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Fig. 1. Dancing through life. We introduce a neural field construction capable of representing discontinuities in spatial derivatives. Our approach allows both
the domain and its internal interfaces to be parameterized over a shape space. This enables discretization-agnostic reduced-space simulation of heterogeneous
materials over parametric shape families. In this animation, a stiff-bodied, soft-limbed robot dances its way from childhood to adulthood, each stage drawn

from a parameteric shape family.

Discontinuities in spatial derivatives appear in a wide range of physical
systems, from creased thin sheets to materials with sharp stiffness transitions.
Accurately modeling these features is essential for simulation but remains
challenging for traditional mesh-based methods, which require discontinuity-
aligned remeshing—entangling geometry with simulation and hindering
generalization across shape families.

Neural fields offer an appealing alternative by encoding basis functions
as smooth, continuous functions over space, enabling simulation across
varying shapes. However, their smoothness makes them poorly suited for
representing gradient discontinuities. Prior work addresses discontinuities
in function values, but capturing sharp changes in spatial derivatives while
maintaining function continuity has received little attention.

We introduce a neural field construction that captures gradient discontinu-
ities without baking their location into the network weights. By augmenting
input coordinates with a smoothly clamped distance function in a lifting
framework, we enable encoding of gradient jumps at evolving interfaces.

This design supports discretization-agnostic simulation of parametrized
shape families with heterogeneous materials and evolving creases, enabling
new reduced-order capabilities such as shape morphing, interactive crease
editing, and simulation of soft-rigid hybrid structures. We further demon-
strate that our method can be combined with previous lifting techniques to
jointly capture both gradient and value discontinuities, supporting simulta-
neous cuts and creases within a unified model.
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1 INTRODUCTION

Reduced-order modeling (ROM) [Barbi¢ and James 2005] accelerates
physical simulation by approximating high-dimensional dynamics
with a low-dimensional modal subspace. However, it remains chal-
lenging for ROM to handle discontinuities in spatial derivatives,
such as those arising from folds in creased materials or interfaces
within heterogeneous solids. These sharp transitions introduce lo-
calized stiffness and high-frequency behavior that global basis often
fail to capture effectively.

Mesh-based simulators capture such behavior by aligning dis-
cretizations with discontinuity interfaces, but this tightly couples
geometry with simulation. As the interface evolves due to shape
morphing, material variation, or creasing, the mesh must be rebuilt.
This invalidates earlier ROM basis and limits the model’s ability to
generalize.

Several strategies attempt to decouple simulation from mesh
topology. Extended finite element methods (XFEM) [Moés et al.
1999] enrich fixed meshes with discontinuous basis functions, al-
lowing interfaces to move without remeshing. However, XFEM still
requires a fixed background mesh and typically operates at full
resolution, limiting its utility for reduced-order modeling or fast
generalization across shape families.

Neural representations [Chang et al. 2023; Modi et al. 2024] of-
fer an alternative: basis functions are modeled as continuous neu-
ral fields over spatial coordinates, making them agnostic to mesh
discretization. This enables subspace simulation across parametric
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Fig. 2. Our method represents functions with discontinuous gradients by lifting the input domain into a higher-dimensional space. Starting from an input
domain with internal interfaces, we construct a smoothly clamped distance field to augment the spatial coordinates. This defines a lifted domain where
a neural network is trained to produce smooth basis functions. When restricted back to the original domain, the resulting basis captures sharp gradient

transitions at the interface.

shape families [Chang et al. 2024]. However, their smoothness makes
them ill-suited for discontinuities. While some approaches [Belhe
et al. 2023; Liu et al. 2024] attempt to incorporate known disconti-
nuity locations via feature alignment or differentiable fields, they
embed geometric assumptions into network weights, reducing flexi-
bility. As a result, even minor changes to the interface layout typi-
cally require retraining.

Recently, Chang et al. [2025] proposed augmenting input co-
ordinates with a generalized winding number field to model dis-
continuities in function values, effectively lifting the domain. This
enables neural fields to handle cutting phenomena in a reusable,
generalizable way. We adopt a similar lifting construction, but tar-
get a different challenge: modeling gradient discontinuities—sharp
changes in derivative, with continuity in the function itself. These
arise naturally in simulations involving heterogeneous materials
and creases and are not addressed by prior discontinuity handling
techniques [Belhe et al. 2023; Chang et al. 2025; Liu et al. 2024].

The emergence of gradient discontinuities in solutions to weighted
Laplace problems is well-established in the theory of elliptic PDEs:
eigenfunctions of weighted Laplace operators can exhibit gradi-
ent discontinuities across interfaces where the weight function
jumps [Gilbarg and Trudinger 2001]. However, this phenomenon
remains underappreciated in the reduced-modeling and neural field
literature. We highlight this connection and use it to motivate our
construction, which explicitly encodes such discontinuities into the
neural field representation.

