
Breaking Good: Fracture Modes for Realtime Destruction

SILVIA SELLÁN, University of Toronto

JACK LUONG, California State University, Fresno and University of California, Los Angeles

LETICIA MATTOS DA SILVA, University of California, Los Angeles and Massachusetts Institute of Technology

ARAVIND RAMAKRISHNAN, University of Maryland and University of Toronto

YUCHUAN YANG, University of California, Los Angeles

ALEC JACOBSON, University of Toronto and Adobe Research

Vibration modes = a shape’s natural deformation patterns Our Fracture modes = a shape’s natural breaking patterns

0m2s

Fig. 1. Drawing an analogy with the well-studied vibration modes, we define a shape’s fracture modes, which we can precompute for realtime applications.

Drawing a direct analogywith thewell-studied vibration or elastic modes, we
introduce an object’s fracture modes, which constitute its preferred or most
natural ways of breaking. We formulate a sparsified eigenvalue problem,
which we solve iteratively to obtain the 𝑛 lowest-energy modes. These can
be precomputed for a given shape to obtain a prefracture pattern that can
substitute the state of the art for realtime applications at no runtime cost
but significantly greater realism. Furthermore, any realtime impact can be
projected onto our modes to obtain impact-dependent fracture patterns
without the need for any online crack propagation simulation. We not only
introduce this theoretically novel concept, but also show its fundamental
and practical advantages in a diverse set of examples and contexts.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: fracture simulation, modal analysis.

ACM Reference Format:
Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan,
Yuchuan Yang, and Alec Jacobson. 2022. Breaking Good: Fracture Modes
for Realtime Destruction. ACM Trans. Graph. 1, 1, Article 1 (January 2022),
12 pages. https://doi.org/10.1145/3549540

1 INTRODUCTION

The patterns and fragmentations formed by an object undergoing
brittle fracture add richness and realism to destructive simulations.
Unfortunately, existingmethods for producing themost high-quality
realistic fractures (e.g., for the film industry) require hefty simula-
tions too expensive for many realtime applications. An attractive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/1-ART1 $15.00
https://doi.org/10.1145/3549540

and popular alternative is to rely on precomputed fragmentation
patterns at the modeling stage that can be swapped in at run-time
when an impact is detected. Existing prefracture methods use geo-
metric heuristics that can produce unrealistic patterns oblivious of
an object’s elastic response profile or structural weaknesses (see
Figs. 2, 3 and 6). Geometric patterns alone also do not answer which
fragments should break-off for a given impact at run-time, inviting
difficult to tune heuristics or complete fracture regardless of impact.
As a result, these procedural methods find use when fractures are
in the background or obscured by particle effects; elsewhere, video
game studios may rely on artist-authored fragmentation patterns.
In this paper, we present a method for prefracturing stiff brittle

materials which draws a direct analogy to a solid shape’s elastic
vibration modes. We compute a shape’s fracture modes1, which
algebraically span the shape’s natural ways of breaking apart. By
introducing a continuity objective under a sparsity-inducing norm
to the classic vibration modes optimization problem, we identify
unique and orthogonal modes of fracture in increasing order of a
generalized notion of frequency.

1Not to be confused with the “three modes of fracture” [Irwin 1957].

Fig. 2. Popular Voronoi-based prefracturing results in recognizable, unreal-

istic shapes. Our fracture modes break across weak regions.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3549540
https://doi.org/10.1145/3549540

1:2 • Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson

Input Random Voronoi fractures
Our 1st

fracture mode

Clear
weakness

0m48s

Fig. 3. Existing procedural prefracture algorithms (center) rely on random-

ness and do not account for the geometrically weak regions of an object,

unlike our proposed fracture modes (right).

The first 𝑘 fracture modes can be intersected against each other
to define a prefracture pattern as a drop-in replacement to existing
procedural methods (see Fig. 2). Furthermore, impacts determined
at runtime can be efficiently projected onto the linear space of
precomputed fracture modes to obtain impact-dependent fracture
without the need for costly stress computation or crack propagation.

We demonstrate the theoretical and practical advantages and
limitations of our algorithm over existing procedural methods and
evaluate its accuracy by qualitatively comparing to existing works
in worst-case structural analysis. We showcase the benefits of our
algorithm within an off-the-shelf rigid body simulator to produce
animations on a diverse set of shapes and impacts. We show the
realtime potential of fracture modes with a prototypical interactive
2D application (see Fig. 4 and accompanying video).

2 RELATED WORK

Fracture simulation has an extensive body of previouswork;Muguer-
cia et al. [2014] provide a thorough survey. Stiff brittle fracture is
characterized when little or no perceptible deformation occurs be-
fore fracture (i.e., when the object is otherwise rigid). Modeling the
dynamic or quasistatic growth of brittle fracture patterns in a high
performant way requires not just high spatial resolution but also
high temporal resolution at the microsecond scale [Kirugulige et al.
2007], modeling stress concentration and subsequent release. This
process has been approximated, for example, using mass-springs
[Hirota et al. 1998; Norton et al. 1991], finite elements [Kaufmann
et al. 2009; Koschier et al. 2015; O’Brien and Hodgins 1999; Pfaff et al.
2014; Wicke et al. 2010], boundary elements [Hahn andWojtan 2015,
2016; Zhu et al. 2015], and the material-point method [Fan et al. 2022;
Wolper et al. 2020, 2019]. While any such method can eventually
meet realtime demands by lowering the discretization fidelity (e.g.,
on low-res cage geometry [Muller et al. 2004; Parker and O’Brien
2009] or a modal subspace [Glondu et al. 2012]) or assuming large
enough computational resources, we instead focus our attention
to previous methods which achieve realtime performance via the
well established workflow of prefracturing. This workflow sidesteps
computationally expensive and numerically fragile remeshing op-
erations. It fits tidily into the existing realtime graphics pipeline,
where geometric resolutions and computational resources can be
preallocated to ensure low latency and consistent performance.

2m25s

Fig. 4. Screenshots of our 2D interactive prototype, in which the user can

select the impact position to obtain different breaking patterns.

Creating prefracture patterns manually requires skill and time,
precluding fully automatic pipelines. Many commercial packages
(e.g., Unreal Engine, Houdini) implement or suggest geometric
prefracturing heuristics to segment a shape into solid subfragments.
Voronoi diagrams of randomly scattered points [Oh et al. 2012;
Raghavachary 2002] capture the stochastic quality of fracture, but
result in overly regular and convex fragments with perfectly flat
sides. Despite lacking realism, convexity can be advantageous for
simulations. For example, it enables realtime collision detection and
even offline at massive scales [Zafar et al. 2010]. Beyond collision
detection, approximate convex decomposition has been employed
as a prefracturing technique, allowing fracture patterns to be ap-
plied locally at low cost [Müller et al. 2013]. Müller et al. [2013] rely
on manual intervention at multiple stages, making it not compara-
ble as an automatic method; however, we compare to the Voronoi
decomposition it is based on in Figs. 2 and 3.
Schvartzman and Otaduy [2014] increase the space of possible

fragments beyond convexity by computing the Voronoi decomposi-
tion on a higher dimensional embedding. The regularity of these
fragments can be augmented further by randomly generated “cut-
ter” objects (i.e., bumpy planes slicing though the input shape) or
perturbed level set functions (see, e.g., [Museth et al. 2021]). These
stochastic methods often miss obvious structural weaknesses (see
Fig. 3) or result in implausible fragments (see Fig. 6). While the
defects of these methods can be resolved manually, hidden behind
destruction dust or obscured by fast explosions, our fracture modes
consistently produce non-convex fragments whose boundaries origi-
nate from minimal stress displacements of the shape. Beyond taking
into account the physical elastic behavior of the geometry, our
method can incorporate constraints to avoid fractures in certain ar-
eas.While our fracture modes are slower to compute than geometric-
only procedural prefracture, this cost is added only at the offline
precomputation stage.
Given a precomputed fracture pattern, one must decide which

fractures are activated when the object receives a given online im-
pact. Strategies range from simple heuristics like Euclidean distance
thresholds and centering a spatial fracture pattern on the contact
point [Müller et al. 2013; Su et al. 2009] to learning from examples
[Schvartzman and Otaduy 2014]. A key practical contribution of our
fracture modes is that they span a linear subspace onto which im-
pacts can be cheaply projected to trigger fragment displacements at
runtime, removing the need for heuristics or data-based approaches.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Breaking Good: Fracture Modes for Realtime Destruction • 1:3

[Zhou et al. 2013]

First two fracture modesWorst-case analysis and experiments

Ours

Fig. 5. Zhou et al. [2013] (left) identify the geometrically weakest regions of

a given shape, which align with their real-world experiments (center). Our

fracture modes (right) produce fracture patterns qualitatively similar.

