is able to capture the bulk flow of the low-resolution input,

12 • Chen et al.

Low-resolution

Input
64

64

Naively Apply

DMD
512

51
2

Augmented

DMD
512

51
2

Low-Resolution

Input
64

64

Naively Apply

DMD
512

51
2

Augmented

DMD
512

51
2

ΦT projection

ΦT projection

ΦT projection

High-resolution

Initial Condition

R
ed

uc
ed

 S
pa

ce

Fullspace

t=0

t=2

t=1

f

f

f

Low-resolution

Input Seuqence

Λ eigenvalue matrix

Λ eigenvalue matrix

Λ eigenvalue matrix

Λ eigenvalue matrix

Low-resolution

reduced coordinate

High-resolution

reduced coordinate

Legend

High-resolution

Training Data
512

51
2

Fig. 9. Upsampling and Generalization to Unseen Sequences with Trained DMD Operator. Two different input low-resolution fluid simulations
(bunny and SIGGRAPH logo) are upscaled using the same DMD operator trained on a different velocity field. Initial velocity fields are seeded as moving down
based on the input density field. Naive application of DMD shown in each middle column, and our augmented DMD upresolution method shown on the right
columns. Schematic of our method presented on the far right. At each frame, we project the low-resolution artist-directed input into the low-order bases of our
reduced representation, using these to replace the low-order terms of the DMD field. Notice that naive application of DMD simply moves towards the known
input training data, while our augmented field matches the low-resolution input more closely, with extra high-order detail gained from the DMD operator.

and modify the DMD-produced field accordingly. In particular, we

note that naively applying the DMD operator, without passing the

low-resolution input field into the low-order bases, ends up re-

constructing the original training set, rather than a velocity field

directed by our input. This is demonstrated by the results for the

two initial conditions being very similar, whereas our augmented

field matches the input much closer.

6.3.2 Projection. The above governs the time evolution of the ve-

locity field. In some cases, where the input velocity field differs sig-

nificantly from the training data used for the DMD basis, the above

as written will still produce velocity fields that are unacceptably

different from the input velocity field. This is largely representation

error, fields that are far away from the training data are less repre-

sentable by the reduced space. In these cases, we can again leverage

our input low-res field, this time as a constraint.

Essentially, we would like to project our velocity field 𝑯𝑡 onto

the space of velocity fields that are identical to the input low-res

field when downsampled to that resolution. This can be represented

as an equality-constrained quadratic problem,

argmin

𝑥

1

2

(𝒙 − 𝑯𝑡)𝑇 (𝒙 − 𝑯𝑡) (16)

subject to 𝑨𝒙 = 𝑳𝑡 , (17)

where 𝑨 is a downsampling operator that converts from high-res to

low-res. Notice that because the downsampling operator does not

change for the duration of the simulation. Thus, the KKT (Karush-

Kuhn-Tucker) matrix can be precomputed making the projection a

single matrix multiply during runtime.

INPUT DIRECT PROJECTED

As a sanity check, we

show the effect of this pro-

jection here: it is apparent

with the projection step,we

can recover fields that are much closer to the input, yet retaining

extra high-order detail. And, of course, because these are all lin-

ear, linear combinations of the direct and projected fields can be

taken. In particular, because the basis functions of reduced space

are orthogonal, a diagonal matrix of linear weights can be taken,

preferring projected for low-order modes and direct for high-order

modes, for example.

7 DISCUSSION
DMD, similar to PCA, performs dimensionality reduction on some

dataset, and provides a reduced basis for representing the fluid

flow. The key difference is that in constructing this basis, DMD

optimizes for the action of some linear operator that maps the data

from one time state to the next, while PCA only looks at the state

snapshots individually. This temporal information allows DMD to

find a reduced space that can represent the evolution of the field as

a linear operator within this reduced space, as opposed to PCA that

only seeks to find a reduced space that best minimizes reconstruction

error.