Contributions. We introduce a neural field construction for rep-
resenting gradient discontinuities in a generalizable, simulation-
ready form. Our key insight is to encode discontinuities via a lifting
strategy that augments spatial coordinates with a non-trainable,
smoothly clamped distance function. This approach enables sharp
changes in function gradients without embedding interface geome-
try into network weights—allowing the same neural representation
to be reused across families of shapes and materials.

We apply this construction to reduced-order simulation, enabling
applications not previously demonstrated in this setting. Our method
supports differentiable modeling of internal interfaces, allowing in-
verse design and real-time simulation under dynamic shape and
material variation. It also enables interactive editing of creases and
hybrid modeling of discontinuities in both function values and
derivatives.
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In summary, we present:

o aneural field architecture for encoding spatial gradient dis-
continuities via input lifting;

o a discretization-agnostic basis that generalizes across shape
and material spaces;

and the first reduced-order simulation method to support

e combined cuts and folds,
e evolving creases, and
o heterogeneous materials with parameterized interfaces.

2 RELATED WORK
2.1 Discontinuity Representations

In physical simulation, gradient discontinuities are commonly han-
dled by aligning the mesh discretization with underlying interfaces.
This is a standard approach in modeling heterogeneous materi-
als—where the mesh conforms to stiffness boundaries [Kim and
Eberle 2022]—and in simulating creases, where folding patterns are
embedded into the mesh topology [Choi et al. 2004; Narain et al.
2013; Zhu and Filipov 2021]. However, such mesh-dependent meth-
ods are typically limited to fixed discontinuity configurations on
a single rest shape. When either the rest shape or the location of
the discontinuities changes, remeshing becomes necessary. This
process alters the structure of the system’s Hessian, hampering
maintainance of a consistent basis and in turn reduced-order simu-
lation.

Extended finite element methods (XFEM) [Kaufmann et al. 2009;
Moés et al. 1999; Ton-That et al. 2024] avoid remeshing by enriching
a fixed mesh with basis functions that capture local discontinu-
ities, including in gradients. XFEM is typically implemented at full
resolution, making it less suitable for real-time or shape-varying
reduced-order simulation. Like XFEM, we also target representa-
tion of gradient discontinuities, however, we do not rely on a fixed
background mesh. By fully decoupling geometry from simulation
degrees of freedom, we generalize to shape families with varying
rest domains (see Fig. 15), and support reduced-order modeling.

At the core of our method is the use of neural fields to model
gradient discontinuities. Prior neural approaches, such as Belhe et al.
[2023], define feature fields over triangle meshes aligned to disconti-
nuity interfaces, with subsequent work introducing differentiability
[Liu et al. 2024]. Rather than learning mesh-aligned features, Chang



et al. [2025] proposed lifting input coordinates via a generalized
winding number field to model discontinuities for progressive cut
simulation. These efforts primarily focus on modeling discontinu-
ities in the function values. In contrast, our work targets a different
challenge: modeling functions that remain continuous but exhibit
discontinuous gradients—an essential feature for simulating hetero-
geneous materials and sharp features such as creases.

2.2 Heterogeneous Elastodynamics

Heterogeneous elastodynamics refers to the simulation of elastic
materials with spatially varying properties, such as stiffness. A
common strategy is to perform full-space finite element simulations,
which are often computationally intensive. To improve efficiency,
previous work has explored spatial simplification techniques—such
as mesh coarsening [Chen et al. 2017] and remeshing [Chen et al.
2015, 2018; Kharevych et al. 2009]—to reduce the number of degrees
of freedom. Alternatively, Trusty et al. [2022] introduced a mixed
discretization scheme that improves solver convergence without
modifying the mesh. While these methods focus on optimizing full-
space simulations of a single shape, our approach enables reduced
simulation and generalizes across families of shapes.

Another line of work aims to accelerate simulations by reducing
the dimensionality of the dynamical system itself. Reduced space
methods [Barbi¢ and James 2005; Benchekroun et al. 2023; Pentland
and Williams 1989; Trusty et al. 2023] construct a linear subspace
to eliminate redundant degrees of freedom while maintaining visu-
ally accurate motion. Our method can be seen as a generalization
of reduced space simulation that extends across both shape and
material spaces. Mukherjee et al. [2016] proposed an approach for
updating the basis via incremental linear modal analysis. However,
due to the matrix-based formulation, it is unclear how their method
handles changes in mesh resolution or vertex count. In contrast,
our model is designed to operate across varying discretizations,
including different numbers of vertices.

