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Fig. 1. A diffusion curve image drawn with our method demonstrates that extremely zoomed-in views maintain high accuracy. Please enjoy these images best
using a high-resolution digital screen (or by printing on billboard). See the accompanying demo video for full-frame zoom-in transition on a given timestamp.
We obtained the vector graphics image from buysellgraphic.com with purchased commercial license and have modified it to enable extreme zoom-in.

In theory, diffusion curves promise complex color gradations for infinite-
resolution vector graphics. In practice, existing realizations suffer from poor
scaling, discretization artifacts, or insufficient support for rich boundary
conditions. Previous applications of the boundary element method to diffu-
sion curves have relied on polygonal approximations, which either forfeit
the high-order smoothness of Bézier curves, or, when the polygonal approx-
imation is extremely detailed, result in large and costly systems of equations
that must be solved. In this paper, we utilize the boundary integral equation
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method to accurately and efficiently solve the underlying partial differential
equation. Given a desired resolution and viewport, we then interpolate this
solution and use the boundary element method to render it. We couple this
hybrid approach with the fast multipole method on a non-uniform quadtree
for efficient computation. Furthermore, we introduce an adaptive strategy
to enable truly scalable infinite-resolution diffusion curves.

CCS Concepts: • Computing methodologies → Rasterization; Image
manipulation.
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1 INTRODUCTION
Diffusion curves are primitives for smoothly interpolating color
data in vector graphics images, where the continuous color data
is defined to be the solution to Laplace’s equation with boundary
values specified along vector graphics curves. Laplace’s equation is
the prototypical elliptic partial differential equation (PDE), and at
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first glance it would appear that any numerical method for elliptic
PDEs could potentially be used to solve it, such as finite differences,
finite elements, boundary elements or random walks. Unfortunately,
in practice, diffusion curves present a number of complications
which cause problems in many existing numerical methods.

Finite difference-based diffusion curve methods [Finch et al. 2011;
Orzan et al. 2008] rely on lossy rasterization of boundary data onto
a fixed pixel grid, which may either be too dense (and slow) or too
coarse (and inaccurate and aliased) for a desired display resolution.
Finite element methods [Jacobson et al. 2012; Pang et al. 2011] simi-
larly commit to a fixed, albeit adaptive, grid resolution which simul-
taneously determines the solution accuracy, solution smoothness,
and boundary curve fidelity. Both linear elements and isogeometric
(curved) elements present their own respective difficulties. While
popular, linear FEM requires approximating curved Bézier curves by
linear segments. Alternatively, higher-order FEM, with its more com-
plicated functions spaces [Ilbery et al. 2013; Schneider et al. 2018]
could be used on a mesh made of curved elements which conform
to boundary curves. Unfortunately, generating these meshes auto-
matically remains an open problem with very recent advances [Hu
et al. 2019; Mandad and Campen 2020]. Furthermore, once meshes
are generated, FEM struggles to provide accuracy near boundary
singularities [Gopal and Trefethen 2019a]. Unlike many other PDE-
based problems in computer graphics, diffusion curves are rife with
both geometric boundary singularities (sharp corners or endpoints
of open curves) and discontinuities in prescribed color values. Sto-
chastic methods based on random walks, like the recent Walk on
Spheres method [Sawhney and Crane 2020], can overcome some of
these difficulties, however, such methods do not support problems
where the boundary conditions are predominantly Neumann, which
are essential to practical applications of diffusion curves.
An alternative to discretizing the entire image domain is to em-

ploy boundary-only methods, where the color value at every point
can be computed from calculations performed on the boundary
alone. The boundary element method (BEM) discretizes only the
boundary using boundary elements, and can then evaluate the solu-
tion at any point in the domain after a precomputation step which
involves solving an integral equation. BEM, however, still requires
discretization of the boundary into line segments [Sun et al. 2012;
van de Gronde 2010], which can lead to resolution problems at the
boundary, similar to those encountered in linear FEM.
We propose a boundary-only method which does not represent

the solution on line segments approximating the boundary geome-
try. Instead, we sample directly from the exact spline representation
of boundary curves using the boundary integral equation method
(BIEM), and solve the associated integral equation in a way that
allows us to color pixels at an arbitrary resolution. To evaluate the
color data, we interpolate our smooth BIEM solution to a resolution-
and viewport-aware BEM discretization. A large part of the calcu-
lations required by our method can be precomputed and, during
changes of the viewport, the solution to the BIE only needs to be
re-solved on a sparse set of boundary curves. We employ the Fast
Multipole Method (FMM) to efficiently evaluate the color data for a
large number of curves. In applying the FMM to diffusion curves,
we find that the FMM, as it is typically presented [Martinsson 2019]
and implemented [Greengard and Gimbutas 2022], is not especially

Fig. 2. The original finite-difference method of Orzan et al. [2008] exhibits
inaccuracies (left), e.g., around the eye. Our hybrid, boundary-only method
shows accurate solution (right).

friendly to a graphics audience, and forgoes some precomputations
which we find to be essential in our application. Thus, we provide a
self-contained presentation of the FMM in the context of diffusion
curves, along with the novel strategies we employ to accelerate our
computations. Our method, together with our optimized FMM, re-
sults in an efficient and fully adaptive infinite-resolution algorithm
for evaluating diffusion curves, and can be viewed as a hybrid of
BEM and BIEM, which maximally exploits the advantages of both.