2.1 Sparsified eigenproblems

Our approach for defining fracture modes lies within a broader class
of optimization problems of the form:

argmin
X⊤MX=I

1
2
trace

(
X⊤LX

)
+

𝑘∑
𝑖=1

𝑔(X𝑖) , (1)

where X𝑖 as the 𝑖th column of X ∈ R𝑛×𝑘 is referred to as a modal
vector or mode,M and L are positive semi-definite𝑛×𝑛matrices, and
𝑔 : R𝑛 → R is a sparsity-inducing norm, like 𝑔(x) = ∥x∥1. When
𝑔 B 0, this reduces to the generalized eigenvalue problem (see e.g.,
[Bai et al. 2000] Chaps. 4-5), whose solution satisfies LX = MXΛ,
where the diagonal𝑘×𝑘 matrixΛ contains the𝑘 smallest eigenvalues
(Λ𝑖,𝑖 = X⊤

𝑖
LX𝑖). For non-trivial 𝑔, we may continue to consider

𝜆𝑖 = X⊤
𝑖
𝐿X𝑖 + 𝑔(X𝑖) as describing the frequency of the 𝑖th mode.

Ozolins et al. [2013] proposed the notion of compressed modes
using a sparsity-inducing ℓ1-norm to compute localized (sparse) solu-
tions to Schrödinger’s equation. Neumann et al. [2014] extended this
idea to compressed eigenfunctions of the Laplace-Beltrami operator
on 3D surfaces, advocating for an alternating direction method of
multipliers (ADMM) optimization method. While ADMM’s standard
convergence guarantees [Boyd 2010] do not apply to non-convex
problem such as Eq. (1), Neumann et al. [2014] demonstrate success-
ful local convergence albeit with dependency on the initial guess
and optimization path. Replacing the X⊤LX term with a data-term,
Neumann et al. [2013] use a similar ADMM approach to create sparse
PCA bases for mesh deformations.

Brandt and Hildebrandt [2017] further extend this line of smooth,
sparse modal decompositions by considering 𝐿 to be the Hessian of
an elastic energy. They propose an iterativemode-by-mode optimiza-
tion. The current mode is optimized by sub-iterations consisting of
a quadratic program solve resulting from linearizing the constraints
around the current iterant interleaved with normalization in order

Input openVDB fracture Our first three fracture modes

Fig. 6. Level-set methods (e.g., OpenVDB [Museth et al. 2021]) will produce

non-convex, yet implausible fracture patterns unrelated to the structural

integrity of the shape.

to approach a unit-norm vector. Despite the conspicuous downside
that any sub-optimality of earlier modes is locked in possibly affect-
ing the accuracy of later modes, this method enjoys performance and
robustness improvements over the ADMM approach of Neumann
et al. [2014]. Therefore, we follow suit with a similarly mode-by-
mode fixed-point iteration approach. Unique to our method is that
we do not consider the sparsity of the modal vector itself, but rather
the sparsity of the mode’s continuity over the domain.

3 FRACTURE MODES

Given an elastic solid object Ω ⊂ R𝑑 and a deformation map
𝑢 : Ω → R𝑑 , we can formulate the object’s total strain energy as

𝐸Ψ (𝑢) =
∫
Ω
Ψ(𝑢, 𝑥)𝑑𝑥, (2)

where Ψ is the strain energy density function evaluated at points
𝑥 ∈ Ω in the undeformed object.

Ω

u(x
2
)

u(x
1
)

S

D

x

Suppose we allow the deformation
map 𝑢 to fracture the object Ω into two
disjoint pieces Ω1 and Ω2 along a given
(𝑑 − 1)-dimensional fracture fault 𝑆 (see
inset). Effectively, we’re allowing 𝑢 to be
discontinuous at 𝑆 . Consider 𝑥1 and 𝑥2
to be the undeformed positions of points
infinitesimally on either side of a point
𝑥 ∈ 𝑆 on the fracture fault. Then, the difference between 𝑢 (𝑥1) and
𝑢 (𝑥2) describes the pointwise vector-valued discontinuity at 𝑥 ∈ 𝑆 :

𝐷 (𝑢, 𝑥 ∈ 𝑆) = 𝑢 (𝑥1) − 𝑢 (𝑥2) ∈ R𝑑 , (3)

where 𝐷 = 0 would indicate continuity or absence of fracture. We
can then compute the discontinuity energy associated with 𝑆 as∫

𝑥 ∈𝑆
∥𝐷 (𝑢, 𝑥)∥2𝑑𝑥 , (4)

which can be seen as a cohesive surface energy from the FEM crack
propagation literature (e.g., [Ortiz and Pandolfi 1999]). Unlike similar
cohesive energies found in graphics (e.g., for UV mapping [Poranne
et al. 2017] or shape interpolation [Zhu et al. 2017]), assuming small
displacements affords us this simpler, first-order approximation.

We now consider that the set of admissible discontinuities is not
just a single fracture fault, but a finite number of fault patches:
𝑆 = {𝑆1, . . . , 𝑆𝑝 }. We assume that 𝑆 comes from a, for now, arbitrary
over-segmentation of Ω. This could be created with a high-resolution
Voronoi diagram, by intersecting Ω with random surfaces, voxel
boundaries, or by some a priori distribution of granular subobjects.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 • Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson

Our fracture modes Impact-dependent fracture 1m50s

Fig. 7. The same prefractured modes can be used to simulate many different impacts; for example, a racing simulator may destroy the player’s spaceship

differently depending on its impact.

We define the total discontinuity energy associated with 𝑢 as

𝐸𝐷 (𝑢) = ∥𝐷 (𝑢, 𝑆)∥2,1 B
𝑝∑
𝑖=1

√∫
𝑆𝑖

∥𝐷 (𝑢, 𝑥)∥2𝑑𝑥. (5)

We add this to the strain energy to form the total energy:

𝐸 (𝑢) = 𝐸Ψ (𝑢) + 𝜔 𝐸𝐷 (𝑢), (6)

where 𝜔 ∈ R is a positive weight balancing the two terms. In the
cohesive FEM context,𝜔 can be understood as the square root of the
traction-displacement coefficient in the first fracture phase [Chowd-
hury and Narasimhan 2000]. Minimizing the ℓ2,1 norm on the matrix
𝐷 is tantamount to minimizing the sparsity-inducing [Candes and
Wakin 2008] ℓ1 norm on the lengths of each row. Minimizing the
ℓ1 norm (

∑
𝑖

∑
𝑗 |𝐷𝑖 𝑗 |) directly would also lead to sparsity, but the

solution would be rotationally dependent.
We can now define the 𝑘 lowest energy fracture modes as the set

of mass-orthonormal deformation maps {𝑢𝑖 }𝑘
𝑖=1 that minimize their

combined total energy; i.e.,

{𝑢𝑖 }𝑘𝑖=1 = argmin
{𝑢𝑖 }𝑘

𝑖=1

𝑘∑
𝑖=1

𝐸 (𝑢𝑖) , s.t.
∫
Ω
(𝑢𝑖)⊤𝜌𝑢 𝑗𝑑𝑥 = 𝛿𝑖, 𝑗 , (7)

where 𝜌 is the local mass density and 𝛿𝑖, 𝑗 is the Kronecker delta. In
general, for large enough 𝜔 , minimizers 𝑢𝑖 will have exactly zero
𝐸𝐷 on all but a sparse subset of fault patches in 𝑆 , agreeing with the
usual sparse coding theory [Candes and Wakin 2008].

