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KURT MA, STEFANIE GASSEL, SUZI KIM, ANDREW MOFFAT, and MILLICENT MAIER,Wētā Digital
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A MODEL TRAINING
The unknown parameters of our model are the pose correction
blendshapes (P = {𝑃𝑘 }𝑘≤𝐾 ); the strain-to-skin expression defor-
mation blendshapes (E = {𝐸𝑠 }𝑠≤ |®𝛾 |); and the linear blend skinning
(LBS) weights (W = {𝜔𝑖𝑘 } ∈ R𝑁×𝐾 ). Fig. S1 depicts the entire
optimization flow.

A.1 Optimizing Eyes, Jaw Region Weights and Base
Deformation Matrices

The first optimization targets the unknown skinning weights W.
Given a ground truth animated mesh 𝑉 (𝑡 ) ∈ R3𝑁 and pose ®𝜃 (𝑡 ) (as
functions of time), the rest-pose mesh 𝑇 , joint locations 𝐽 and the
blend skinning function𝑊 [Loper et al. 2015], we aim to minimize
the following cost function:

L(W) =
𝑇∑
𝑡=1

𝑉 (𝑡 ) −𝑊 (𝑇, 𝐽 , ®𝜃 (𝑡 ) ,W)
2 + 𝜆𝑇 W (𝑖) −W
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𝐹
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Fig. S1. Optimization and training flow of an actor and a character face
model. Note that the character training shares the actor’s muscle strains and
strain-jaw autoencoder. Thus, the character training skips the autoencoder
training process. ©Wētā FX.

constrained by 0 ≤ 𝜔𝑖𝑘 ≤ 1, where W (𝑖) are initial weight val-
ues provided by animators to bootstrap the iterative optimization
algorithm. This initial estimation dramatically increases the conver-
gence rate. The second loss term prevents some vertices from being
activated by a joint they are far away from a phenomenon which
tends to happen otherwise.
Because this is a constrained least-squares problem, we chose

to use the corresponding solver from CERES [Agarwal et al. 2022],
which converges in about 50 iterations (with 𝜆 = 0.1).

A.2 Adding Pose Correction Blendshapes
After convergence, the LBS function is able to explain most of the
variance of the pose animation (jaw and eyes related movements)
but not all of it. In order to further reduce the error, we compute 9𝐾+
3 additional pose correction shapes, which we optimize according
to the following minimization objective:

L(P) =
𝑇∑
𝑡=1

𝑉 (𝑡 ) −
9𝐾+3∑
𝑘=1

(𝑅𝑘 ( ®𝜃 (𝑡 ) ) − 𝑅𝑘 ( ®𝜃∗))𝑃𝑘

2 ,
1
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where P = [𝑃1, . . . , 𝑃9𝐾+3] ∈ R3𝑁×(9𝐾+3) is unknown.
For this stage, the target mesh 𝑉 (𝑡 ) is computed by unposing the

previous target𝑉 (𝑡 ) , i.e., by inverting the skinning function𝑊 . This
inversion operation is feasible because there is no overlap in the
weight maps of the different joints.

At this point, our model is able to match the pose animation with
high accuracy as follows:

𝑀 ( ®𝜃, ®𝛾) =𝑊 (𝑇 + 𝐵𝑃 ( ®𝜃,P), 𝐽 , ®𝜃,W).

This model can animate most movements related to jaw and eyes
rigid transformations, but it is not able to match some soft skin
deformations, like the shape of the lips. In order to finalize it, we need
to add another blendshape B𝐸 to match the expression component.
This blendshape system is driven by the strain values ®𝛾 ∈ R | ®𝛾 | .

A.3 Optimizing the Skin Deformation Matrix and
Fine-tuning the Strain Values

Let �̃� (𝑡 ) be the fully unposed mesh (the pose correction blend-
shapes are removed from 𝑉 (𝑡 ) ) indexed by time 𝑡 ≤ 𝑇 and let
Γ =

{
®𝛾 (𝑡 )

}
be the corresponding sequence of strain vectors. Also,

let E = {𝐸𝑖 }𝑖≤ |®𝛾 | ∈ R3𝑁×|®𝛾 | denote the strain-to-skin deformation
components introduced in Section 5.3.

We want to optimize Γ and E to match the residual animation as
much as possible. At this point, we already have an estimate of Γ
provided by the animators and muscle fiber simulation. However,
since this space is completely artificial, we decided to refine it further
in order to improve the final accuracy. Therefore we compute both Γ
and E with alternating optimization steps, one being kept constant
while the other is being processed. The final convergence is reached
after about 10 iterations of both steps.
Skin Deformation The cost function to optimize E is defined

with two terms:

L(E) =
𝑇∑
𝑡=1

�̃� (𝑡 ) − E®𝛾 (𝑡 )
2 + 𝜇𝑇 | ®𝛾 |∑

𝑠=1
∥𝐸𝑠D𝑠 ∥2𝐹 .