2.3 Neural Physics Simulation

In recent years, neural networks have become powerful tools for
accelerating physical simulation. They have been applied across a
wide range of domains, including fluid modeling and reconstruction
[Chu et al. 2022; Deng et al. 2023; Jain et al. 2024; Kim et al. 2019;
Tao et al. 2024; Wang et al. 2024], collision handling [Cai et al. 2022;
Romero et al. 2021; Yang et al. 2020], and cloth simulation [Bertiche
et al. 2022; Kairanda et al. 2024; Zhang and Li 2024].

Our work is more closely related to approaches that apply neural
networks to accelerate deformable simulation in reduced spaces.
Holden et al. [2019], for example, learn nonlinear dynamics directly
in a reduced coordinate system. In contrast, we preserve the physi-
cal formulation and focus on learning spatial variation. Fulton et al.
[2019] introduce a learned nonlinear basis to better capture deforma-
tion behavior, with subsequent extensions improving expressivity
and generalization [Lyu et al. 2024; Sharp et al. 2023; Shen et al.
2021]. While our approach uses a linear basis, it is designed to gen-
eralize across shapes and discretizations, going beyond the scope of
earlier methods typically restricted to a single shape.
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To support discretization-agnostic simulation, neural fields have
gained popularity as spatial representations [Chang et al. 2024, 2023;
Chen et al. 2023a; Modi et al. 2024]. Their continuous nature, how-
ever, makes it difficult to model discontinuities. The challenge of
generalizing learned weights across different types of discontinu-
ities remains largely unexplored. Chang et al. [2025] address this
by proposing a method to represent a family of cuts using lifted
coordinates in neural fields. Like that work, our method also tackles
discontinuities within continuous neural fields using input lifting.
However, while they focus on function-value discontinuities (e.g.,
for cut simulations), we address cases where the function is con-
tinuous but its gradients are not, such as in simulations involving
heterogeneous materials or sharp creases.

3 REPRESENTING GRADIENT DISCONTINUITIES

Our goal is to construct neural fields capable of accurately capturing
gradient discontinuities. Let f : Q — R be a function defined over
a domain Q C RY, where d is 2 or 3. We consider cases where the
normal gradient of f is discontinuous across an internal interface I':
for any point x¢ € T,

lim m # lim

x—xy Jn x—xy

0
M, xel, xeQ, (1)
Jn

with n denoting the normal to the interface.

Modeling the Gradient Discontinuity through Lifting. We adopt a
similar lifting approach to Chang et al. [2025], who construct the
nonsmooth field f : Q — R by restricting an everywhere smooth
field f : Q X R — R to the graph of some suitably-chosen “height”
function H : Q — R. We depart from the prior work in our choice
of height function.

Chang et al. [2025] lift each point x € Q to a point L(x) € QxR
via the graph of H,

L(x) = (x,H(x)) , @

then obtain f by restricting the smooth field f back to the original
domain through £:

fx)=f(Lx), xeQ. 3)

The domain Q XR of f is defined over the extrusion of the domain
Q along a new “lifting” dimension. f(x) is then discretized with a
neural field parameterized by weights 6, which we denote by fg

In doing so, Chang et al. [2025] sidestep the challenge of di-
rectly learning discontinuities by representing the target function as
smooth in the lifted domain, aligning with the inherent smoothness
prior of neural representations. Our work departs in the design of
the height function H(x). We seek a C® function, continuous in
value but discontinuous in gradient across the interface I'. Impor-
tantly, H is given in closed form and does not involve any learned
parameters.

Choice of H(x). We introduce a novel lifting strategy that departs
from previous work on function-value discontinuities [Chang et al.
2025]. Our goal is to represent a continuous function with discontin-
uous gradients, a property critical for capturing material interfaces
and creases. We define a new lifting function H(x) that is given in
closed form and requires no learned parameters. This function is
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Fig. 3. We visualize the smoothly clamped distance function and its gradi-
ent. The function flattens beyond a threshold distance s, while preserving
gradient discontinuities at the interface (where the distance is zero).

explicitly constructed from the interface geometry and designed
to produce gradient discontinuities aligned with the interface nor-
mal. We begin by computing the unsigned distance from the input
coordinates to the interface:

D(x) = min |lx - pll2,
peT

where p € R? is a point on the interface. After discretization, the
interface T is represented by an explicit mesh M = {V,E}. For a
given point, we compute the closest distance to the nearest point on
this mesh. We denote the distance function to the discrete interface
M as D py.

Unsigned distance fields exhibit gradient discontinuities across
the mesh due to their absolute-value-like behavior. While this may
seem sufficient at first glance, the formulation has significant limi-
tations. First, computing the unsigned distance field is inherently
global: even for query points x located far from the interface, the
computation may still involve traversing many primitives result-
ing in unnecessary overhead. Second, unsigned distance fields are
known to produce singularities near the medial axis. Although prior
work [Madan and Levin 2022] addresses this by applying a softmin
across primitives, the resulting formulation remains global.