2 RELATED WORKS

2.1 Diffusion Curves
When Diffusion Curves (DCs) were first introduced, Orzan et al.
[2008] solved Laplace’s equation using the Finite Difference (FD)
Method, with follow-up work reformulating the equation as a con-
straint problem [Bezerra et al. 2010] on a grid of pixels. Despite its
strengths of simplicity and easy parallelization, rasterizing the input
curve to a pixel domain can lead to inaccurate results, as shown in
Fig. 2 (left). Follow-up work of [Jeschke et al. 2009] overcomes this
issue by initializing each pixel to the color of the closest curve point
and blending the image with a Jacobi-like iteration. While resulting
images are visually excellent, they can nonetheless differ slightly
from the converged solutions.
To overcome some of the problems of the FD method, the Fi-

nite Element Method (FEM) was employed to evaluate DCs [Pang
et al. 2011; Takayama et al. 2010] since FEM can more precisely
represent the boundary geometry using constrained triangulation
along curves. While the boundary can indeed be better represented,
triangulation itself can become burden if the input curves are too
numerous or have complex shapes. Using the powerful triangulation
tool TriWild [Hu et al. 2019], we could not successfully generate
a triangulation of example Fig. 2 with sufficient detail preserved.
Even if triangulation succeeds, FEM still suffers from bleeding ar-
tifacts if the triangulation is not dense enough, as shown in Fig. 3.
FEM has notoriously poor accuracy near singularities such as re-
entrant corners, which are commonplace in DCs (see, e.g., [Gopal
and Trefethen 2019a]). While [Boyé et al. 2012] (Sec.4.3) did present
a heuristic method to circumvent this singularity problem, it does
not provide as accurate a solution as our approach does.
The Boundary Element Method (BEM) [Sun et al. 2012; van de

Gronde 2010] can be used to avoid triangulation by only discretizing
boundary curves and re-formulating the problem as an integral
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FEM (coarse, cubic)

FEM (dense, linear )

Hybrid (Ours)

HybridFEM

Fig. 3. Top row: Bleeding artifacts are pervasive in the FEM results of Tri-
Wild [Hu et al. 2019], as shown in their Figure 12, reproduced here with
arrows added. (Used under permission.) Bottom row: With much denser
triangulation, with linear elements, it still shows unnatural transition of
color near end point of curves. Our method shows accurate and smooth
solution with the same data.

(a) Input curve (b) BEM (c) BIEM (d) Hybird

Fig. 4. Result comparisons between BEM, BIEM, and our Hybrid method.
BEM suffers from visible polyline, and BIEM shows dotted-looking artifacts
near the boundary, whereas our method is free from both problems.

equation. The evaluation of color values, which would otherwise be
fairly expensive with brute force computation, can be accelerated
using the Fast Multipole Method (FMM) [Sun et al. 2014]. However,
BEM still suffers from visible polyline discretization, as shown in
Fig. 4 (b).

Diffusion curves can also be evaluated using stochastic methods.
Stochastic ray tracing [Bowers et al. 2011] treats the curves as light
sources emitting radiant energy, and determines the color at a pixel
by computing the radiance received at that point. This method was
further combined with FEM in follow-up work [Prévost et al. 2015].
While stochastic ray tracing is able to achieve real-time performance
using a GPU-based implementation, it is unable to diffuse colors
around corners or obstacles, resulting in visual differences when
compared with diffusion curves evaluated by other methods. The
fully meshless Walk on Spheres (WoS) [Sawhney and Crane 2020;
Sawhney et al. 2022], on the other hand, does diffuse colors around
obstacles. However, WoS has difficulties with Neumann boundary
conditions, and this turns out to be a major limitation, since such
boundary conditions turn out to be exceedingly useful in practice.

Fig. 5. Input diffusion curves, with Dirichlet boundary conditions on colored
curves and zero Neumann boundary conditions on dotted curves (left),
and its solution (right), with an example image inspired from [Hofstadter
1979] (top) and an example of a Nautilus shell (bottom). For the Nautilus
shell example, a solid color inner shell region is overlayed. Nautilus shell
vector graphics art is obtained from buysellgraphic.com with purchased
commercial license.

For complicated collections of input curves, it is difficult to specify
Dirichlet boundary conditions on every single curve. By specifying
a zero Neumann boundary condition on a majority of the input
curves, one only needs to specify Dirichlet boundary conditions
on a small subset of curves to create a smooth and natural color
interpolation on the domain, as shown in Fig. 5.

Besides the various methods for evaluating diffusion curves, the
notion of a diffusion curve itself has been generalized in several
directions. The typical definition of the interpolated colors of a
diffusion curve is as a harmonic function; this definition has been
generalized to a biharmonic function with FD [Finch et al. 2011],
FEM [Boyé et al. 2012; Jacobson et al. 2012], and BEM [Ilbery et al.
2013]. A blending of two harmonic functions [Jeschke 2016] has also
been introduced to overcome some of the unintuitive extrapolation
behaviour of biharmonic functions. Diffusion curves with harmonic
interpolated colors satisfying Laplace’s equation have been general-
ized to interpolated colors satisfying Poisson’s equation [Hou et al.
2020], where the inhomogeneous term in the Poisson equation was
used to provide more nuanced control over blending and diffusion.
Finally, while diffusion curves are typically presented as an artistic
tool, methods have been proposed for constructing diffusion curve
images from rasterized images [Jeschke et al. 2011; Xie et al. 2014;
Zhao et al. 2017].

Furthermore, it’s important to note that, besides diffusion curves,
there exists a multitude of other approaches to color gradations
in vector graphics representations. One such example is the patch-
based method [Xia et al. 2009]. However, we will not cover other
approaches in this paper.
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2.2 BEM & BIEM in Graphics
The Boundary Element Method (BEM) reformulates the PDE to
be solved as a boundary integral equation. It then discretizes this
integral equation by approximating the boundary curves by line
segments in 2D, or by approximating the boundary surfaces by
triangular elements in 3D. It then represents the solution to the
integral equation as a piecewise constant function on these line
segments or flat surface elements. BEM was first introduced in the
graphics community for real time deformable objects [James and
Pai 1999], followed by ocean wave animation [Keeler and Bridson
2014; Schreck et al. 2019], and surface only liquids simulation [Da
et al. 2016]. BEM can accelerate simulations while retaining visual
accuracy, in those cases where the simulation involves only the
boundary of the object in question.