We also note that as a spectral decomposition of the reduced

Koopman operator, much of the directability power of DMD comes

from the exposure of the complex-valued eigenvalues. Because each

eigenvalue represents a different speed of rotation, and their corre-

sponding eigenvectors represent their spatial bases, we gain manip-

ulability over different scales of turbulence for free. This is similar

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 13

in concept to other spectral methods [Kim et al. 2008], but with

corresponding spatial bases that learned from input data rather

than predefined bases. We thus show that DMD straddles the realm

between spatial order reduction (PCA and co.) and temporal order
reduction (spectral methods), gaining strengths of both methodolo-

gies.

The other interesting observation is that dynamic mode decom-
position (DMD) shares the same algebraic backbone as a first-order

vector autoregression, VAR(1) [Stock and Watson 2001]: both esti-

mate a linear map that advances a state from 𝑡 to 𝑡+1. Under a
noise-free assumption, the two time-shifted snapshot matrices 𝑋 ′

and 𝑋 introduced in Eq. (4) satisfy the VAR(1) relation

𝑋 ′ = 𝑨𝑋, 𝑨 ∈ R(𝑁𝑛)×(𝑁𝑛) , (18)

with 𝑨 interpreted as the state-transition matrix. DMD solves the

identical least-squares problem but replaces the full𝑨—the restricted
Koopman operator 𝑲 in our notation—with its truncated SVD, yield-

ing a compact low-rank approximation that captures the dominant

dynamical modes.

7.1 Limitations
SVD for Dimensionality Reduction. Like other low-rank approx-

imation approaches, DMD requires performing SVD for dimen-

sionality reduction. This demands high memory consumption for

large-dimensional data, such as 3D fluid simulation, on the order of

O(𝑛2), where 𝑛 is the number of state variables. Despite applying

randomized SVD to reduce this memory footprint, larger simula-

tions are still costly to train. In the future, we will explore the use

of other dimensionality reduction methods, such as autoencoders,

to reduce the dimensionality of the dataset.

Unseen External Force Generalization. It is well-known that reduced-
order model trades generalization for performance; our method is

no exception. We have demonstrated that we can represent velocity

fields that were unseen by DMD, as well as interactively push cur-

rent states towards modified states. Despite this, representability

is still a key limitation–there just may not be the spatial basis and

the reduced Koopman operator to support certain velocity fields

and their nonlinear evolution. Thus, users may find that interacting

with the fields, especially in states far away from observed data,

behave strangely. This warrants further work on improving spatial

generalization of these methods.

7.2 Future Work
We have identified various potential avenues for extension, particu-

larly ones that exploit the linearity of the DMD operator.

Augmenting Fluid State with Density Field. The DMD framework

allows us to trivially evaluate the velocity field at any point in time

via a low-dimensional matrix exponentiation (as shown in Fig. 2).

unfortunately evaluating an immersed density field at any point

in time is not so trivial. To achieve the time-evolved density field,

we’ve first had to resort to classical numerical integration, first

evaluating the velocity field with our fast DMD model, and then

using that velocity field to advect the density field forward. As an

exciting avenue of future work, this could potentially be sidestepped

by defining the fluid state as including the density field (as opposed

to just the velocity field), and forming a Koopman operator on this

augmented system. This would allow us to use the exact same DMD

framework to quickly query the density of the flow at any point in

time.

Adaptive Blending between DMD Operators. As a linear operator,
linear combinations of DMD operators construct a valid linear oper-

ator. Therefore, we can train multiple DMD operators and flexibly

combine them to obtain a richer set of new motion patterns. Similar

to building an ensemble, once we have multiple pre-trained DMD

operators, we solve a minimal optimization problem to adaptively

selects the optimal linear combination of DMD operators based on

user input, achieving the desired motion effects in the simulation.

Inverse Design. Since the DMD operator decomposes the energy

information (𝚽) and frequency information (𝚲) of a simulation se-

quence, we can adjust the eigenbasis of the DMD operator based

on the user-defined objectives, thereby modifying the energy and

frequency information represented by the DMD operator. We take

gradients of the DMD operator with respect to some target images

at prescribed points in time, and use this as an optimizer to construct

a new DMD operator that represents flow that evolving through the

specified snapshots.

Learning Control Space Enrichment. Inspired byDMDwith control

[Proctor et al. 2016], we could train a neural network to enrich the

linear control space of the DMD operator with nonlinear responses.