Since the key property we seek from the distance field is its
absolute-value-like behavior near the interface, where gradient dis-
continuities occur, we do not need to compute exact distance values
far from the interface; it is sufficient for the field to remain smooth
in those regions. To this end, we adopt a smoothly clipped distance
field that preserves the discontinuity near the interface while localiz-
ing computation within a specified threshold. This formulation also
helps alleviate singularities caused by the medial axis by nullifying
the gradient beyond the threshold region.

As shown in Figure 3, the final height function is constructed by
smoothly clamping the distance function:

H(x) = IDp(x)llsc

where || - ||sc is the smooth clamping function [Chen et al. 2023b]:

D)1l = 25 ID(NI5, i D(x) <,

ID(x)llsc = {1

55, if D(x) > s. )

This formulation has the advantage that only distances within
a fixed threshold s need to be computed, making it well suited for
acceleration structures such as spatial hashing. As shown in Figure 4,
it requires 4.1 times less memory during queries and achieves a 3.6 X
speedup compared to querying the same number of points without
hashing. We computed the gradient norm error under different
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Fig. 4. We test our model on a complex scene of a hand with soft flesh and
a stiff skeleton. This example demonstrates both reduced memory usage
and speedup enabled by our spatial hash. The clamped distance function
localizes queries by ignoring point pairs farther than s, making it well-suited
for spatial hashing. The hash structure supports 4.1x more queries due to
improved memory efficiency, and achieves a 3.6x speedup when tested with
90k query points (same as without hashing).

values of s (Figure 7) and observed no significant variation across
settings.

4 ADAPTATION TO REDUCED-SPACE SIMULATION
4.1 Reduced-space Simulation

We consider an elastic body on a reference domain Q c Rd, with
deformation described by a displacement field u(x). In reduced-
space simulation with skinning eigenmode subspace [Benchekroun
et al. 2023; Trusty et al. 2023], this field is approximated using low-
dimensional coordinates z € R¥ and basis functions ¢ i

k x
u(x,z) = ];zjd)j(x) [1] ,
where z; RAX(d+1) and ¢ j : Q — R. Following recent work
on neural reduced models [Chang et al. 2023; Modi et al. 2024],
we represent basis functions using a neural field ¢(x) = f(x). To
support varying geometry or material properties, we condition on
some parameter « (i.e., ¢*), which corresponds to some (hand-built
or learned) parameterization of the geometry (e.g., shape, material
interfaces) or scenario (e.g., material stiffness, boundary conditions).
At each time step t, the reduced coordinate z/*! is updated by
minimizing

1
2+t =argmin5||z—2zt+zt_1H2+h2/‘I’(u(x,z)) dx, (5)
z Q

where h is the time step size. The first term models inertia; the
second is the elastic energy. We opted to use a St. Venant-Kirchhoff
model to evaluate ¥, although in principle any hyperelastic model
could be substituted.

The energy ¥ depends on the spatial gradient 0¢* /9x, computed
via automatic differentiation. The deformation gradient F is formed
as a linear combination of basis gradients and reduced coordinates.
We approximate the integral using stochastic cubature with uniform
sampling and optimize using gradient descent.
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Fig. 5. We compared our method against basis functions produced by other
neural field architectures on a heterogeneous 2D "U"-shaped domain. For
visualization, the 2D shape is lifted along the Y-axis to represent the scalar
basis function, with additional color coding to indicate its value. The SIREN
MLP [Sitzmann et al. 2020], used in prior works [Chang et al. 2024; Modi
et al. 2024], fails to capture sharp variations at the material interface. A
ReLU-based neural field, which permits C° continuity, does not converge
to the correct solution. In contrast, our method successfully captures the
sharp gradient transitions across the interface.

4.2 Training on Varying Shapes and Material Stiffness

As mentioned before, we train a reduced model that adapts to a
family of shapes and varying material properties. To capture these
variations, we introduce a parameter « that encodes shape and
stiffness information.

When «a represents different shapes with changing interfaces, the
domain Q%, the interface I'* and its explicit representation M% all
depend on . In our implementation, we treat M% as a nonlinear,

user-defined function that aligns with the discontinuity interface.

Accordingly, the height field becomes a function of a:
H%(x) = ID pe (%) llsc

As « controls the shape and material variations, the network
weights are also conditioned on « to adapt to the resulting changes in
the domain. Thus, the parameter-conditioned neural field is defined
as

(%) = ff(L%x)) and  L%(x) = (x, H*(x)).

We parameterize the basis functions for reduced-space simulation
using a neural field, denoted as ¢*(x) = f*(x). To train the basis,
we uniformly sample a parameter « in each epoch, representing

a domain Q%, and then draw spatial samples x € Q% uniformly.

The neural network weights 6 are optimized by minimizing a loss
function evaluated on these samples:

L = E[¢7].