The Boundary Integral Equation Method (BIEM) [Greengard et al.
2009] uses the same integral equation formulations employed by the
BEM, with the difference being that the BIEM represents the curve
and the data by spectrally-accurate quadrature-based discretizations,
where by spectrally-accurate, we mean discretizations for which
the approximation error decays exponentially with the number of
degrees of freedom used. This efficient representation means that a
very small number of degrees of freedom are required to represent
the solution to high accuracy. As far as we know, there is no work
that employs BIEM in the graphics community. The BIEM has gained
popularity for simulations in mathematical physics due to its simple
quadrature-based integration scheme, its favorable conditioning
properties, and its high accuracy. Although evaluating the solutions
of BIEM close to boundaries presents substantial challenges [Helsing
and Ojala 2008], it happens that, in many physics-related applica-
tions, e.g., acoustic scattering, the solution is mainly desired away
from the boundaries.

2.3 FMM in Graphics
The Fast Multipole Method (FMM) [Greengard and Rokhlin 1987]
has been sporadically explored in the computer graphics community.
Sun et al. [2014] introduced the FMM for diffusion curves with a
simple uniform quadtree structure. The FMM has also been used
for fast computations of repulsive curves [Yu et al. 2021], ferroflu-
ids [Huang et al. 2019], and fast linking numbers [Qu and James
2021]. Fast summation methods similar to FMM have been employed
in graphics, e.g., to compute winding numbers [Barill et al. 2018]
and to simulate fluids [Zhang and Bridson 2014].

3 OVERVIEW OF METHODS
We begin by formulating a boundary value problem using different
discretization approaches: the Boundary Element Method (BEM),
the Boundary Integral Equation Method (BIEM), and our Hybrid
Method, which combines the strengths of BEM and BIEM. We in-
clude Neumann boundary conditions in our framework for the
diffusion curve problem.
While our proposed Hybrid Method offers notably improved

accuracy compared to BEM, BIEM, and previous methods, its com-
putational efficiency is suboptimal if applied naively to a complex
diffusion curve image. To address this, we incorporate the Fast Mul-
tipole Method (FMM) for faster computations. The efficiency of

the FMM is enhanced by incorporating a non-uniform quadtree
approach, departing from the previously used uniform quadtree
[Sun et al. 2014]. This efficiency improvement is complemented by
the precision gains achieved through quadtree clipping. The density
values are obtained through the Generalized Minimum Residual
(GMRES) algorithm.

To enable detailed zoom-in into localized parts of a diffusion curve
image, we introduce an adaptive strategy that efficiently re-solves
local density values without requiring a full re-solve of the entire
image.
Finally, we present an anti-aliasing scheme involving weighted

integration, leveraging the structure of the non-uniform quadtree.
Our main contributions can be summarized as follows:
• We perform a comprehensive comparison of BEM and BIEM,
leading to the development of a hybridmethod that effectively
utilizes their respective strengths.
• We adopt the Neumann boundary condition for diffusion
curve problems.
• We implement the FMM using a non-uniform quadtree ap-
proach, combined with quadtree clipping, resulting in rapid
and accurate computation of diffusion curves.
• We introduce an adaptive strategy for optimal discretization
tailored to the viewport.
• We introduce an anti-aliasing scheme based on the non-uniform
quadtree structure.

4 BOUNDARY VALUE PROBLEM
Before considering the more complicated case of diffusion curves,
where double-sided boundary conditions are specified over a col-
lection of open curves, we consider the model problem of Laplace’s
equation on region 𝑉 ⊂ R2 with a simple, closed boundary 𝑆 :

Δ𝑢 = 0 on 𝑉 , subject to one of

{
𝑢 = 𝑢∗ on 𝑆,
𝜕𝑢
𝜕𝑛 = 𝜓∗ on 𝑆.

(1)

For simplicity of presentation, we will only consider the Dirichlet
boundary condition until Sec. 5.4.

We discuss three approaches to solving this problem: the bound-
ary element method (BEM), the boundary integral equation method
(BIEM), and our newly proposed hybrid of BEM and BIEM.

4.1 Boundary Integral Equation
Both the BEM and the BIEM reformulate the underlying PDE over
the volume 𝑉 as boundary integral equations over the boundary
𝑆 . The key idea is to use a representation involving the free-space
Green’s function, which ensures that the candidate solution always
satisfies the PDE. The problem is thus reduced to enforcing the
correct boundary conditions on 𝑆 .

4.1.1 Green’s function. The free space Green’s function𝐺 is defined
to be the solution to the Laplace equation

Δ𝐺 (𝑝, 𝑞) = 𝛿 (𝑝, 𝑞), (2)

where 𝑝, 𝑞 ∈ R2. The Dirac delta function 𝛿 (𝑝, 𝑞) represents a unit
impulse at the source point 𝑝 , and 𝐺 (𝑝, 𝑞) represents the response
at the point 𝑞 due to that source.
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The Green’s function for Laplace’s equation in two-dimensional
Euclidean space, as well as its directional derivative, are well known
to be

𝐺 (𝑝, 𝑞) = − log(∥𝑝 − 𝑞∥)
2𝜋

(3)

and
𝐹 (𝑝, 𝑞) = 𝜕𝐺 (𝑝, 𝑞)

𝜕𝑛(𝑝) = − (𝑝 − 𝑞) · 𝑛(𝑝)
2𝜋 ∥𝑝 − 𝑞∥2

, (4)

respectively. Where 𝑛(𝑝) is the normal vector at 𝑝 .