This network could be a direct way to expand the expressiveness

of the DMD operator, allowing us to learn more diverse motion

patterns and handle more complex user inputs.

8 CONCLUSION
We introduce Dynamic Mode Decomposition (DMD) to the field of

graphics. Unlike previous methods that approximate the solution

space, our approach is an equation-free, data-driven method that

learns a low-rank approximation of the state transition matrix di-

rectly from the dataset. Its linear nature enables rapid reconstruction

of the dataset and shows superior reconstruction quality compared

to previous data-drivenmethods. The operator linearity also unlocks

a collection of artist-centric graphics applications: (1) by decompos-

ing the dataset into a linear combination of temporally oscillating

modes of different frequencies, our method enables artists to edit the

dataset by adjusting the mode’s modulus, growth/decay rate, and

frequency, all without requiring knowledge of the solver’s details;

(2) with the inverse of the Koopman operator, we can go back in

time and rollout animations at negative frame ranges; (3) users can

supplement low-resolution flow sequences and generate new en-

riched flow details with the trained DMD operator, taking advantage

of the high-frequency information stored within the operator.

ACKNOWLEDGMENTS
Weare grateful to JonathanChalaturnyk for illuminating discussions

that shaped the early stages of this research. We thank Xinwen Ding

for helpful proofreading feedback. This research was made possible

with the administrative support of our lab’s system administrator,

John Hancock, and financial officer, Xuan Dam. This research was

14 • Chen et al.

supported by the Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC) through grant RGPIN-2021-03733, whose

funding made this work possible.

REFERENCES
Travis Askham and J Nathan Kutz. 2018. Variable projection methods for an optimized

dynamic mode decomposition. SIAM Journal on Applied Dynamical Systems 17, 1
(2018), 380–416.

Christopher Brandt and Klaus Hildebrandt. 2017. Compressed vibration modes of

elastic bodies. Computer Aided Geometric Design 52 (2017), 297–312.

William L Briggs, Van Emden Henson, and Stephen F McCormick. 2000. A Multigrid

Tutorial. SIAM 3 (2000).

Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. 2022. Modern

Koopman Theory for Dynamical Systems. SIAM Rev. 64, 2 (2022), 229–340. https:

//doi.org/10.1137/21M1401243 arXiv:https://doi.org/10.1137/21M1401243

Shiyi Chen and Gary D Doolen. 1998. Lattice Boltzmann method for fluid flows. Annual
review of fluid mechanics 30, 1 (1998), 329–364.

Yixin Chen, David Levin, and Timothy Langlois. 2024. Fluid Control with Laplacian

Eigenfunctions. In ACM SIGGRAPH 2024 Conference Papers. 1–11.
Yixin Chen, Wei Li, Rui Fan, and Xiaopei Liu. 2021. GPU optimization for high-quality

kinetic fluid simulation. IEEE Transactions on Visualization and Computer Graphics
28, 9 (2021), 3235–3251.

Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2017. Inside fluids:

Clebsch maps for visualization and processing. ACM Transactions on Graphics (TOG)
36, 4 (2017), 1–11.

Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weißmann.

2016. Schrödinger’s smoke. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–13.
Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable laplacian Eigenfluids.

ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.
Tyler De Witt, Christian Lessig, and Eugene Fiume. 2012. Fluid simulation using

laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 1–11.
Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of smoke.

In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. 15–22.

Nick Foster and Dimitri Metaxas. 1996. Realistic animation of liquids. Graph. Models
Image Process. 58, 5 (Sept. 1996), 471–483. https://doi.org/10.1006/gmip.1996.0039

Francis H Harlow, J Eddie Welch, et al. 1965. Numerical calculation of time-dependent

viscous incompressible flow of fluid with free surface. Physics of fluids 8, 12 (1965),
2182.

Charles RHarris, K JarrodMillman, Stéfan J VanDerWalt, Ralf Gommers, Pauli Virtanen,

David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,

et al. 2020. Array programming with NumPy. Nature 585, 7825 (2020), 357–362.
Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.