The exact formulation of E[¢] depends on the application and will
be discussed in detail in Section 4.3 and Section 4.4.
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4.3 Heterogeneous Elastodynamics

Our method can be applied to compute basis functions for hetero-
geneous materials in a discretization-agnostic manner.

To construct the basis functions ¢ for the skinning eigenmode
subspace, we solve a generalized eigenvalue problem associated with
the elastic energy Laplacian. In the case of co-rotational elasticity,
this corresponds to a Laplacian operator weighted by the spatially
varying material stiffness [Benchekroun et al. 2023].

We extend the method of Chang et al. [2024] to heterogeneous
materials by introducing a spatially varying weight function w(x).
Following their variational formulation, the eigenproblem is ex-
pressed as minimizing the weighted Dirichlet energy:

Bl = 5 [ weolvgilac, ©
subject to the unit norm constraint ¢; € U, where
U = {f € L>(Q) | |fl2 = 1}, and the orthogonality condition
¢i € span{¢y, ..., ¢;—1}*. The orthogonality condition is enforced
via Gram-Schmidt orthogonalization. Given a candidate function
ai, we project out its component in the span of the previous basis
{¢1,...,9i—1}, and then normalize the result to obtain ¢;. Since
their method handles only homogeneous settings, it fails to capture
sharp material transitions due to the smoothness of the neural field.
Our formulation overcomes this limitation.

Gradient discontinuities in heterogeneous materials. In heteroge-
neous materials, the varying stiffness induces gradient discontinu-
ities across interfaces T', resulting in a jump condition on the normal
derivative [Gilbarg and Trudinger 2001],

ou ou
wio— = wao (7)
where % denotes the normal derivative, and n is the unit normal
to T'. Refer to the supplemental material for a derivation.

While this behavior is familiar in mesh-based PDE contexts, it
remains underutilized in neural simulation frameworks. Our method
is the first to represent these discontinuities in a generalizable neural
field architecture, enabling basis functions that remain valid across
parametric shape and material spaces.

As illustrated in Figure 5 and Figure 9, directly optimizing Equa-
tion 6 using a standard MLP leads to overly smoothed results that
fail to capture the sharp discontinuities at material interfaces. In
contrast, our formulation preserves these transitions accurately. Fig-
ure 8 visualizes the gradient and its error. Our method achieves
lower gradient error than SIREN-based neural fields, particularly
at interfaces where discontinuities occur. Unlike traditional mesh-
based FEM approaches, where basis computation is tightly coupled
to a specific discretization, our method is discretization-agnostic.
This enables the computation of basis functions across a family of
shapes (Figure 15), offering improved generalization.

4.4 Creasing

Our method can also compute basis functions for subspace simula-
tions of creasing, where the displacement field has discontinuous
derivatives due to the crease.
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Unlike the previous section, which used a weighted Dirichlet
energy, we compute the basis here by minimizing the Hessian en-
ergy [Stein et al. 2018], subject to unit-norm and orthogonality
constraints:

Enli] = /Q IV2¢i12dC2, ®)

where || - || is the Frobenius norm and V2¢ € R?%2 denotes the
second-order partial derivatives. The unit-norm and orthogonality
constraints are implemented in the same fashion as in the previous
section. Note that this formulation does not impose explicit bound-
ary conditions at the crease. The gradient change arises naturally
from the neural field, which allows for discontinuities at the crease.
Figure 16 shows the mode produced by our formulation. In contrast,
traditional neural fields fail to capture such discontinuities due to
their inherently smooth nature.

5 RESULTS

All experiments are trained and tested on an NVIDIA RTX 4090 GPU.
Our method is implemented in PyTorch and optimized using the
Adam optimizer. The network architecture is a 5-layer, 128-channel
SIREN MLP with positional encoding up to a maximum frequency
of 2°. The clamping factor is set to s = 1/8 for all 2D examples,
s = 1/25 for the hand-with-skeleton example, and s = 1/16 for all
other 3D cases.

5.1 Heterogenous Materials

Capturing Gradient Discontinuities. We demonstrate the ability of
our basis to capture gradient discontinuities for a U shape (Figure
5) and a 2D snail (Figure 9). Our method is the only one to capture
sharp gradient discontinuities at material stiffness changes, with
results comparable to FEM, while being discretization agnostic—a
point elaborated in the next paragraph. In contrast, a traditional
neural field implemented using SIREN fails to capture the gradient
discontinuity, exhibiting smoothing artifacts at the interface. We
also implemented a neural field with a C® continuous activation
function (ReLU). The hope was that such an activation function
would allow the neural field to represent a C° continuous basis
function. However, since the gradient discontinuity of ReLU cannot
be aligned with the gradient discontinuity in the object, it fails to
capture the gradient discontinuity at the stiffness interface.