4.1.2 Integral Equation. Using the free space Green’s function, we
can convert the boundary value problem Eq. 1 into its Boundary
Integral Equation (BIE) formulation. Consider the so-called single
layer potential, which represents our candidate solution 𝑢 as an
integral of the Green’s function over a boundary density 𝜎 :

𝑢 (𝑥) =
∫
𝑆

𝐺 (𝑝, 𝑥)𝜎 (𝑝)𝑑𝑆 (𝑝), ∀𝑥 ∈ 𝑉 . (5)

Letting 𝑥 approach the boundary 𝑆 , we obtain the following BIE,
which we can solve for the unknown density 𝜎 (𝑝) on the boundary
given Dirichlet boundary values 𝑢∗ (𝑞):

𝑢∗ (𝑞) =
∫
𝑆

𝐺 (𝑝, 𝑞)𝜎 (𝑝)𝑑𝑆 (𝑝), ∀𝑞 ∈ 𝑆. (6)

The process of solving the boundary value problem Eq. 1 using
its BIE formulation can be broken into two distinct stages. We call
process of solving for the density 𝜎 (𝑝) using Eq. 6 the solution
stage, and the process of evaluating our solution 𝑢 (𝑥) on domain
using formula Eq. 5 the evaluation stage.

It is also possible to represent 𝑢 (𝑥) using a so-called double-layer
potential, where 𝐺 (𝑝, 𝑞) is replaced by 𝐹 (𝑝, 𝑞). For simplicity, we
consider only the case of the single-layer potential here.

4.2 Boundary Element Method
We can apply the boundary element method to discretize BIEs in
order to solve them numerically. Suppose, without any loss of gen-
erality, that the boundary consists of a single curve 𝑆 . We begin
by discretizing 𝑆 into line segments 𝑆 𝑗 . Then we assume that the
density value 𝜎 𝑗 is constant on each line segment. The BIE Eq. 6
can be expressed as:

𝑢∗ (𝑞) =
𝑠∑︁
𝑗=1

∫
𝑆 𝑗

𝐺 (𝑝, 𝑞)𝑑𝑆 (𝑝) 𝜎 𝑗 , (7)

where 𝑠 is the number of boundary elements, and the integrals∫
𝑆 𝑗
𝐺 (𝑝, 𝑞)𝑑𝑆 (𝑝) are computed analytically using well-known for-

mulas that depend on 𝑆 𝑗 being a line segment. We have 𝑠 unknowns
𝜎 𝑗 , and so we need at least 𝑠 equations to determine a unique solu-
tion. We choose to evaluate 𝑢∗ (𝑞) at the midpoint of each segment,
which we denote by 𝑞𝑖 , to arrive at the system of equations

𝑢∗ (𝑞𝑖 ) =
𝑠∑︁
𝑗=1

∫
𝑆 𝑗

𝐺 (𝑝, 𝑞𝑖 )𝑑𝑆 (𝑝)𝜎 𝑗 , for each line segment 𝑖 . (8)

In matrix form, this system of equations is

u∗ = G𝝈 , (9)

where u∗,𝝈 ∈ R𝑠 are the column vectors of boundary values and
density values, and G ∈ R𝑠×𝑠 is a (dense) matrix with elements

G𝑖 𝑗 =
∫
𝑆 𝑗
𝐺 (𝑝, 𝑞𝑖 )𝑑𝑆 (𝑝). After having obtained the density values

𝝈 on the boundary 𝑆 , we can evaluate 𝑢 (𝑥) ∈ 𝑉 using the formula

𝑢 (𝑥) =
𝑒∑︁
𝑗=1

∫
𝑆 𝑗

𝐺 (𝑝, 𝑥)𝑑𝑆 (𝑝)𝜎 𝑗 , (10)

where 𝑒 = 𝑠 is the number of boundary elements. Formulas for
the analytic integration of Green’s functions on line segments are
detailed in Appendix D.1.

4.3 Boundary Integral Equation Method
The Boundary Integral Equation Method (BIEM) can accurately rep-
resent continuous functions defined on curved boundaries without
any lossy approximations to the boundary geometry, in contrast
to how BEM approximates 𝑆 with linear segments. Functions are
represented using carefully chosen discretizations based on quadra-
ture formulas, and are interpolated by mapping their values at the
discretization points to the coefficients of spectral expansions. The
rapid convergence of quadrature-based approximations means that
functions can be represented with minimal loss of accuracy.

4.3.1 Integral Equation. The integral equation Eq. 6 can be written
as a system of equations by discretizing the boundary data at Gauss-
Legendre nodes:

𝑢∗𝑖 =

∫
𝑆

𝐺 (𝑝, 𝑞𝑖 )𝜎 (𝑝)𝑑𝑆 (𝑝), (11)

where, without loss of generality, we assume the geometric bound-
ary curve is given by a function 𝛾 (𝑡) : [−1, 1] → R2, 𝑞𝑖 = 𝛾 (𝑡𝑖 ) are
the sampled Gauss-Legendre quadrature points, and 𝑢∗

𝑖
= 𝑢∗ (𝑞𝑖 ).