3.1 Fracture Modes on Meshes

We will derive a discrete formulation of the variational problem in
Eq. (7) for a 2D solid object, represented as a triangle mesh Ω with 𝑛
vertices and𝑚 faces. In this construction, the mesh’s 𝑝 interior edges
will correspond to admissible fracture faults 𝑆1, · · · , 𝑆𝑝 . Everything
that follows is straightforward to extend to 3D solids by exchanging
triangles and interior edges for tetrahedra and interior faces.

A traditional piecewise-linear finite element method (FEM) would
discretize the strain energy 𝐸Ψ using hat functions 𝜑𝑖 : Ω → R,
∀𝑖 = 1, . . . , 𝑛 and associate a scalar function 𝑢 : Ω → R with a
vector u ∈ R𝑛 such that

𝑢 (𝑥) =
𝑛∑
𝑖=1

u𝑖𝜑𝑖 (𝑥) . (8)

Vector-valued𝑢 : Ω → R𝑑 such as a deformationwould be described
coordinate-wise in the same way, via a vector u ∈ R𝑑𝑛 .

i

φ
i

φ
f3

f
1

2
3

Hat functions are by construction contin-
uous. Normally, this is a good thing, but we
would like to have functions with arbitrarily
large co-dimension one patches of discon-
tinuities. Let us introduce the concept of an
exploded mesh Ω̃, with the same𝑚 faces as
Ω and same carrying geometry, but where
each vertex is effectively repeated for each
incident triangle. Thus, Ω̃ is composed of
𝑚 combinatorially disconnected triangles and 3𝑚 vertices 𝑣𝑐 𝑓 with
𝑐 = 1, 2, 3 and 𝑓 = 1, . . . ,𝑚.

Hat functions �̃� : Ω̃ → R defined on Ω̃ reduce to barycentric coor-
dinate functions extended with zero value outside the corresponding
triangle (see inset). These trivially span the space of piecewise linear
scalar discontinuous functions 𝑢 via vectors u ∈ R3𝑚 :

𝑢 (𝑥) =
𝑚∑
𝑓 =1

3∑
𝑐=1

u𝑐 𝑓 �̃�𝑐 𝑓 (𝑥) . (9)

We will use this basis for each coordinate of our vector-valued
deformation map, captured in a vector of coefficients u ∈ R(𝑑+1)𝑚𝑑 ,
with the displacement at vertex 𝑐 of face 𝑓 selected by u𝑐 𝑓 ∈ R𝑑 .

We may now discretize both terms in our energy in Eq. (6). First,
the integral strain energy follows the usual FEM discretization as a
sum over each element.

𝐸Ψ (u) =
𝑚∑
𝑓 =1

∫
𝑓

Ψ(𝑢, 𝑥)𝑑𝑥 . (10)

We can abstract the choice of Ψ for now by considering small dis-
placements around the rest configuration such that it can be approx-
imated by its Hessian matrix Q ∈ R(𝑑+1)𝑚𝑑×(𝑑+1)𝑚𝑑 :

𝐸Ψ (u) ≈
1
2
u⊤Qu . (11)

In Section 3.7 we discuss a further approximation specific to our
model. Our basis functions �̃� will only allow fractures along the
mesh’s interior edges, therefore, the integral in Eq. (5) breaks into a
contribution from each interior edge 𝑒:

𝐸𝑒 (𝑢) =

√∫
𝑒

∥𝐷 (𝑢, 𝑥)∥2𝑑𝑥 , (12)

which we can compute exactly by two-point Gaussian quadrature
(the integrand is a second-order polynomial).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Breaking Good: Fracture Modes for Realtime Destruction • 1:5

…[Brandt and Hildebrandt 2017]’s
random intialized ICCM

 …our adapted ICCM

First fracture mode computed with…

Fig. 8. We adapt the algorithm suggested by Brandt and Hildebrandt [2017]

to use the eigenmodes of Q as initial guesses as opposed to random vectors.

f

g

dg

af

cg

bf

d

For a given edge 𝑒 with length 𝑙 , correspond-
ing to vertex pairs {𝑎𝑓 , 𝑏 𝑓 } and {𝑐𝑔, 𝑑𝑔} (see
inset), this amounts to

𝐸𝑒 (u) =

√
𝑙

2

(d (
+1√
3

)2
2
+
d (

−1√
3

)2
2

)
where

d(𝑡) = 1 + 𝑡
2
(u𝑎𝑓 − u𝑐𝑔) +

1 − 𝑡
2
(u𝑏𝑓 − u𝑑𝑔) (13)

measures the pointwise discontinuity for the quadrature at para-
metric location 𝑡 ∈ [−1, 1] along the edge.
The full discontinuity energy associated with the map 𝑢 (𝑥) is

given by summing over every interior edge

𝐸𝐷 (u) =
𝑝∑
𝑒=1

𝐸𝑒 (u) . (14)

Finally, we can define the 𝑘 lowest-energy discrete fracture modes
as column vectors of a matrix U ∈ R(𝑑+1)𝑚𝑑×𝑘 satisfying

argmin
U⊤M̃U=I

1
2
trace

(
U⊤QU

)
+ 𝜔

𝑘∑
𝑖=1
(𝐸𝐷 (U𝑖)) , (15)

where M̃ is the possibly lumped FEM mass matrix defined on the
exploded mesh Ω̃.

3.2 Optimization

The definition of fracture modes on meshes involves solving the
optimization problem in Eq. (15). While the objective term is con-
vex, the orthogonality constraints are not. To proceed, we adapt
the Iterated Convexification for Compressed Modes (ICCM) scheme
proposed by Brandt and Hildebrandt [2017]. ICCM computes the
modes sequentially, assuming the first 𝑖 − 1 columns of U have been
computed. In the original ICCM formulation, the process for finding
the 𝑖th column, U𝑖 proceeds by choosing a random unit-norm vector
c, then repeatedly solving

U𝑖 ← argmin
u

1
2
u⊤Qu + 𝜔 𝐸𝐷 (u) (16)

subject to

U⊤1
.
.
.

U⊤
𝑖−1
c⊤

M̃u =

0
.
.
.

0
1

(17)

and updating

c← U𝑖√
U⊤
𝑖
M̃U𝑖

, (18)

Input w w★Impact Projection

Runtime

Fig. 9. We propagate any impact (left) using an elastic shockwave (middle).

We then project this propagated impact onto our modes (right). At runtime

(see text), we compute w★
directly without the need for linear solves.

Larger σ

Fig. 10. A larger threshold (smaller impact) produces less fracture pieces.

until convergence is detected by ∥U𝑖 − c∥ falling below some
tolerance 𝜀. By linearizing the (quadratic) norm constraint, the min-
imization problem Eq. (16) becomes a convex conic problem that
we solve with off-the-shelf techniques (see Appendix A).

We found that random initializations for c not only introduce
non-determinism, but can also sometimes result in a large number
of inner iterations and sub-optimal local minima (see Fig. 8). In-
stead, when computing U𝑖 we initialize c with the 𝑖th continuous
eigenvectors of Q (defined on the unexploded mesh). We compute
these 𝑘 initial vectors at once using the SciPywrapper for the sparse
eigen solver Arpack [Lehoucq et al. 1998]. We outline our complete
fracture mode computation algorithm in Algorithm 1.