We can further expand
our model to capture com-
plex gradient discontinu-
ities, as shown in Figure 4, .
which depicts a hand with
soft flesh and a stiff skele-
ton simulated to curl up
naturally. Our method is
also capable of capturing heterogeneous materials with multiple
stiffness regions. As shown in the inset illustration, two cantilever
simulations of the same cuboid bar with three distinct stiffness
regions exhibit markedly different behaviour when pinned at the
low-stiffness end compared to the high-stiffness end. In addition, our
approach accommodates materials with varying elastic properties.
Figure 10 shows a block with stiff ends and a soft center stretched

Fixed!

== High Stiffness
Medium Stiffness
Low Stiffness
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under different Poisson ratios: as the Poisson’s ratio v increases,
the deformation becomes more volume-preserving, with the block
approaching incompressibility at v = 0.49.

Discretization-Agnostic Representation. Figure 15 demonstrates
the discretization-agnostic nature of our method. We train a neu-
ral field over a shape space of 2D robots with heterogeneous ma-
terial distributions, where the arms and legs are softer than the
torso. While traditional FEM can capture gradient discontinuities,
it requires explicit meshing of each domain. For shape families,
maintaining consistent discretizations across all instances is often
impractical or impossible, making it difficult to construct a shared
basis across the space. As shown in the second row of Figure 15,
the number of vertices and faces varies significantly across shapes,
preventing the reuse of a common reduced model.

In contrast, our method is independent of mesh discretization.
A single trained neural field generalizes across the entire shape
space, enabling basis inference on arbitrary geometries without
remeshing, while maintaining accuracy comparable to FEM. This
flexibility supports dynamic shape morphing during simulation
without recomputation, as shown in the supplementary video.

In Figure 1, we show a continuously evolving family of robots
performing a dancing motion. These robots are sampled from a 3D
shape space consisting of soft limbs and a stiff body. We train a single
model to represent basis functions across the entire space. As a result,
we can simulate the dancing motion with smoothly changing robot
shapes, without remeshing or restarting the simulation. Figure 6
shows another example: a family of cartoon animals with rigid skulls
and soft tissue, parameterized by a variable a. The skull is 100 times
stiffer than the surrounding head. As the animal nods and shakes
its head, it morphs continuously from a fox to a bear. The neural
basis adapts seamlessly: low-stiffness regions like the ears and nose
exhibit large deformations, while the stiff skull remains relatively
rigid.

Differentiable Subspace Physics Simula-
tion. Our representation is differentiable
with respect to the shape parameter «,
making it suitable for shape optimiza-
tion tasks. Figure 14 and the inset illus-
trates an example involving objects re-
sembling robotic fingers used for grasp-
ing. Each finger consists of a single long, I
soft cuboid bar, along with three smaller,
stiffer blocks attached along one side.
The grasping motion is controlled by adjusting the gap between
the tops of the stiff blocks, as shown in the inset. Starting from an
initial configuration, a more strongly bent finger shape is obtained
by optimizing the shape code a.

We perform forward simulation for 200 time steps, applying
spring forces between the endpoints of each stiff segment to mimic
strings stretching across different parts of the robot finger. We com-
pute the mean final displacement along the y-axis, denoted as ug,
and determine the optimal shape parameter ¢* by maximizing the

4
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# basis # simulated # vertices # elements Basis building | Time per step

vertices (interface) (interface) time (ms) (ms)
Snail (Figure 9) 21 5.9k 21 18 79.06 23.52
2D Robot, a = 0 (Figure 15) 7 19.0k 98 93 37.42 19.71
2D Robot, o = 0.33 (Figure 15) 7 25.5k 98 93 41.71 23.03
2D Robot, a = 0.67 (Figure 15) 7 438.7k 98 93 68.60 37.91
2D Robot, a = 1 (Figure 15) 7 102.4k 98 93 144.60 76.51
Bar (Figure 11) 4 40.0k 44 40 86.28 2.78
Robot finger (Figure 14) 4 8.6k 105 160 24.81 4.19
Shoe (Figure 12) 4 30.0k 1924 2598 226.52 2.17
3D Robot (Figure 1) 11 23.7k 174 326 370.94 5.16
Crease (Figure 16) 4 150.0k 20 19 87.42 5.34
Crease and Cut (Figure 18) 2 50.0k 104 101 7.75 1.87

Table 1. We collected simulation timing data for the examples presented. Our method exhibits high performance, frequently achieving near real-time
simulation speeds, even for cases involving a large number of simulated vertices. The reported basis building time reflects the duration required to perform
network inference and construct the basis. While this step may introduce some overhead, it is only performed at the beginning of the simulation or when the
design parameter a changes, and is therefore invoked infrequently.