Evaluating the integrals in Eq. 11 requires some extra care, since the
Green’s function𝐺 (𝑝, 𝑞) has a logarithmic singularity at the point
𝑝 = 𝑞. It turns out that, for each target point 𝑞𝑖 , it is possible to
construct special-purpose quadrature nodes 𝑡𝑖 𝑗 and weights𝑤𝑖 𝑗 , for
𝑗 = 1, 2, . . . , 𝑔𝑖 , such that each integral above is evaluated accurately:

𝑢∗𝑖 =

𝑔𝑖∑︁
𝑗=1

𝑤𝑖 𝑗𝐺 (𝑝𝑖 𝑗 , 𝑞𝑖 )𝜎 (𝑝𝑖 𝑗 ), (12)

where 𝑝𝑖 𝑗 = 𝛾 (𝑡𝑖 𝑗 ) are the sampled special-purpose quadrature
points (see, for example, [Kolm and Rokhlin 2001]).
Discretizing the density value �̊� at the Gauss-Legendre quadra-

ture points 𝑝 𝑗 = 𝛾 (𝑡 𝑗 ), we can approximate the continuous function
𝜎 (𝑝) appearing in Eq. 12 by solving for the coefficients of its corre-
sponding Legendre expansion:

c = P̊−1�̊� . (13)

We can then evaluate the density value 𝜎 (𝑝) by evaluating Legendre
polynomials:

𝜎 (𝑝) =
𝑔∑︁
𝑖=1

𝑐𝑖𝑃𝑖−1 (𝑝) . (14)

Ultimately, this procedure can be written in matrix form:

ů∗ = ˚̃G�̊� , (15)

where ů∗, �̊� ∈ R𝑔 , and ˚̃G ∈ R𝑔×𝑔 is a matrix constructed row-by-row
by combining the quadrature Eq. 12 with the interpolation described
by Eq. 13 and Eq. 14.
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Because we have a continuous function 𝜎 (𝑝),∀𝑝 ∈ 𝑆 , on the
boundary, when it comes to evaluating the solution using the for-
mula Eq. 5, we are not bound to use the same Gauss-Legendre
quadrature approximation. Instead, we can evaluate

𝑢 (𝑥) =
𝑒∑︁
𝑗=1

𝑤 𝑗𝐺 (𝑝 𝑗 , 𝑥)𝜎 (𝑝 𝑗 ), (16)

where 𝑒 is the number quadrature points for evaluation, 𝑝 𝑗 are the
sampled Gauss-Legendre quadrature points corresponding to the
roots of the 𝑒-th order Legendre polynomial, with 𝑤 𝑗 the corre-
sponding quadrature weights. Note that 𝑒 does not have to be equal
to the number of quadrature points 𝑔 at the solution stage. We call
this interpolation process the interpolation stage.

Unfortunately, unlike in the BEM, evaluating the solution using a
quadrature approximation like the one above results in artifacts near
the quadrature points (see the image close to the boundary curves
of Fig. 4 (c) and Fig. 6 (b)). Refining using additional quadrature
points only somewhat alleviates the problem. Additionally, if the
boundary is composed of multiple different curves, and some of
them are very close to one another, then the kernel 𝐺 (𝑝, 𝑞) can
be close-to-singular, and the evaluation of the integrals in Eq. 6
by quadrature becomes inaccurate (see near the tip of the moon
in Fig. 4 (c)). This situation may be seen as pathological from the
point of view of physical simulations, but it is commonplace for an
artist to create closely positioned diffusion curves as a technique
for achieving high contrast color changes.
The question of how best to evaluate the potential induced by

a continuous density 𝜎 (𝑝) has been the subject of much recent
research (see, for example, [af Klinteberg and Barnett 2021; Helsing
and Ojala 2008]). Historically, this has not been a major issue for
BIEM, since many important physical applications of BIEs, e.g.,
acoustic and electromagnetic scattering, often do not require the
evaluation of the solution close to boundaries.

5 ACCURATE DISCRETIZATION WITH HYBRID
METHOD

Our proposed method combines the advantages of the BEM and
BIEM approaches into a hybrid technique. We start by comparing
these two techniques.

5.1 Comparison between BEM and BIEM
For the comparative analysis between BEM and BIEM, wewill divide
the diffusion curves algorithm into 3 steps: (1) solution, (2) interpola-
tion, (3) evaluation. BEM uses analytic integration on line segments
for solution and evaluation but does not have any interpolation stage.
BIEM uses quadrature-based integration for solution and evaluation,
and it uses Legendre polynomial interpolation on density values to
populate quadrature points for evaluation.
BEM has the limitation that the number of degrees of freedom

representing the piecewise constant density 𝜎 is bounded by the
number of elements in the spatial discretization of the boundary
curves. BIEM is free from this limitation, and the number of degrees
of freedom in the representation of the continous density 𝜎 is de-
coupled from the number of quadrature points 𝑒 used for evaluation.
On the other hand, BIEM has the limitation that it is inaccurate

(a) BEM (b) BIEM (c) Hybrid

Fig. 6. Accuracy comparison between BEM, BIEM, and our Hybrid method.
The boundary values are constructed by placing a single source Green’s
function in the middle of the figure. The solutions should exactly match the
potential induced by that Green’s function. The second and last rows show
the error relative to the ground truth, highlighted in red color.

when curves are close-to-touching in the solution stage, and has
artifacts in the induced potential near the quadrature points in the
evaluation stage. BEM, however, is free from both of these problems,
since it uses analytic integration along line segments.

5.2 Combination of BEM and BIEM
We propose to combine these two methods, inheriting the strengths
of both. We discretize both the solution 𝜎 and the boundary data 𝑢∗
at Gauss-Legendre nodes, as in BIEM. However, we also introduce
the BEM in two places. In order to evaluate integrals of the form
Eq. 6 in the solution stage, we interpolate the density using formulas
Eq. 13 and Eq. 14 to a BEM-like approximation, which corrects the
shortcoming of BIEM for close-to-touching curves. Once we have
solved for the solution �̊� at the quadrature nodes, we evaluate the
potential by once again interpolating to a BEM-like approximation,
which corrects the shortcoming of BIEM with respect to artifacts in
the induced potential.
We begin by discretizing the boundary data at Gauss-Legendre

nodes, leading to the system of equations Eq. 11. We then discretize
the boundary curve 𝑆 into 𝑠 line segments 𝑆 𝑗 . If the density values
𝝈 ∈ R𝑠 on these line segments are known, then we can write Eq. 6
as

𝑢∗ (𝑞𝑖 ) =
𝑠∑︁
𝑗

∫
𝑆 𝑗

𝐺 (𝑝, 𝑞𝑖 )𝑑𝑆 𝑗 (𝑝)𝜎 𝑗 , for each quadrature point 𝑖 .