2019. Taichi: a language for high-performance computation on spatially sparse data

structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–16.
Sara M Ichinaga, Francesco Andreuzzi, Nicola Demo, Marco Tezzele, Karl Lapo, Gian-

luigi Rozza, Steven L Brunton, and J Nathan Kutz. 2024. PyDMD: A Python package

for robust dynamic mode decomposition. arXiv preprint arXiv:2402.07463 (2024).
Tiffany Inglis, M-L Eckert, James Gregson, and Nils Thuerey. 2017. Primal-dual op-

timization for fluids. In Computer Graphics Forum, Vol. 36. Wiley Online Library,

354–368.

Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles

Macklin, and Chris Wojtan. 2018. Water surface wavelets. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 1–13.

Theodore Kim and John Delaney. 2013. Subspace fluid re-simulation. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 1–9.

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet turbulence

for fluid simulation. ACM Transactions on Graphics (TOG) 27, 3 (2008), 1–6.
Bernard O Koopman. 1931. Hamiltonian systems and transformation in Hilbert space.

Proceedings of the National Academy of Sciences 17, 5 (1931), 315–318.
Bernard O Koopman and J v Neumann. 1932. Dynamical systems of continuous spectra.

Proceedings of the National Academy of Sciences 18, 3 (1932), 255–263.
Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast and

scalable turbulent flow simulation with two-way coupling. ACM Trans. Graph. 39, 4
(2020), 47.

Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. 2015.

Model-reduced variational fluid simulation. ACM Transactions on Graphics (TOG)
34, 6 (2015), 1–12.

Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Trans. Graph. 32,
4, Article 104 (July 2013), 12 pages.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control

using the adjoint method. ACM Transactions On Graphics (TOG) 23, 3 (2004), 449–
456.

Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid

simulation for interactive applications. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Citeseer, 154–159.

Michael B Nielsen, Brian B Christensen, Nafees Bin Zafar, Doug Roble, and Ken Museth.

2009. Guiding of smoke animations through variational coupling of simulations

at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. 217–226.

Jeremy Oborn, Sean Flynn, Parris K Egbert, and Seth Holladay. 2018. Time-Reversed

Art Directable Smoke Simulation.. In Eurographics (Short Papers). 1–4.
Zherong Pan and Dinesh Manocha. 2017. Efficient solver for spacetime control of

smoke. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1.
Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. 2016. Dynamic mode decom-

position with control. SIAM Journal on Applied Dynamical Systems 15, 1 (2016),

142–161.

Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

Diya Sashidhar and J Nathan Kutz. 2022. Bagging, optimized dynamic mode decompo-

sition for robust, stable forecasting with spatial and temporal uncertainty quantifi-

cation. Philosophical Transactions of the Royal Society A 380, 2229 (2022), 20210199.

Syuhei Sato, Yoshinori Dobashi, and Theodore Kim. 2021. Stream-guided smoke simu-

lations. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–7.
Peter J Schmid. 2010. Dynamic mode decomposition of numerical and experimental

data. Journal of fluid mechanics 656 (2010), 5–28.
Silvia Sellán, Jack Luong, LeticiaMattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang,

and Alec Jacobson. 2023. Breaking good: Fracture modes for realtime destruction.

ACM Transactions on Graphics 42, 1 (2023), 1–12.
Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.

An unconditionally stable MacCormack method. Journal of Scientific Computing 35

(2008), 350–371.

Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques. 121–128.

Jos Stam. 2001. A simple fluid solver based on the FFT. Journal of graphics tools 6, 2
(2001), 43–52.

James H Stock and Mark WWatson. 2001. Vector autoregressions. Journal of Economic
perspectives 15, 4 (2001), 101–115.

Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and Barbara Solenthaler.

2021. Honey, I Shrunk the Domain: Frequency-aware Force Field Reduction for

Efficient Fluids Optimization. In Computer Graphics Forum, Vol. 40. Wiley Online

Library, 339–353.

Nils Thürey, Richard Keiser, Mark Pauly, and Ulrich Rüde. 2009. Detail-preserving fluid

control. Graphical Models 71, 6 (2009), 221–228.
Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model reduction for real-time

fluids. ACM Transactions on Graphics (TOG) 25, 3 (2006), 826–834.
Adrien Treuille, Antoine McNamara, Zoran Popović, and Jos Stam. 2003. Keyframe

control of smoke simulations. In ACM SIGGRAPH 2003 Papers. 716–723.
MartinWicke,Matt Stanton, andAdrien Treuille. 2009. Modular bases for fluid dynamics.