Surface,

Simulate
¢
Simulate

Simulate
Simulate

Simulate
«

Simulate

) [
Y X-ray X-ray 2 X-ray L X-ray X-ray

Fig. 6. Simulation of a parameterized shape family morphing from a fox to a bear, performing nodding and shaking motions. Each shape includes a skull that
is 100x stiffer than the surrounding soft tissue, shown in the X-ray view. Our neural basis adapts across the family: soft regions (ears, nose) undergo large

deformations, while the stiff skull remains rigid.

displacement norm:

a* = arg max |Jug 2.
o

As shown in Figure 14, the optimized shape (right) bends signif-
icantly more than the initial guess (left), demonstrating the effec-
tiveness of our method for shape optimization in reduced space.

We present another example where a controls the stiffness pa-
rameter (Figure 13). We perform forward simulation for 120 time
steps and optimize a by minimizing the L, difference between the
final and target displacement fields. After optimization, the resulting
deformation more closely matches the target.

Generalization. Our framework generalizes not only across shape
families but also over spatially varying material layouts, including
parametric changes in stiffness. In Figure 12, we vary the stiffness
ratio between the upper part of the shoe (foot-facing) and the sole
(ground-facing), distinguished visually by color. A material parame-
ter a controls this ratio: larger  values increase the stiffness of the
upper relative to the sole. We compress the shoe from both above
and below and observe that as « increases, the sole becomes in-
creasingly deformable, leading to greater compression in the lower
region.

To further demonstrate the ability of our method to generalize
across unseen material configurations, we evaluate it on a second

example involving a bar with a cuboid rest state (Figure 11). Here,
the basis for simulation was trained using only five different stiffness
distributions, each parameterized by a material variable a. We then
performed twist simulations on bars with both seen and unseen
a values within the training range. Our method not only delivers
excellent simulation performance on examples from the training set,
but also generalizes effectively to bars with stiffness distributions not
encountered during training. It successfully creates sharp transitions
at the boundaries between different materials while maintaining
the structural integrity of the stiffer middle section.

5.2 Creasing

Capturing Gradient Discontinuities. Our method captures the gra-
dient discontinuity introduced by the crease. We train a 2D neural
field using the loss defined in Equation 8 and visualize the resulting
basis functions by lifting the scalar-valued output along the y-axis.
As shown in Figure 16, our approach (first row) successfully recov-
ers the sharp edge along the crease, whereas a standard SIREN MLP
(second row) fails to produce crease-aware basis functions due to its
inherent continuity. Notably, the loss function in this example con-
tains no explicit information about the discontinuity, as all spatial
samples share the same stiffness. Thus, the gradient discontinuity
is captured entirely by the network architecture, without relying
on additional cues from the loss.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.
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Interactive Designs of Crease Shapes. Since our boundary represen-
tation is explicit, the crease shape can be interactively edited during
simulation. Using the basis functions from the previous example, we
perform reduced simulations where the crease geometry is modified
in real time. This allows the simulation to adapt immediately to user
edits without requiring a restart, offering flexibility in editing the
crease shape during runtime.

Modeling both Discontinuities in Function and Gradient. Since both
our method and [Chang et al. 2025] adopt a lifting-based approach,
we extend our framework to capture both function and gradient
discontinuities, enabling simultaneous modeling of cuts and creases
within a single model. This is achieved by incorporating their gen-
eralized winding number field as an additional dimension in our
lifting function.

Specifically, we augment Equation 2 by adding an extra dimension
for a second lifting function that captures function discontinuities,
defined by the generalized winding number field from [Chang et al.
2025]:

L(x) = (x, Hy (x), Hywn (x)),

where Hy;(x) is the smoothly clamped distance function from our
method, and Hyyyn (x) is the generalized winding number field.

As shown in Figure 18, the paper deforms smoothly at the begin-
ning of the simulation. As the crease develops, sharp turns emerge
along it and, as the shape of the deer is progressively cut, the de-
formation becomes increasingly concentrated near the crease. This
extension allows us to construct basis functions that are discontinu-
ous in value, evident in the cuts of the deformed shape, while also
exhibiting gradient discontinuities, such as those along the creases.
This example demonstrates the flexibility and extensibility of our
framework.

6 DISCUSSIONS AND FUTURE WORK

In this work, we proposed a novel neural field representation for
capturing spatial gradient discontinuities and adapted it to reduced-
space simulation of heterogeneous materials and creases. This en-
ables several new applications, including shape optimization for
reduced-order models of heterogeneous materials and simulations
where cuts and creases evolve at runtime.