(17)
In matrix form:

ů∗ = G̊𝝈 , (18)

Where ů∗ ∈ R𝑔 are given boundary values at quadrature points,
𝝈 ∈ R𝑠 are density value on line segments of the boundary, and
G̊ ∈ R𝑔×𝑠 .
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(a) Input curve

(b) BEM (c) BIEM (g=e) (d) BIEM (g<e) (e) Hybrid

Fig. 7. Diffusion curve with double-sided boundary condition given a single
Bézier curve (a). Solution comparison with BEM with 𝑠 = 8 line segments
(b), BIEM with 𝑔 = 𝑒 = 8 (c), BIEM with 𝑔 = 8, 𝑒 = 40, and our Hybrid
method with 𝑔 = 8, 𝑠 = 𝑒 = 40 (e).

Since we choose to discretize the solution 𝜎 at Gauss-Legendre
nodes like in the BIEM, we recover the density values 𝝈 by using
Legendre polynomial interpolation. Computing the coefficients of
the Legendre expansion of 𝜎 by c = P̊−1�̊� , we can evaluate the
density value on themidpoint of each line segment 𝑆 𝑗 by the formula
𝝈 = Pc ,where P ∈ R𝑠×𝑔 is the Legendre interpolation matrix
constructed by evaluating the Legendre polynomials at t, which is a
vector of curve parameter values corresponding to the midpoints of
the line segments 𝑆 𝑗 . Hence, we have the relation 𝝈 = PP̊−1�̊� .

We can thus express our system in matrix form in terms of �̊� as:

ů∗ = G̊ PP̊−1︸  ︷︷  ︸
G̊H

�̊� , (19)

where G̊H ∈ R𝑔×𝑔 . In order for G̊H to have full rank, the number of
quadrature points 𝑔 must be ≤ the number of line segments 𝑠 . Note
that, regardless of the size of 𝑠 , the dimensionality of the system is
𝑔×𝑔. This is beneficial for us, as the matrix that needs to be inverted
is much smaller than the corresponding matrix for BEM, G ∈ R𝑠×𝑠 .
Once we solve the system Eq. 19, we have, by Legendre poly-

nomial interpolation, a density value 𝜎 (𝑝) that can be evaluated
anywhere on the curve. At the evaluation stage, we employ the BEM-
like approach of Eq. 10, and now we can use an arbitrary number of
line segments 𝑒 , that is independent both of the number line seg-
ments 𝑠 used at solution stage and the number of quadrature points
𝑔 used to represent the solution. Note that we must use arc length
when we integrate over line segments, in order to have consistent
integration lengths between the solution and evaluation stages (see
the details in Appendix A). We also use arc length parametrization
when we construct our BEM-like discretization, so that we have
line segments of equal arc length when we subdivide each curve
(see the details in Appendix B).

Our method is free from both the visible polyline discretization
problem of BEM for a system of the same size, and also from the
artifacts around quadrature points that are found in BIEM (see Fig. 4).
Our method shows the most accurate results when the number of
degrees of freedom in the solution stage and the evaluation stage
are both kept fixed (see Fig. 6). In Fig. 4, we set 𝑠 = 𝑒 = 4 for BEM,
𝑔 = 4, 𝑒 = 20 for BIEM, and 𝑠 = 20, 𝑔 = 4, 𝑒 = 20 for our Hybrid
method. In Fig. 6, we set 𝑠 = 𝑒 = 8 for BEM, 𝑔 = 8, 𝑒 = 40 for BIEM,
and 𝑠 = 40, 𝑔 = 8, 𝑒 = 40 for our Hybrid method.

5.3 Double-Sided Boundary Condition
Up to this point, we have been formulating our equations using
the single layer potential of Eq. 5 for simplicity of presentation.
However, in order to specify two different boundary conditions on
each side of an open curve, we must add to our single layer potential
representation of Eq. 5 a so-called double layer potential, in which
the kernel of Eq. 5 is replaced by 𝐹 (𝑝, 𝑥) from Eq. 4. Our candidate
solution is thus represented as

𝑢 (𝑥) =
∫
𝑆

[𝐺 (𝑝, 𝑥)𝜎 (𝑝) + 𝐹 (𝑝, 𝑥)` (𝑝)]𝑑𝑆 (𝑝),∀𝑥 ∈ 𝑉 . (20)

Letting 𝑥 approach the boundary 𝑆 , we obtain the following BIE:

𝑢∗+ (𝑞) =
∫
𝑆

[𝐺 (𝑝, 𝑞)𝜎 (𝑝) + 𝐹 (𝑝, 𝑞)` (𝑝)]𝑑𝑆 (𝑝) + 1
2
` (𝑞),∀𝑞 ∈ 𝑆,

𝑢∗− (𝑞) =
∫
𝑆

[𝐺 (𝑝, 𝑞)𝜎 (𝑝) + 𝐹 (𝑝, 𝑞)` (𝑝)]𝑑𝑆 (𝑝) − 1
2
` (𝑞),∀𝑞 ∈ 𝑆,

(21)

where the +,− subscripts indicate on which side the limit is taken.
The terms± 1

2 ` (𝑞) come from thewell-known “jump relations” [Mar-
tinsson 2019] of the double-layer potential (see also Appendix C).
Note that the limit process of approaching 𝑥 to the boundary re-
quires special attention to deal with the problem of singularities
in both 𝐺 (𝑝, 𝑥) and 𝐹 (𝑝, 𝑥). (see Appendix C for details). Subtract-
ing these two equations from one another and adding them to one
another results in the two equations

𝑢∗+ (𝑞) − 𝑢∗− (𝑞) = ` (𝑞),
1
2
[𝑢∗+ (𝑞) + 𝑢∗− (𝑞)] =

∫
𝑆

[𝐺 (𝑝, 𝑞)𝜎 (𝑝) + 𝐹 (𝑝, 𝑞)` (𝑝)]𝑑𝑆 (𝑝).
(22)

We thus have two equations, which we can solve for the two un-
known density functions 𝜎 (𝑝) and ` (𝑝). In fact, we see that the
value of ` (𝑝) is given explicitly as the jump 𝑢∗+ (𝑞) − 𝑢∗− (𝑞).