ACM Transactions on Graphics (TOG) 28, 3 (2009), 1–8.
Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. 2015. A data–

driven approximation of the koopman operator: Extending dynamic mode decom-

position. Journal of Nonlinear Science 25 (2015), 1307–1346.
Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An advection-

reflection solver for detail-preserving fluid simulation. ACMTransactions on Graphics
(TOG) 37, 4 (2018), 1–8.

A KOOPMAN THEORY
We briefly summarize Koopman theory, following the presentation

in Brunton et al. [2022], to motivate the the linearization introduced

in Eq. (3). Once again, consider the autonomous system:

𝑑𝒖

𝑑𝑡
= 𝒇 (𝒖). (19)

The time-dependent state 𝒖 (𝑡) subject to this dynamical system

and some initial condition 𝒖 (0) = 𝒖0 may be represented with a

time-dependent family of flow maps {𝑭𝑡 }𝑡>0 : R𝑁𝑛 → R𝑁𝑛
such

that:

𝒖 (𝑡) = 𝑭𝑡 (𝒖0) . (20)

That is, it maps some initial state 𝒖0 from time 0 to its state at

time 𝑡 . In general, 𝑭 (𝒖) is not a linear map, but as per Koopman

and Neumann [1932] may be lifted in a higher space that admits

a linear mapping in that space. In particular, take a Hilbert space

https://doi.org/10.1137/21M1401243
https://doi.org/10.1137/21M1401243
https://arxiv.org/abs/https://doi.org/10.1137/21M1401243
https://doi.org/10.1006/gmip.1996.0039

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 15

H ⊆ {𝑔 : R𝑁 → C} of scalar observation functions 𝑔 ∈ H . With

these observables, Koopman [1931] defines a family of Koopman
operators K𝑡 : H → H such that

K𝑡𝑔 = 𝑔 ◦ 𝑭𝑡 ,∀𝑔 ∈ H, (21)

forming a trajectory inH . That is to say, K𝑡 maps the measurement

operator 𝑔 to its state at time 𝑡 . Consequently, rather than following

the nonlinear flow according to 𝑭𝑡 of some initial state 𝒖0, we can
instead take an observation of 𝒖0, and linearly evolve it according to
K𝑡 . Notice that because H is a linear space, it follows from Eq. (21)

that:

K𝑡 (𝛼𝑔𝛼 + 𝛽𝑔𝛽) = 𝛼K𝑡𝑔𝛼 + 𝛽K𝑡𝑔𝛽 , (22)

irrespective of whether 𝑭𝑡 is linear in state space R𝑁
.

An infinitesimal generator L of the family {K𝑡 } exists given 𝑓 is

an autonomous system (Eq. (19)), and can be found via the limit,

L(𝑔(𝒖 (𝑡))) = lim

𝜏→0

K𝜏𝑔(𝒖 (𝑡)) − 𝑔(𝒖 (𝑡))
𝜏

. (23)

Notice that the limit is exactly the definition of a derivative, so

that:

𝑑

𝑑𝑡
𝑔(𝒖 (𝑡)) = L𝑔(𝒖 (𝑡)). (24)

This is analogous to Eq. (19), but with the finite nonlinear operator 𝒇
replaced by an infinite-dimensional linear operator L. This has the

matrix exponential solution 𝒈(𝒖 (𝑡 +𝜏)) = 𝑒L(𝑡+𝜏)𝒈(𝒖 (𝑡)). Thus, for
discrete time 𝑡 ∈ N, we can simply take some constant timestep 𝜏 to

find a single Koopman operatorK = 𝑒L𝜏
, notably acting linearly in

H , whose𝑚-times repeated application {K𝑚 = K ◦ K ◦ · · · ◦ K}
constructs the family of operators at discrete multiples of 𝜏 . This

discrete-time Koopman operator, often called the Koopman operator,

thus giving the timestepping scheme:

𝑔(𝒖 ((𝑘 + 1)𝜏)) = K𝑔(𝒖 (𝑘𝜏)) . (25)

Now, suppose we have some input data consisting of a (neces-

sarily) finite set of measurements. We can consider each one of

these measurements to be exactly one evaluation of the observa-

tion function. We can thus restrict our set of observation functions

only to those required for the given measurements. That is, we

only need to consider observation functions spanned by the set

{𝑔𝑖 (𝒖) = 𝒖 (𝒙𝑖)}, where 𝒙𝑖 ’s are all the spatial degrees of freedom of

our measurements. In other words, we limitH only to the subspace

of observables spanned by input data. As a convenient representa-

tion of the entire system observation function, we define the stacked

vector,

𝒈(𝒖) =

𝑔1 (𝒖)
𝑔2 (𝒖)

.

.

.

𝑔𝑛 (𝒖)

=

𝒖 (𝒙1)
𝒖 (𝒙2)

.

.

.

𝒖 (𝒙𝑛)

(26)

where 𝑛 is the total spatial degrees of freedom of our measurements.

We then define 𝑲 to be the Koopman operator restricted to this

subspace, providing a linearized timestepping operator,

𝒈𝑘+1 = 𝑲𝒈𝑘 , (27)

analogous to Eq. (25).

We have thus shown that the finite-dimensional nonlinear sys-
tem provided in Eq. (19) may be lifted into a linear system in an

infinite-dimensioned Hilbert space H , then restricted to a finite lin-

ear system respecting a finite set of measurements. We would like

to emphasize here, as a key limitation of the theory, the requirement

of the nonlinear system to be autonomous. That is, the dynamics is

necessarily only state-dependent and time-independent. This means

that we cannot hope to train an operator that includes some time-

dependent source term. Consequently, our moduli-editing schemes

cannot be seen as solving the original system given by Eq. (19), but

rather provides a perturbed version of the original solution.

B ADDITIONAL RESULTS

16 • Chen et al.

MC r=2 r=9 r=28 r=61 r=105 r=130 r=150

t=
1
0
0

t=
1
5
0

t=
2
0
0

t=
2
5
0

t=
3
0
0

Fig. 10. Additional plume simulation results in Fig. 3.

Fast Subspace Fluid Simulation with a Temporally-Aware Basis • 17

MC r=2 r=9 r=28 r=61 r=105 r=130 r=150

t=
1
0
0

t=
1
5
0

t=
2
0
0

t=
2
5
0

t=
3
0
0

Fig. 11. Additional plume with sphere simulation results in Fig. 3.

18 • Chen et al.

MC r=2 r=9 r=28 r=61 r=105 r=130 r=150

t=
1
0
0

t=
1
5
0

t=
2
0
0

t=
2
5
0

t=
3
0
0

Fig. 12. Additional plume with bunny simulation results in Fig. 3.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Fluid Control
	2.2 Fast Fluid Simulation
	2.3 Spatial Order Reduction
	2.4 Spectral Methods
	2.5 Dynamic Mode Decomposition

	3 Koopman Operator and Dynamic Mode Decomposition
	3.1 Approximating the Koopman Operator with Dynamic Mode Decomposition

	4 Adapting DMD for Graphics Applications
	4.1 Constructing Training Data
	4.2 Learning from Noisy Data with Nonlinear Optimization
	4.3 Memory Overhead Optimization
	4.4 Arbitrary Time Step
	4.5 Boundary Conditions and Divergence Free Constraint
	4.6 Encompassing External Forces in Reduced Space

	5 Evaluation and Results
	5.1 Comparison of 2D Plume Reconstruction
	5.2 Generalization With Vorticity Confinement
	5.3 3D Plume Baselines
	5.4 3D Colliding Vortex Rings
	5.5 Independence on Simulation Schemes

	6 Application: Harnessing the Linearity
	6.1 Direct Editing Temporal Dynamics
	6.2 Reversibility of the Reduced Simulation
	6.3 Upsampling with Reduced Koopman Operator

	7 discussion
	7.1 Limitations
	7.2 Future Work

	8 Conclusion
	Acknowledgments
	References
	A Koopman Theory
	B Additional Results