As with all methods based on neural networks, our approach has
limitations in generalization when the test data distribution deviates
significantly from the training set. In particular, when the test shape
differs substantially from those seen during training, our method
can still capture the visual appearance of the displacement field,
including gradient discontinuities, but the resulting basis functions
may be less physically meaningful. As shown in Figure 19, when
trained on a single crease shape and then simulated on a crease far
from the training distribution, the model still captures the gradient
discontinuity at the new crease location, but the paper no longer
bends naturally along the crease. In addition, for the twisting cuboid
shown in Figure 11, our model can accurately handle unseen con-
figurations within the range of « values used during training, but
it fails to generalize once @ moves beyond this range, resulting in
noticeably less sharp boundaries. One possible way to alleviate this
issue is to include more diverse training data by sampling additional

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

values of . To demonstrate this, in Figure 19 right, when trained
on both crease shapes, the model successfully reproduces natural
bending behavior in both cases.

A key property of our method is that the interface is explicitly
represented and defined by the user. An interesting direction for
future work is to automate this process or make it physics-driven,
eliminating the need for manual alignment. This could potentially be
achieved using differentiable techniques similar to those proposed
in [Liu et al. 2024]. In addition, it would be valuable to investigate
how the method extends to more complex material settings, such as
tiled structures and porous media, where explicit interface control
could aid design and optimization.
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Fig. 7. We compared the Ly error of the gradient norm for different values
of s in Equation 4 and found no clear dependence on s. The ground truth
was computed using FEM on the shape shown in Figure 5.
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Fig. 8. We visualized both the gradient norm and its error. Our method
yields smaller gradient errors than SIREN-based neural fields, particularly
at interfaces where discontinuities occur.
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Fig. 9. We did another comparison on a snail shape where the shell is 100x
stiffer than the body. SIREN and ReLU-based neural fields fail to capture
the sharp gradient changes, while our method successfully recovers the

gradient discontinuities.
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Fig. 10. Our method accommodates materials with varying properties. Here,
a block with stiff ends and a soft center is stretched under different Poisson’s
ratios. As the Poisson’s ratio v increases, the deformation becomes more
volume-preserving, with the block approaching incompressibility at v =
0.49.
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Fig. 11. Our method generalizes to unseen material configurations. In this
cuboid bar example, the model was trained on only five distinct material
layouts, each parameterized by a. Despite this limited supervision, the
simulation accurately handles both seen configurations and unseen configu-
rations with « values within the training range, producing sharp transitions
and stiffness boundaries. However, when evaluated on « values outside the
training range, the model exhibits generalization failure, with the bound-
aries appearing noticeably less sharp.
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Fig. 12. We assign different stiffness values to the upper (pink) and sole
(blue) regions of the shoe, controlled by a parameter . Higher a values
increase the stiffness of the upper relative to the sole. When compressed
from both above and below, the sole exhibits greater deformation as «
increases.
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Target Displacement Before Optimization After Optimization
Fig. 13. We set the parameter a to control the stiffness at the bottom of
the bridge. Using differentiable optimization, we optimize a to match the

target displacement.
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Fig. 14. Our model is differentiable with respect to the shape parameter
a, enabling shape optimization in reduced space. We optimize the spacing
between bars in the robot fingers. The optimized shape (right) exhibits
greater deformation compared to the initial guess (left).
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Fig. 15. Our model generalizes across heterogeneous domains, which is
challenging for traditional methods based on eigenanalysis of discrete oper-
ators. We construct a robot shape space with varying material stiffness (first
row) and apply constrained Delaunay triangulation [Shewchuk 2005], re-
sulting in meshes with 209-560 vertices. This variation hinders mesh-based
methods from representing a consistent basis (second row), while our model
captures basis functions across all shapes with a single network (third row).
Scalar basis functions are visualized using color in the second and third
rows.
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Fig. 16. Comparison of basis functions learned by our method (top row) and
a standard SIREN MLP [Chang et al. 2024; Modi et al. 2024] (bottom row) on
a 2D domain with a crease. The scalar-valued basis functions are visualized
by lifting along the y-axis. Our method successfully captures the sharp
gradient discontinuity introduced by the crease, while the vanilla MLP fails
to represent this non-smooth behavior due to its inherent continuity.
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Interactive Boundary Condition Changing Crease Shape
Fig. 17. Our method enables interactive editing of both crease geometry and
boundary conditions. (1) highlights how dragging the red sphere changes the
boundary condition, while (2) shows how the crease shape can be modified
by editing the polyline directly in the interface.

Simulation

Fig. 18. Our method can be combined with [Chang et al. 2025], enabling
simulation of a paper-like material undergoing both progressive cutting
and creasing. The sequence on the left shows the deformation evolving
from smooth bending to sharp folds as creases and cuts develop. Region
(1) highlights a transition from crease to cut, while region (2) shows the
reverse: a transition from cut to crease.

Generalization
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Successful
Simulation!

Trained on the left crease shape Trained on both crease shapes

Fig. 19. On the left, we show simulation results from a model trained on a
single crease shape. When tested on a significantly different crease shape,
it captures the gradient discontinuity but produces behavior that is not
physically meaningful. On the right, training on both crease shapes enables
the model to successfully simulate both conditions.
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