When BEM is used, the double boundary condition can be ex-
pressed in matrix form as:

1
2
(u∗+ + u∗−) = G𝝈 + F 𝝁 . (23)

Likewise, when our hybrid method combining BEM and BIEM is
used, the double boundary condition can be expressed as:

1
2
(ů∗+ + ů∗−) = G̊H�̊� + F̊H𝝁, (24)

where F̊H = F̊ PP̊−1, and 𝝁 = ů∗+ − ů∗− .
This double-sided boundary condition is precisely the condition

required to specify the colors on each side of a diffusion curve.
Fig. 7 shows a single diffusion curve example solved with different

methods.We used a discretization size of 𝑠 = 8 for BEM (b),𝑔 = 𝑒 = 8
for BIEM (c), 𝑔 = 8, 𝑒 = 40 for BIEM (d), and 𝑔 = 8, 𝑠 = 𝑒 = 40 for
our Hybrid method (e). Note the visible polyline on BEM, and the
dotted-looking artifact on BIEM even for large discretization size
(d), whereas our Hybrid method is free from both limitations.

Fig. 8 shows a diffusion curve example of a cherry, with a compar-
ison between FEM, BEM, BIEM and our Hybrid method. We used a
discretization size of 𝑠 = 4 for BEM and FEM, 𝑔 = 4, 𝑒 = 20 for BIEM,
and 𝑔 = 4, 𝑠 = 𝑒 = 20 for our Hybrid method.
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(a) Estimated 
ground truth (b) FEM (c) BEM (d) BIEM (d) Hybrid

Fig. 8. Diffusion curve comparison with FEM, BEM, BIEM and our Hybrid
method (top), and its error (bottom) between estimated ground truth, which
was achieved by running a dense discretization of BEM (𝑠 = 100 line seg-
ments per curve).

5.4 Neumann Boundary Condition
We can also formulate and solve boundary integral equations for
Neumann boundary conditions. When a domain 𝑉 is bounded by
a simple closed curve 𝑆 , we can construct a BIE for a Neumann
boundary condition on 𝑆 , as follows. Using Green’s third identity,
we have the integral representation

𝑢 (𝑥) =
∫
𝑆

[𝐺 (𝑝, 𝑥)𝜓 (𝑝) + 𝐹 (𝑝, 𝑥)𝑢 (𝑝)]𝑑𝑆 (𝑝),∀𝑥 ∈ 𝑉 , (25)

where𝜓 (𝑝) = 𝜕𝑢 (𝑝 )
𝜕𝑛 denotes the Neumann boundary values. Assum-

ing that the Neumann boundary condition is given on the boundary
as𝜓 = 𝜓∗, we let 𝑥 approach the boundary 𝑆 , and obtain the follow-
ing BIE:

𝑢 (𝑞) =
∫
𝑆

[𝐺 (𝑝, 𝑞)𝜓∗ (𝑝) + 𝐹 (𝑝, 𝑞)𝑢 (𝑝)]𝑑𝑆 (𝑝) + 1
2
𝑢 (𝑞),∀𝑞 ∈ 𝑆 (26)

We can solve this equation for the unknown Dirichlet value on
boundary.

In general, if we are given a boundary condition which specifies
a combination of Dirichlet boundary values 𝑢∗

𝑑
on some parts of the

boundary, and Neumann boundary values𝜓∗𝑛 on other parts, then
we can solve the following matrix system for 𝑢𝑛 and𝜓𝑑 :

1
2

[
ů∗
𝑑

ů𝑛

]
=

[
(G̊H)𝑑𝑑 (G̊H)𝑑𝑛
(G̊H)𝑛𝑑 (G̊H)𝑛𝑛

] [
�̊�𝑑
�̊�∗𝑛

]
+

[
(F̊H)𝑑𝑑 (F̊H)𝑑𝑛
(F̊H)𝑛𝑑 (F̊H)𝑛𝑛

] [
ů∗
𝑑

ů𝑛

]
,

(27)
where the subscripts 𝑑 ,𝑛 denote the parts of the boundary on which
Dirichlet and Neumann boundary conditions are specificed, respec-
tively. Fig. 5 shows the resulting image when a combination of
Dirichlet boundary conditions and Neumann boundary conditions
are specified.

Double-sided Neumann boundary conditions on open curves also
admit BIE formulations, and can similarly be handled by our Hybrid
Method, with the key difference that the BIEs involving double-sided
Neumann boundary conditions require the further introduction of
an additional hypersingular kernel𝐻 (𝑝, 𝑞) (see Appendix A.1 of [Liu
2009]).

5.5 Shortcomings of Brute Force Evaluation
The discussion up to this point provides us with a new method to
solve for diffusion curves, one which outperforms the standard BEM
in accuracy as demonstrated in Fig. 6, and also shows much better
performance (see Table 1) because the system matrix to be solved
becomes much smaller.

Fig. 9. Diffusion curve results generated with our HybridMethod. All images
are in a resolution of 512 × 512. Examples were taken from [Orzan et al.
2008].

Table 1. Computation time comparison between BEM solve and Hybrid
solve for Fig. 9 examples. Once solved, the evaluation step becomes identical
if the number of segments are set to be equal.