3.3 Impact-dependent fracture

By construction, the columns of U form an orthonormal basis of
the lowest-energy 𝑘-dimensional subspace of possible fractures of
Ω. This key feature means we can precompute an object’s fracture
modes right after its design. Then, inside an interactive application
we can project any detected impact onto our modes to obtain impact-
dependent realtime fracture (see Fig. 9).

If a collision is detected between Ω and another object, with con-
tact point 𝑝 and normal ®𝑛, we can define the exploded-vertex-wise
impact vector w ∈ R(𝑑+1)𝑚𝑑 . Ideally, w would be the displace-
ments determined by an extremely short-time-duration simulation
of elastic shock propagation. In lieu of being able to compute this
in realtime, we use an approximation based on distance to smear
the impact into the object:

w𝑐 𝑓 = 𝑔(𝑝, 𝑣𝑐 𝑓) ®𝑛 , ∀𝑐 = 1, 2, 3 , 𝑓 = 1, . . . ,𝑚 (19)

where 𝑔 is a filter that vanishes as 𝑣𝑐 𝑓 is far from 𝑝 . Then, we project
w onto our modes to obtain our projected impact

w★ =

𝑘∑
𝑖=1

U𝑖U⊤𝑖 M̃w =

𝑘∑
𝑖=1

U𝑖U⊤𝑖 M̃g®𝑛 . (20)

An immediate choice of 𝑔 would be a Gaussian density function
centered at 𝑝 . A more physically based choice of 𝑔 can be obtained
through a single implicit timestep of an elastic shockwave equation

g =

(
M̃ − 𝜏 L̃

)−1
M̃𝛿𝑝 , (21)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 • Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson

Algorithm 1: Fracture Modes via Adapted ICCM
Let Q be a PSD matrix, 𝑘 ∈ N
C← eigenvectors(Q,M, 𝑘)
for 𝑖 = 1, . . . , 𝑘 do

c← C𝑖

repeat
U𝑖 ← solve Eq. (16) (see Appendix A)

c← U𝑖/
√
U⊤
𝑖
M̃U𝑖

until ∥U𝑖 − c∥ ≤ 𝜀

return U

where 𝜏 is the timestep of the simulation our fractures are embedded
in. This choice of 𝑔 has benefits beyond physical inspiration, by
ensuring an impact is only blurred onto regions that are geodesically
close to one another, regardless of whether they are Euclideanly close
(see Fig. 9). However, computing this g upon impact would involve
solving a linear system at runtime. We avoid this by precomputing

A𝑖 = U⊤𝑖 M̃
(
M̃ − 𝜏 L̃

)−1
M̃ , (22)

thus requiring only a matrix multiplication at runtime:

w★ =

𝑘∑
𝑖=1

U𝑖A𝑖𝛿𝑝 ®𝑛 . (23)

Let Ω̃w★ be the exploded mesh Ω̃ as deformed by the map 𝑤★.
For any two vertices 𝑣𝑎𝑓 , 𝑣𝑐𝑔 that are coincident in Ω̃ (i.e., that came
from the same original vertex in Ω), we will glue (i.e., un-explode)
them if their deformation maps differ by less than some tolerance,
∥w★

𝑎𝑓
−w★

𝑐𝑔 ∥ < 𝜎 . This results in a new fractured mesh Ω★, whose
fracture pattern depends meaningfully on the nature of the impact
and which we can output to the simulation.
Our single timestep in Eq. (21) is an approximation that makes

w★ depend linearly on the impact. This has the added effect that
scaling 𝜎 and scaling the magnitude of the impact are equivalent
in our model. Thus, 𝜎 could be linked to the force of the impact or
the relative speed if one has access to this dynamic information (see
Fig. 10). We note that this equivalence is a product of our modeling
choices and may not always yield physically accurate results. For
example, a large force on a small area may cause immediate local
fractures, quickly reducing the stress before it propagates further; in
our model, the same impact would likely cause large global fractures.

3.4 Efficient implementation for real-time fracture

In 3D, our fracture mode computation needs a tetrahedralization
of the input’s interior, but practical realtime applications prefer to
work with triangle surface meshes for input and output. Fortunately,
the sparsity inducing discontinuity norm results in fracture modes
which are continuous across most pairs of neighboring tetrahedra.
It is unnecessary to keep the entire tetrahedral mesh at runtime.
Instead, we can determine the connected components determined
by neighboring tetrahedra whose shared face’s discontinuity term is
below 𝜎 across all 𝑘 modes (or below the lowest possible 𝜎 allowed
by the dynamic system). The boundary of each component is a solid

Algorithm 2: Simple nested cages via binary search
Let 𝑉in, 𝐹in be the vertex and face lists of the input mesh, and
𝑚target the desired number of output faces.
Binary Search on offset amount 𝑑

𝑉mc,𝐹mc ← marching-cubes(distance to 𝑉in,𝐹in minus 𝑑)
𝑉d,𝐹d ← decimate 𝑉mc,𝐹mc to𝑚 faces
𝑉u,𝐹u ← self-union 𝑉d,𝐹d via [Zhou et al. 2016]
𝑉t,𝑇t, 𝐹t ← tetrahedralize 𝑉u,𝐹u via [Si 2015]
if any step failed or 𝑉t,𝐹t does not strictly contain 𝑉in,𝐹in
then

increase 𝑑
else

decrease 𝑑

return 𝑉t,𝑇t

Raw per-tet
fracture Post-processed

Fig. 11. We use the upper envelope extraction algorithm by Abdrashitov

et al. [2021] to obtain smoothed fracture faults.

[Zhou et al. 2016] triangle mesh of a fracture fragment. Since the
impact projection described above is linear, we can pre-restrict the
projection to vertices on the boundary of these fragments, discarding
all internal vertices and the tetrahedral connectivity.

3.5 Simple Nested Cages

In practice, the input model may be very high-resolution, not yet
fully modeled when fractures are precomputed, or too messy to
easily tetrahedralize. Like many simulation methods before us, we
can avoid these potential performance, workflow and robustness
problems by working with a tetrahedral coarse cage nesting the in-
put. The Nested Cagesmethod of Sacht et al. [2015] produces tight
fitting cages, but suffers long runtimes, potential failure, and may
result in a surface mesh which causes subsequent tetrahedralization
(e.g., using TetWild [Hu et al. 2018] or TetGen [Si 2015]) to fail.

CageInputTherefore, in Algorithm 2 we introduce a
very simple caging method inspired by the
level-set method of Ben-Chen et al. [2009].
As an example, Nested Cages crashes after
a minute on the input mesh in the inset, while
our simple algorithm produces a satisfying out-
put cage after 85 seconds.
Like Nested Cages, the output cage will

strictly contain the input, but also by construction we ensure that
this cage can be successfully tetrahedralized (not just in theory).
In a sense, this method provides a different point on the Pareto
frontier of tightness-vs-utility. Each step is a fairly standard geome-
try processing subroutine with predictable performance, and one
may even consider using it as an initialization strategy for Nested
Cages to improve tightness in the future. We run a max of 10 search
iterations, lasting between 5 and 20 seconds each in our examples.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Breaking Good: Fracture Modes for Realtime Destruction • 1:7

Table 1. Performance details for all our examples

Fig. #T Time/mode (s) 𝑘 𝑝 Impact Proj. (ms)
7 6316 2.86 30 47 1.06
18 3931 2.20 20 117 1.21

14 (a) 3545 0.63 10 35 1.13
14 (b) 4993 2.63 25 34 1.08
16 12162 11.6 10 31 1.19
19 8802 5.91 15 152 1.96

Fracture modes and solid fragment components on the cage’s
tetrahedralization can be transferred to the true input geometry by
intersecting each connected component against the input mesh. In
this way, the exterior surface of each fragment component is exactly
a subset of the input mesh.