The first term is the reconstruction loss which computes the vertex-
wise squared euclidean distance between the unposed target mesh
and the strain-animated expression blendshape. The second one is
a regularization term which penalizes the influence of the strains
on vertices that are far away from their curves on the face. In this
equation, 𝐸𝑠 is to be understood as a 3 × 𝑁 matrix (instead of a
vector in R3𝑁 ) and D𝑠 = diag

(
[𝑑𝑠,1, . . . , 𝑑𝑠,𝑁 ]

)
∈ R𝑁×𝑁 denotes

the vertex-wise penalty coefficient applied to the strain 𝑠 . This term
is important to avoid contamination, for example, a jaw muscle
being correlated with the eyelids animation and giving the jaw
strains a high penalty value for the eyelids’ vertices prevents this.
Strains Fine-tuning In the alternating optimization step, we

keep E constant while fine-tuning the strain values Γ. Starting from
a prior estimation ®𝛾 (𝑡 )𝑝 , we minimize the following cost function
which contains the same reconstruction loss as above, coupled with
a regularization term that prevents the new estimate ®𝛾 (𝑡 ) from

diverging too much from the prior:

L(Γ) =
𝑇∑
𝑡=1

(�̃� (𝑡 ) − E®𝛾 (𝑡 )
2 + 𝜆 ®𝛾 (𝑡 )𝑝 − ®𝛾 (𝑡 )

2) .
A.4 Training the Strain Autoencoder
The autoencoder, or more precisely the two AE neural networks, is
trained with respect to the Euclidean L2 loss with the LAMB [You
et al. 2020] optimizer, an advancement of the commonly used ADAM
[Kingma and Ba 2014] optimizer adding layer-wise normalization
of the gradient and scaling of the update step with respect to the
weights to it.

To improve usability, we required the autoencoder to fully pre-
serve the rest-pose strains vector ®𝛾0 (i.e., the strain activations when
the face is in a neutral and expressionless pose). So we need to en-
force 𝐴𝐸Φ (®𝛾0) = ®𝛾0, however, in practice, autoencoders are usually
subject to slight deviations between input and output to some de-
gree of precision. To overcome the stability issues, we implemented
the following approach. If𝑔Φ is the neural network, then we actually
trained and used the autoencoder

𝐴𝐸Φ (®𝛾) = 𝑔Φ (®𝛾) − 𝑔Φ (®𝛾0) + ®𝛾0
with respect to the cost function L (®𝛾) = ∥𝐴𝐸Φ (®𝛾) − ®𝛾 ∥. This en-
forces the rest-pose stability constraint while neither hindering the
training nor creating a discontinuity in ®𝛾0.

B PERFORMANCE CAPTURE DRIVEN ANIMATION

B.1 Building Mesh Targets

Let𝑉 =

{
𝑉

(𝑡 ) }
𝑡 ≤𝑇

∈ R3𝑁×𝑇 our mesh training dataset. We create a
PCA reduction of our data by computing the first 𝐶 = 300 principal
components:

𝑄 = argmin
𝑋 ∈R𝐶×3𝑁

(𝐼 − 𝑋𝑇𝑋 ) 𝑉  .
Let 𝑃 be the projection matrix frommesh space to marker space. If

𝑀 is the known vector of 3d tracked facial markers, we want to find
the mesh 𝑉 such that𝑀 = 𝑃𝑉 . This inversion is under-constrained
because 𝑃 is a projection (not full-ranked), hence we leverage our
PCA model to find the best pseudo-inverse mesh 𝑉𝑜𝑝𝑡 = 𝑄𝑇𝑋𝑜𝑝𝑡
where

𝑋𝑜𝑝𝑡 = argmin
𝑋 ∈R𝐶

𝑀 − 𝑃𝑄𝑇𝑋


=

(
𝑃𝑄𝑇

)−1
𝑀.(

𝑃𝑄𝑇
)−1

is actually the pseudo-inverse of 𝑃𝑄𝑇 .
Put in words, we find the optimal controls of a blendshape model

of which the shapes are the first𝐶 eigenvectors of our mesh dataset.
With these controls, we build the most plausible blendshape mesh
which matches the target markers. We use this mesh 𝑉𝑜𝑝𝑡 as our
target for the pose and expression solvers.

B.2 Jaw Solver
As the first solving step, it aims at finding the best-matching pose
vectors Θ for the given meshes. Since the eye rotations are easy
to estimate from images, they are found upstream and considered

2
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known at this point. As a consequence, we only need to estimate
the jaw poses. The loss with respect to which we optimize ®𝜃 (𝑡 ) is
expressed as follows:

L(Θ) =
𝑇∑
𝑡=1

(𝑉 (𝑡 ) −𝑀 ( ®𝜃 (𝑡 ) , ®𝛾0)
2 + 𝜆  ®𝜃 (𝑡−1) − 2 ®𝜃 (𝑡 ) + ®𝜃 (𝑡+1)

2) .
The first term is the reconstruction loss and computes the vertex-
wise euclidean distance between the ground truth mesh and the
model. The second is the temporal coherency cost which computes
an estimation of the second-order temporal derivative (acceleration)
of the pose vector and constrains its norm to remain close to zero.
This prevents jumps from one frame to the next and helps preserving
the temporal coherency of the sequence (to avoid side effects at the
first and last frame, we pad our data by repeating these frames).