3.6 Smoothing internal surfaces

By our construction, the fracture boundaries will follow faces of
the tetrahedral mesh used for their computation. This reveals alias-
ing with frequency proportional to the mesh resolution. We may
optionally alleviate this by treating each extracted per-tet com-
ponent membership as a one-hot vector field, which we immedi-
ately average onto (unexploded) mesh vertices stored as a matrix
Z ∈ [0, 1]𝑛×|components | , so that Z𝑖, 𝑗 ∈ [0, 1] is viewed as the like-
lihood that vertex 𝑖 belongs to component 𝑗 . We apply implicit
Laplacian smoothing with a time step of 𝜆 to columns of Z:

Z← (M + 𝜆L)−1 (MZ), (24)

where M, L, are the mass and Laplacian matrices, respectively. The
resulting Z continue to contain fractional values in [0, 1] corre-
sponding to a smoothed likelihood. We now re-extract piecewise-
linear (triangle mesh) component boundaries by computing the
upper-envelope (tracking the argmax) using the implementation of
Abdrashitov et al. [2021]. While essentially still using the same tetra-
hedral mesh, utilizing smoothing and piecewise-linear interpolation
greatly reduces aliasing artifacts (see Fig. 11).
By the nature of the Laplacian, Eq. (24) will push our fracture

faults towards smooth surfaces. This is in alignment with our mod-
eling decisions at the beginning of Section 3: as our set of possible
fault patches 𝑆𝑖 becomes larger, the area integral in Eq. (5) will en-
courage smoother fracture fault surfaces. Thus, the postprocessing
described here is not a departure from our model; rather, a way of
alleviating the error introduced by the mesh discretization.
In the real world, crystalline materials do break along smooth

surfaces aligned with their internal structure in a phenomenon
known as cleavage (see e.g., [Ford and Dana 1922] Part II.I.277).
On the other hand, materials like wood or clay do not necessarily
break along smooth faults like those produced by our method. This
is a well-studied limitation we share with all mesh-based fracture
algorithms and which could be alleviated by borrowing strategies
from the literature like the Adaptive Fracture Refinement by Chen
et al. [2014], perturbation of crack surface vertices as described by
Fan et al. [2022], or the use of pre-authored “splinters” suggested
by Parker and O’Brien [2009].

10

10

10

10

10

0

-2

-4

-6

-8

10

10

10

10

10

-2

-4

-8

-12

-16

10
-5

10
+5ω grows

Elastic deformation
without fracture

Fracture without
elastic deformation

ED ESEnergy of first (non-trivial) fracture mode

Fig. 12. As our energy weight changes, our output modes sharply transition

from only deforming to only fracturing. This gives us the additional insight

that fractures occur only within the nullspace of the strain energy, and has

the additional effect of making 𝜔 a simple parameter to set.

3.7 Choice of strain energy

So far the only requirement on the strain energy density Ψ is that we
can construct its second-order approximation near the rest configu-
ration represented by the (positive semi-definite) Hessian matrix Q.
We now investigate the effect of choices of Q and in particular the
relationship with the balancing weight 𝜔 .

To make our investigation concrete, take Ψ to be the linear elastic
strain energy density, so that Q is the common linear elasticity
stiffness matrix. Our observations also follow if one chooses Q to
be the Hessian of other, nonlinear energies like the Neohookean
or St. Venant-Kirchhoff ones. By sweeping across values of 𝜔 we
see a sharp change in the first (and all) fracture mode’s behavior
with the discontinuity energy dominating over the strain energy
and then sharply swapping (see Fig. 12). When the discontinuity
energy is effectively zero, then we have simply recovered the usual
linear elastic vibration modes (albeit in a convoluted way).

10
0

10
-4

10
-8

ED

ES

Energy

Mode1 100

When the strain energy is effectively
zero, then we not only start to see
sparse fractures, but we also see that
each fracture fragment undergoes its
own zero-strain energy transformation.
This behaviour is consistent even in
larger order modes (inset). That is, each fragment undergoes a lin-
earized rigid transformation, the only motions in the null space of
the strain energy. Physically, this behaviour naturally aligns our
fracture modes with the traditional definition of stiff brittle fracture,
where materials do not significantly deform before breaking. This
is also interesting from a numerical perspective as it implies that
the precise choice Q is irrelevant and only its null space matters.

With this in mind, we consider whether all linearized rigid trans-
formations should be admissible. Since we ultimately care about the
fracture pattern created by the modes, we observed qualitatively
that the scaling induced by linearized rotations resulted in small
elements breaking off and expanding between fragment boundaries
to reduce the discontinuity energy. Rather than attempt to iden-
tify these as outliers, we found a simpler solution is to work with a
strain energy that only admits translational motions in its null space,
namely, Ψ(𝑢, 𝑥) = ∥∇𝑢 (𝑥)∥2. The Hessian of ∥∇𝑢 (𝑥)∥2 is simply
the cotangent Laplacian matrix L̃ ∈ R(𝑑+1)𝑚×(𝑑+1)𝑚 repeated for
each spatial coordinate:

Q = I𝑑 ⊗ L̃. (25)

This choice of Q is used in all our examples.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 • Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson

Input

O
ur

 fr
ac

tu
re

 m
od

es
Our impact-dependent projected fracture

Back-first

Feet-first

Face-first

Fig. 13. Our precomputed fracture modes identify the geometrically weak-

est regions of a shape, and are activated or not on runtime depending on

the nature of the impact.

Efficient precomputation. Our observation regarding the nullspace
of Q can be further exploited to greatly reduce the cost of our of-
fline mode precomputation step. Our strain energy being numeri-
cally zero in all our modes means all (exploded) vertices belonging
to a single element undergo identical deformations. Therefore, by
transforming this observation into an assumption, we may store
deformations solely at elements, reducing our number of variables
by a factor of 𝑑 + 1. This ensures that the strain energy measure on
the exploded mesh will always be null, which also means we can
remove the quadratic term u⊤Qu from Eq. (16). Further, allowing
only per-element deformations also makes our vector discontinuity
𝐷 necessarily constant along element boundaries, which makes its
integral in Eq. (13) trivial without the need of quadrature nodes.
The combination of all these observations significantly reduce the
size of our conic problem (see Appendix B), allowing computation
of identical fracture modes several orders of magnitude faster.

4 TIMING & IMPLEMENTATION DETAILS

We have implemented our main prototype in Python, using Libigl
[Jacobson et al. 2018]. We used Mosek [ApS 2019] to solve the
conic problem in Eq. (16). We report timings conducted on a 2020
13-inch MacBook Pro with 16 GB memory and 2.3 GHz Quad-Core
Intel Core i7 processor. To produce our animations, we follow a
traditional Houdini [SideFX 2020] fracture simulation workflow,
exchanging the usual Voronoi or openVDB fracture nodes for our
own fractured meshes. Our impact projection step could be fully

2m15s

Fig. 14. Similar impacts result in different fracture patterns once we have

computed our fracture modes for different objects.

Most common
femur fracture Random Voronoi fractures Our 1st fracture mode

Fig. 15. A healthy femur will usually break at the mid-shaft (see e.g., [Adnan

et al. 2012]), as our first fracture mode correctly identifies, unlike Voronoi-

based algorithms. Left image by Servier Medical Art under CC BY-SA 3.0.

integrated into Houdini’s rigid body simulator at a minimal perfor-
mance cost. Only for simplicity in prototyping, we chose not to do
this and instead compute our final mesh Ω★ in Python taking into
account the animation’s impact and load it into Houdini directly to
show a prototype of what our algorithm would look like integrated
in a rigid body simulation.

Our algorithm’s only parameters are the tolerances 𝜀 and 𝜎 , which
we fix at 𝜀 = 10−10 and 𝜎 = 10−3. As we discuss in Section 3.7, a
scalar 𝜔 will not actually have an effect in the output as long as it
is small enough for us to be within the zero-deformation fracture
realm (see Fig. 12).
Our proposed algorithm works in two steps. First, we precom-

pute a given shape’s fracture modes. This step takes place offline,
following Algorithm 1. The computational bottleneck of this section
of our algorithm is the conic solve detailed in Eq. (16). Each mode
takes between 0.5 and 12 seconds to compute in our meshes, which
have between 3,000 and 15,000 tetrahedra.

Secondly, our impact projection step as detailed in Section 3.3 is
the only part of our algorithm that happens at runtime. The complex-
ity of this step is dominated by the projection step in Eq. (20), which
is O(𝑘�̃�), where 𝑘 is the number of precomputed modes and �̃� is the
number of vertices in the boundary of the connected components
described in Section 3.4. All other elements of our projection step
are O(𝑝), where 𝑝 is the number of connected components (in our
example between 10 and 500) and 𝑝 << 𝑛 so they can be disregarded
from the complexity discussion. In our examples, �̃� is between 1,000
and 10,000 and we compute between 𝑘 = 20 and 𝑘 = 40 fracture
modes, meaning our full runtime step requires between 0.1 and 1
million floating point operations, putting it well within realtime
requirements, even if one greatly increases �̃�, 𝑘 or the number of
objects on scene (note this projection step only needs to be run
when a collision is detected, and not at every simulation frame).
Our unoptimized, CPU implementation takes between one and two
miliseconds to carry out this step on our laptop (see Table 1).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Breaking Good: Fracture Modes for Realtime Destruction • 1:9

3m15s

Fig. 16. Ouch, my head hurts!

Input OutputFirst fracture mode…

…with isotropic η …with anisotropic η
Fig. 17. We can simulate the natural breaking tendencies of anisotropic

materials like wood through weights in our vector valued discontinuity.

5 EXPERIMENTS & COMPARISONS

Our proposed fracture modes naturally identify the regions of a
shape that are geometrically weak, as opposed to existing procedural
prefracture algorithms. We make this explicitly clear in Figs. 3 and
15, where existing prefracture work fails to identify even the most
obvious intuitive breaking patterns which are present in our first
(non-trivial) fracture mode. Even in less didactic examples, Voronoi-
based prefracture methods result in convex, unrealistic and easily
recognizable pieces (see Figs. 22 and 2), while our fracture modes
are realistic and can produce a much wider set of shapes.

“Realism” in a fracture simulation is a hard quantity to evaluate;
however, there exist works on structural analysis like [Zhou et al.
2013] that idenfity the weakest regions of a given object. In Fig. 5, we
show how our fracture modes produce breaking patterns that align
both with their analysis as well as with their real-life experiments.
We model heterogeneous and anisotropic materials by incorpo-

rating a vector field 𝜂 : Ω → R𝑑 to the discontinuity energy:

𝐸𝐷 (𝑢) =
𝑝∑
𝑖=1

√∫
𝑆𝑖

∥𝜂 (𝑥) ◦ 𝐷 (𝑢, 𝑥)∥2𝑑𝑥 , (26)

where ◦ denotes Hadamard (elementwise) multiplication. In Fig. 18,
we experiment with varying the magnitude of 𝜂 as an artist control
tool to designate regions that should not fracture. In Fig. 17, we
make 𝜂 = (10, 10, 1) to favour vertical faults over horizontal ones.

5.1 Fracture simulations

Our proposed method is ideal for use in interactive applications. In
Fig. 4, we show screenshots of our 2D realtime fracture interactive
app. The user can cause different impacts on the object and see the
fracture patterns that result from projecting them onto our modes.
The interactive Computer Graphics application par excellence is

video games. In Fig. 7, we show a prototype where our precomputed
fracture modes for a Space Wizard Vehicle can be stored so that

Input

η>>

η<<

Our fracture modes

Painted η

2m46s

Fig. 18. The magnitude of our 𝜂 parameter can be painted into our input to

signal areas that shouldn’t fracture; e.g., in objects with different materials.

the player sees different fracture behaviours depending on the re-
ceived impact. In Fig. 14, we precompute the fracture modes for two
different vehicles and show how they break under a similar impact.

Our algorithm can be used for any realtime fracture application,
from simple objects breaking into solid pieces in the foreground of
an animation (see Fig. 13) to thin shells shattering upon impact (see
Figs. 19 and 18). In Fig. 16, we use our fracture modes to simulate a
human skull breaking into many pieces upon impact with a wall.

6 LIMITATIONS & FUTURE WORK

Our fracture modes method is intended for stiff brittle fracture. We
conjecture that general rigid fracture and even ductile fracture sim-
ulation could also benefit from our sparse-norm formulation. In
future work, we would like to improve the performance of our pre-
computation optimization.We experimented withManopt [Boumal
et al. 2014], but so far observed significantly slower performance
than our proposed method. For very large meshes, the projection
step could exceed CPU usage allowances for realtime applications.
It may be possible to conduct this entirely on the GPU.

Our fracture modes are global in nature, meaning they create re-
lations between regions of the object that will not typically fracture
together (unlike other prefracture methods like [Oh et al. 2012]). A
way of preventing a fracture in one location from also causing an
undesired fracture elsewhere is to use our modes only to identify
the pieces that could break off of an object in the precomputation
step, and swap our realtime impact projection for a least squares
constant-per-piece approximation (see Fig. 21).
Our use of an exploded mesh Ω̃ allows us to expand the usual

finite element hat function basis to include discontinuities along
element boundaries. This mesh dependency is not present in tra-
ditional Voronoi or plane-cutting prefracture algorithms, and can

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 • Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson

3m36s

Fig. 19. A glass cup shatters, resulting in many non-convex pieces that would be impossible to obtain with Voronoi-based prefracture methods.

Input Our output fracture with different impacts

Fig. 20. If a given fracture mode is contained in our fracture modes, it

can occur under any directional impact, as shown in this simple example

inspired by O’Brien and Hodgins [1999].

lead to visible artifacts if the simulation mesh is too coarse. We
alleviate it with post-facto smoothing (Section 3.6). Another way of
reducing it (at a performance cost) would have been to include basis
functions with sub-mesh-resolution discontinuities in the style of
XFEM [Chitalu et al. 2020; Kaufmann et al. 2009].

Our algorithm is designed to fit into realtime rigid body simula-
tions like those encountered in video games. Thus, our outputs will
not contain partial fractures (unlike e.g., [Müller et al. 2013]).

2 fracturesnd

Secondary fractures were not included in our
simulations. Computing a new set of fracture
modes for each piece would exceed realtime
constraints. While one could obtain plausible
secondary fractures by restricting our precom-
puted fracture modes and pattern to each pri-
mary fracture piece (see inset), there is no guarantee that these
would match the individual piece’s fracture modes.

We use a vector field 𝜂 to model an object’s preferred breaking
behaviour (see Figs. 18 and 17). Promising future work includes
incorporating physical material properties into our mode computa-
tion; for example, by treating tangential and normal discontinuities
differently.
Our method belongs to the class of prefracture, not dynamic

algorithms. Nonetheless, our method can be evaluated on dynamic
fracture benchmarks like the notched block in [O’Brien and Hodgins
1999]: if a given fracture plane is contained in one of our fracture
modes, it can be present in the fractured output (see Fig. 20). The
fracture fault will be the same regardless of the directionality of the
impact. This deviates from the real-world mechanical behaviour,
where faults will be different for brittle materials under uniaxial
tension, pure shear, and torsion loads (see [Lawn 1993], Chap. 2).
We hope our introduction of fracture eigenmodes inspires the

realtime simulation community further to use the well-studied tools
of modal analysis to this rich problem, and the broader Computer
Graphics research community to look at other open problems with
this modal lens.

Input Fracture modes Impact Projection
to modes

Best per-piece
approximation

Fig. 21. Our modes’ global nature (left) means some regions can be artifi-

cially linked (right middle). We could solve this by exchanging our mode pro-

jection for the least-squares best constant-per-piece approximation (right)

Input Voronoi
prefracture

Our
prefracture

Fig. 22. The pieces generated by Voronoi-based methods can be extremely

unrealistic (center). By combining all the possible fractures in all our modes

into a single prefractured mesh, we can provide a zero-extra-realtime-cost

alternative to procedural algorithms.