The reconstruction cost is computed with the strains input being
kept constant equal to ®𝛾0 (corresponding to the neutral face,) which
makes the expression blendshape B𝐸 (®𝛾0) equal to zero.
After this step, the resulting posed meshes are checked on a

frame-by-frame basis and manually corrected (in the pose space)
if necessary. This is done by projecting the meshes into camera
space and checking that the teeth (in particular) are aligned with
the ground truth camera images.

B.3 Expression Solver
This second and last step comes right after and computes the ex-
pression blendshapes inputs Γ ∈ R | ®𝛾 |×𝑇 according to the following
objective and with Θ now known:

L(Γ) =
𝑇∑
𝑡=1

(𝑉 (𝑡 ) −𝑀 ( ®𝜃 (𝑡 ) , ®𝛾 (𝑡 ) )
2 + 𝛼 ®𝛾 (𝑡−1) − 2®𝛾 (𝑡 ) + ®𝛾 (𝑡+1)

2
+ 𝛽

𝐴𝐸Φ (®𝛾 (𝑡 ) , ®𝜃 (𝑡 ) ) − ®𝛾 (𝑡 )
2) .

We use the same reconstruction term (albeit with non-constant
strains now) and the acceleration cost is now applied to the strains.
In addition to these, we add a third term to prevent the strain vectors
from going outside of the manifold of plausible expressions, which
is defined as the space within which the autoencoder preserves its
inputs.

C GUIDE SHAPES FOR IMPROVED TRANSFER
To refine the expression, the user can add guide shapes𝐺 to correct
the transfer residual error. Given pairs of actor and character guide
shapes (𝐺𝑎 and𝐺𝑐 ), we compute the difference Δ with actor neutral
shape 𝑅𝑎 (i.e 𝐺𝑎 = 𝑅𝑎 + Δ𝑎) and corresponding cage-transferred
character shape 𝑇𝑐 (𝐺𝑐 = 𝑇𝑐 + Δ𝑐 ). Then for each scan 𝑆𝑎 of the
actor mesh sequence, we solve the optimization problem

𝜆𝑜𝑝𝑡 = argmin
𝜆

𝑆𝑎 − 𝑅𝑎 −∑
𝑖

𝜆𝑖Δ
𝑎
𝑖

 ,
where the weights 𝜆𝑖 are unknown. They are then used to compute
the corresponding character shape

𝑆𝑐 = 𝑇𝑐 +
∑
𝑖

𝜆
𝑜𝑝𝑡

𝑖
Δ𝑐𝑖 .

This procedure guides the transfer for extreme and critical shapes
such as eye closing and jaw opening as shown in Fig. 6.

D QUESTIONS TO GUIDE USER FEEDBACK
(1) What do you think of the quality of the performance capture

driven deformation of Animatomy versus a blendshape-based
or other facial animation system you have used?

(2) Do you think that the face manifold (on-model) preserves
plausible face expressions well?

(3) Are there expressions that you feel should be on the manifold
that are consistently missed or ruined? If yes, is there a way
you can correct for this problem and how?

(4) What do you think of the quality of the strain-based skin
deformation relative to blendshapes or other skin deformation
rigs?

(5) What do you think of the quality of the keyframed strain
deformation relative to keyframed blendshapes?

(6) What do you think of the brush-based selection and manipu-
lation tools?

(7) Are there more direct ways you can think of interacting with
muscle curves and/or strains?

(8) What do you think of the quality of the actor to character
transfer based on strains?

(9) What do you think of the overall experience of working with
Animatomy over other systems you have used?
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Fig. S2. Illustration of simulated muscle geometries (left) from the actor’s skin expression (middle) and the bones (right). ©Wētā FX.

Fig. S3. Additional data example. ©Wētā FX.
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Fig. S4. Additional optimization results of jaw and eyeballs kinematics (top) and skin deformation (bottom). In each pair, left blue and right gray models show
a ground truth and a deformation result, respectively. ©Wētā FX.

Fig. S5. Muscle feature refinement comparison: ground truth (left), deformation result with refinement (middle) and without refinement (right). The vertex-wise
Euclidean error is displayed aside. ©Wētā FX.
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Fig. S6. Additional Animatomy results. ©Wētā FX.

Fig. S7. Reconstruction error while varying the strain dimensions. Maximum vertex reconstruction error measured over 1000 frames of the dataset. Zero errors
indicate rest-poses. We chose 178 strains which give a good trade-off between reconstruction accuracy and animator control. ©Wētā FX.
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Fig. S8. Each expression set shows a ground truth (left), Animatomy (middle), and FACS model (right). ©Wētā FX.

Fig. S9. Each expression set shows a ground truth using the shape transfer (left), Animatomy (middle), and FACS model (right). ©Wētā FX.
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