ACKNOWLEDGMENTS

This project is funded in part byNSERCDiscovery (RGPIN2017–05235,
RGPAS–2017–507938), New Frontiers of Research Fund (NFRFE–201),
the Ontario Early Research Award program, the Canada Research
Chairs Program, the Fields Centre for Quantitative Analysis and
Modelling and gifts by Adobe. The first author is supported by
an NSERC Vanier Scholarship and an Adobe Fellowship. The four
middle authors were supported by the 2020 Fields Undergraduate
Summer Research Program.

We acknowledge the authors of the 3D models used throughout
this paper: MakerBot (Fig. 1, CC BY 4.0), HQ3DMOD (Figs. 6 and 19,
TurboSquid 3D Standard Model License), Freme Minskib (Fig. 7, CC
BY-NC 4.0), 3Demon (Fig. 9, CC BY-NC-SA 4.0), Reality_3D (Fig. 11,
CC BY 4.0), Alex (Fig. 14, CC BY-NC-SA 4.0), Falha Tecnologica
(Fig. 18, TurboSquid 3D StandardModel License), LeFabShop (Fig. 16,
CC BY-NC 4.0), The Database Center for Life Science (Fig. 15, CC
BY-SA 2.1) and Gijs (inset in Section 3.5, CC BY-NC 4.0).
We are grateful to the anonymous peer reviewers for their in-

sightful suggestions. We would especially like to thank Reviewer #3
for inspiring the shockwave-based impact projection in Section 3.3.

We would also like to thank Chris Wojtan, David Hahn and Klint
Qinami for early experiments and discussions of sparse-norm frac-
ture models; Eitan Grinspun, David I.W. Levin, Oded Stein and
Jackson Phillips for insightful conversations; Rinat Abdrashitov for
providing an implementation of his algorithm mentioned in Sec-
tion 3.6; Qingnan Zhou for providing the 3D models used in Fig. 5;
Xuan Dam, John Hancock and all the University of Toronto DCS
staff that kept our lab running during the hardest of times.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

Breaking Good: Fracture Modes for Realtime Destruction • 1:11

REFERENCES

Rinat Abdrashitov, Seungbae Bang, David IW Levin, Karan Singh, and Alec Jacob-
son. 2021. Interactive Modelling of Volumetric Musculoskeletal Anatomy. ACM
Transactions on Graphics 40, 4 (2021).

Rana Muhammad Adnan, Muhammad Irfan Zia, Jahanzaib Amin, Rafya Khan, Saleem
Ahmed, and Khalid F Danish. 2012. Frequency of Femoral Fractures. The Professional
Medical Journal 19, 01 (2012), 011–014.

MOSEK ApS. 2019. The MOSEK optimization toolbox for MATLAB manual. Version 9.0.
http://docs.mosek.com/9.0/toolbox/index.html

Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. 2000.
Templates for the solution of algebraic eigenvalue problems: a practical guide. SIAM.

Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. 2009. Spatial deformation transfer.
In Proc. SCA, Dieter W. Fellner and Stephen N. Spencer (Eds.).

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. 2014. Manopt, a Matlab Toolbox
for Optimization on Manifolds. Journal of Machine Learning Research 15, 42 (2014),
1455–1459. https://www.manopt.org

Stephen P. Boyd. 2010. Distributed Optimization and Statistical Learning Via the Alter-
nating Direction Method of Multipliers.

Christopher Brandt and Klaus Hildebrandt. 2017. Compressed vibration modes of
elastic bodies. Computer Aided Geometric Design 52 (2017), 297–312.

Emmanuel J. Candes and Michael B. Wakin. 2008. An Introduction To Compressive
Sampling.

Zhili Chen, Miaojun Yao, Renguo Feng, and Huamin Wang. 2014. Physics-inspired
adaptive fracture refinement. ACM Transactions on Graphics 33, 4 (2014).

Floyd M Chitalu, Qinghai Miao, Kartic Subr, and Taku Komura. 2020. Displacement-
Correlated XFEM for Simulating Brittle Fracture. In Computer Graphics Forum,
Vol. 39. Wiley Online Library, 569–583.

S Roy Chowdhury and R Narasimhan. 2000. A cohesive finite element formulation for
modelling fracture and delamination in solids. Sadhana 25, 6 (2000), 561–587.

Linxu Fan, Floyd M. Chitalu, and Taku Komura. 2022. Simulating Brittle Fracture
with Material Points. ACM Trans. Graph. 41, 5, Article 177 (may 2022), 20 pages.
https://doi.org/10.1145/3522573

William E Ford and Edward S Dana. 1922. A Textbook of Mineralogy: With an Extended
Treatise on Crystallography and Phys. Mineralogy. Wiley.

Loeiz Glondu,MaudMarchal, and Georges Dumont. 2012. Real-time simulation of brittle
fracture using modal analysis. IEEE Transactions on Visualization and Computer
Graphics 19, 2 (2012), 201–209.

David Hahn and Chris Wojtan. 2015. High-resolution brittle fracture simulation with
boundary elements. ACM Trans. Graph. 34, 4 (2015), 151:1–151:12.

David Hahn and Chris Wojtan. 2016. Fast approximations for boundary element
based brittle fracture simulation. ACM Trans. Graph. 35, 4 (2016), 104:1–104:11.
https://doi.org/10.1145/2897824.2925902

Koichi Hirota, Yasuyuki Tanoue, and Toyohisa Kaneko. 1998. Generation of crack
patterns with a physical model. The visual computer 3, 14 (1998), 126–137.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. (2018).

George R Irwin. 1957. Analysis of stresses and strains near the end of a crack traversing
a plate. Journal of Applied Mechanics (1957).

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross.
2009. Enrichment Textures for Detailed Cutting of Shells. ACM Trans. Graph. (2009).

Madhu S Kirugulige, Hareesh V Tippur, and Thomas S Denney. 2007. Measurement
of transient deformations using digital image correlation method and high-speed
photography: application to dynamic fracture. Applied optics 46, 22 (2007).

Dan Koschier, Sebastian Lipponer, and Jan Bender. 2015. Adaptive tetrahedral meshes
for brittle fracture simulation. In SCA ’14.

Brian R Lawn. 1993. Fracture of brittle solids. Cambridge solid state science series (1993).
R. B. Lehoucq, D. C. Sorensen, and C. Yang. 1998. ARPACK Users’ Guide. Society for

Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719628
LienMuguercia, Carles Bosch, and Gustavo Patow. 2014. Fracture modeling in computer

graphics. Computers & graphics 45 (2014), 86–100.
Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2013. Real time dynamic

fracture with volumetric approximate convex decompositions. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 1–10.

Matthias Muller, Matthias Teschner, and Markus Gross. 2004. Physically-based simula-
tion of objects represented by surface meshes. In Proceedings Computer Graphics
International, 2004. IEEE, 26–33.

Ken Museth, Peter Cucka, Mihai Alden, and David Hill. 2021. OpenVDB.
T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker. 2014. Compressed

Manifold Modes for Mesh Processing. Computer Graphics Forum 33, 5 (2014), 35–44.
ThomasNeumann, Kiran Varanasi, StephanWenger,MarkusWacker,Marcus A.Magnor,

and Christian Theobalt. 2013. Sparse localized deformation components. ACM Trans.
Graph. (2013).

Alan Norton, Greg Turk, Bob Bacon, John Gerth, and Paula Sweeney. 1991. Animation
of fracture by physical modeling. The visual computer 7, 4 (1991), 210–219.

James F O’Brien and Jessica K Hodgins. 1999. Graphical modeling and animation of
brittle fracture. In Proceedings of the 26th annual conference on Computer graphics
and interactive techniques. 137–146.

Seungtaik Oh, Seunghyup Shin, and Hyeryeong Jun. 2012. Practical simulation of
hierarchical brittle fracture. Computer Animation and Virtual Worlds 23, 3-4 (2012).

Michael Ortiz and Anna Pandolfi. 1999. Finite-deformation irreversible cohesive ele-
ments for three-dimensional crack-propagation analysis. International journal for
numerical methods in engineering 44, 9 (1999), 1267–1282.

V. Ozolins, R. Lai, R. Caflisch, and S. Osher. 2013. Compressed modes for variational
problems in mathematics and physics. Proceedings of the National Academy of
Sciences 110, 46 (Oct 2013), 18368–18373. https://doi.org/10.1073/pnas.1318679110

Eric G Parker and James F O’Brien. 2009. Real-time deformation and fracture in a game
environment. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. 165–175.

Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O’Brien. 2014. Adaptive
Tearing and Cracking of Thin Sheets. ACM Trans. Graph. (2014).

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: simultaneous distortion and cut optimization for UV mapping. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

Saty Raghavachary. 2002. Fracture generation on polygonal meshes using Voronoi
polygons. In ACM SIGGRAPH 2002 conference abstracts and applications. 187–187.

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Trans.
Graph. (2015).

Sara C. Schvartzman and Miguel A. Otaduy. 2014. Fracture Animation Based on High-
Dimensional Voronoi Diagrams. In Proc. I3D.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. (2015).

SideFX. 2020. Houdini. https://www.sidefx.com
Jonathan Su, Craig Schroeder, and Ronald Fedkiw. 2009. Energy stability and fracture

for frame rate rigid body simulations. In Proceedings of the 2009 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation. 155–164.

MartinWicke, Daniel Ritchie, BryanMKlingner, Sebastian Burke, Jonathan R Shewchuk,
and James F O’Brien. 2010. Dynamic local remeshing for elastoplastic simulation.
ACM Transactions on graphics (TOG) 29, 4 (2010), 1–11.

Joshuah Wolper, Yunuo Chen, Minchen Li, Yu Fang, Ziyin Qu, Jiecong Lu, Meggie
Cheng, and Chenfanfu Jiang. 2020. AnisoMPM: Animating anisotropic damage
mechanics: Supplemental document. ACM Trans. Graph 39, 4 (2020).

Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, and Chenfanfu Jiang.
2019. CD-MPM: continuum damage material point methods for dynamic fracture
animation. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–15.

Nafees Bin Zafar, David Stephens, Mårten Larsson, Ryo Sakaguchi, Michael Clive,
Ramprasad Sampath, Ken Museth, Dennis Blakey, Brian Gazdik, and Robby Thomas.
2010. Destroying LA for" 2012". In ACM SIGGRAPH 2010 Talks. 1–1.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Trans. Graph. (2016).

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis.
ACM Trans. Graph. 32, 4 (2013), 137–1.

Yufeng Zhu, Robert Bridson, and Chen Greif. 2015. Simulating Rigid Body Fracture
with Surface Meshes. ACM Trans. Graph. (2015).

Yufeng Zhu, Jovan Popović, Robert Bridson, and Danny M Kaufman. 2017. Planar
interpolation with extreme deformation, topology change and dynamics. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–15.

A CANONICAL CONIC PROGRAM FORM OF EQ. (16)

Let us define a sparse matrix D ∈ R𝑝𝑑×𝑑 (𝑑+1)𝑚 that operates on a
deformation map and evaluates the vector-valued discontinuities at
all the relevant integration quadrature points. The ordering of the
rows ofD is arbitrary, and we choose it such thatD can be separated
into 𝑑 blocks, one for each quadrature point.

For example, in the case 𝑑 = 2, we choose said ordering such that
the first 𝑝 rows of Du are the vector-valued edge-wise discontinuity√

𝑙𝑒

2
d
(
1
√
3

)
from Eq. (13) and the last 𝑝 rows of Du correspond to√

𝑙𝑒

2
d
(
−1
√
3

)
.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://docs.mosek.com/9.0/toolbox/index.html
https://www.manopt.org
https://doi.org/10.1145/3522573
https://doi.org/10.1145/2897824.2925902
https://doi.org/10.1137/1.9780898719628
https://doi.org/10.1073/pnas.1318679110
https://www.sidefx.com

1:12 • Silvia Sellán, Jack Luong, Leticia Mattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang, and Alec Jacobson

Since Q is positive semi-definite, we can write it as Q = R⊤R for
some matrix R. Define

Y𝑒 = (Du)𝑒 ,∀𝑒 = 1, . . . , 2𝑝, (27)

where 𝑙𝑒 is the length of edge 𝑒 . Next, define

r𝑖 = (Ru)𝑖 ,∀𝑖 = 1, . . . , 𝑑 (𝑑 + 1)𝑚. (28)

Then, Eq. (16) can be written in the canonical form

argmin
u,𝑡,Y,z

1
0
0
0
1

⊤
𝑡

r
u
Y
z

(29)

subject to

𝑡 ≥
√
r21 + . . . + r

2
𝑑 (𝑑+1)𝑚

z𝑒 ≥

√√√
𝑑−1∑
𝑠=0

Y𝑒+𝑠𝑝22 ∀𝑒 = 1, . . . , 𝑝

Y = Du
r = Ru

c⊤�̃�u = 1

U𝑗 �̃�u = 0 , ∀𝑗 = 1, . . . , 𝑖 − 1.

B EFFICIENT CONIC PROGRAM FROM SECTION 3.7

Let C be the R(𝑑+1)𝑚×𝑚 matrix of ones and zeros that transfers
values from elements to vertices in the exploded mesh, and let us
assume now that we are storing per-element deformations in vectors
v,U𝑗 , c ∈ R𝑑𝑚 . Then, our conic problem from Appendix A becomes

argmin
v,𝑡,Y,z

1
0
0
0
1

⊤
𝑡

r
v
Y
z

(30)

subject to

𝑡 ≥
√
r21 + . . . + r

2
𝑑 (𝑑+1)𝑚

z𝑒 ≥

√√√
𝑑−1∑
𝑠=0

Y𝑒+𝑠𝑝22 ∀𝑒 = 1, . . . , 𝑝

Y = DCv
r = RCv

c⊤�̃�u = 1

U𝑗 �̃�u = 0 , ∀𝑗 = 1, . . . , 𝑖 − 1.

By construction, QCv = 0 ⇒ RCv = 0, which means we can
remove 𝑡 and r as variables entirely. Further, since the vector-valued
discontinuity is constant across element boundaries, Y𝑒 = Y𝑒+𝑠𝑝 ,
with 𝑠 = 0, . . . , 𝑑 − 1, meaning that we can remove the summation

from the 𝑧𝑒 cone and consider only the first 𝑝 rows of Y. This leads
to the equivalent, simpler conic program

argmin
v,Y

0
0
1

⊤

v
Y
z

 (31)

subject to

z𝑒 ≥
√
𝑑 ∥Y𝑒 ∥22 ∀𝑒 = 1, . . . , 𝑝

(Y)𝑒 = (DCv)𝑒 ∀𝑒 = 1, . . . , 𝑝

c⊤C⊤MCv = 1

U𝑗C⊤MCv = 0 , ∀𝑗 = 1, . . . , 𝑖 − 1.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sparsified eigenproblems

	3 Fracture Modes
	3.1 Fracture Modes on Meshes
	3.2 Optimization
	3.3 Impact-dependent fracture
	3.4 Efficient implementation for real-time fracture
	3.5 Simple Nested Cages
	3.6 Smoothing internal surfaces
	3.7 Choice of strain energy

	4 Timing & Implementation details
	5 Experiments & Comparisons
	5.1 Fracture simulations

	6 Limitations & Future Work
	Acknowledgments
	References
	A Canonical conic program form of Eq. (16)
	B Efficient conic program from Section 3.7