BEM Hybrid
curves solve solve eval

cherry 32 0.10s 0.008s 13.9s
red pepper 109 1.47s 0.079s 64.7s
person with purple cloak 326 32.7s 0.831s 326.7s

However, as shown in Table 1, brute force computation with our
Hybrid method still requires an extremely heavy calculation (es-
pecially for the evaluation stage, because the number of pixels is
much larger). We see then that it is essential to use a fast summa-
tion method, such as the Fast Multipole Method (FMM), to achieve
reasonable rendering speeds.

6 FAST SOLUTION AND EVALUATION
The Fast Multipole Method (FMM) is a technique which can be used
to rapidly evaluate the potential induced by a collection of 𝑁 source
curves 𝑆 at a set of𝑀 targets 𝑞:

𝑢𝑞 =

∫
𝑆

𝐺 (𝑝, 𝑞)𝜎 (𝑝)𝑑𝑆 (𝑝). (28)

When these potentials are evaluated naively by brute force, the
cost grows as O(𝑁𝑀). With the Fast Multipole Method, this cost is
reduced to O(𝐾𝑁 +𝐾𝑀), where the factor 𝐾 grows logarithmically
with the desired accuracy. The key idea behind the FMM is the
observation that the potential induced by a collection of sources,
when evaluated at a well-separated target, can be represented to
high accuracy by a expansion containing only 𝐾 terms, where the
number of terms is independent of the complexity of the source
distribution.
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We include a complete description of the Fast Multipole Method
we implemented to accommodate our use cases in Appendix E. We
consider this a reproducibility contribution to the graphics commu-
nity. Readers unfamiliar with the Fast Multipole Method are strongly
encouraged to first read our appendix. FMM is a fairly complicated
method, and though many books and previous descriptions exist,
we have made a special effort to write a self-contained introduction
in terms graphics readers will hopefully better understand. Never-
theless, readers who are willing to treat the FMM as a black box
can jump right into Sec. 7 with no loss of continuity. We denote the
evaluation of the single-layer integral operator using the FMM by:

𝑢𝑞 = FMM𝐺 (𝑆, 𝜎, 𝑞), (29)

where 𝑆 is a collection of source curves, 𝜎 is a density, and 𝑞 is a
collection of target points.

6.1 Non-UniformQuadtree
Diffusion curves with the FMM using a uniform quadtree [Sun et al.
2014] becomes inefficient for large domains as it requires a lot of
memory for cell allocation as well as significant computation time.
Figure 10 compares the use of uniform (perfect) and non-uniform
(sparse) quadtrees. We can see that the non-uniform quadtree is
much more efficient, allocating a denser quadtree only in regions
requiring it.

Please refer to E.5 for a detailed discussion of the technical differ-
ences between uniform and non-uniform quadtrees.

uniform quadtree non-uniform quadtree

Fig. 10. Comparison of a uniform quadtree and a non-uniform quadtree

6.2 Quadtree Clipping
In our discussion of the Fast Multipole Method, we assumed that the
curves 𝑆 were discretized with𝑀 degrees of freedom. Suppose that
𝑆 is discretized with𝑀 line segments, and that the integrals over 𝑆
in the target-from-source, outgoing-from-source, and incoming-from-
source formulas are computed using BEM, as described in Section E.1.
At the quadtree construction stage, all cells are subdivided until

each cell contains fewer than 𝑏 degrees of freedom, which in this
case means fewer than 𝑏 line segments. Since the degree of freedom
associated with a BEM line segment is located at its midpoint, there
will be line segments which span multiple leaf cells in the quadtree,
but since themidpoint of such a line segment only belongs to a single
cell, this segment is handled by only a single one of the target-from-
source, outgoing-from-source, and incoming-from-source formulas.
This can result in invalid computations, if, e.g., a part of the line
segment that should be handled by the target-from-source formula
is handled by the incoming-from-source formula. Such a situation
can occur when computing the incoming-from-source terms from

the bigger separated list, when a line segment with its midpoint in a
cell belonging to the bigger separated list has an endpoint in a cell
close to or even inside the target cell. The part of the curve near the
endpoint should be computed using the target-from-source formula,
but will instead be computed incorrectly by the incoming-from-
source formula. In practice, such a situation will indeed occasionally
occur, since we are allowing for dramatically different scales and
curve sizes in our problem.

This situation is completely remedied
by clipping each BEM segment into mul-
tiple segments using the quadtree, so that
each resulting segment is contained en-
tirely within a single leaf cell (see inset).
This ensures that each part of a BEM seg-
ment is handled by the correct formula.

6.3 FMM for normal derivative of Green’s function
In previous sections, we described the Fast Multipole Method for
rapidly evaluating the single-layer potentials Eq. 5. Suppose instead
that we would like to evaluate the double-layer potential with den-
sity ` over the collection of all curves 𝑆 at all query points 𝑞:

𝑢𝑞 =

∫
𝑆

𝐹 (𝑝, 𝑞)` (𝑝)𝑑𝑆 (𝑝) . (30)

It turns out that the Fast Multipole Method for evaluating double-
layer potentials is essentially identical to the one presented for
single-layer potentials. The only parts of themethod that are changed
are the target-from-source (see Appendix D.2 andD.4), outgoing-from-
source (see Appendix E.9), and incoming-from-source (see Appen-
dix E.11) operators. We denote this FMM evaluation of the double-
layer integral operator by:

𝑢𝑞 = FMM𝐹 (𝑆, `, 𝑞) . (31)

6.4 Precomputations
When the Fast Multipole Method is used to evaluate the potential
produced by several different density functions 𝜎 over a single
discretization 𝑆 of a set of curves 𝑆 and a single set of target points 𝑞,
a large number of computations can be reused between evaluations.
Such quantities are independent of the density function, and can be
precomputed and stored, in order to accelerate the evaluation of the
FMM. The first quantity that can be stored is the quadtree over the
discretized source curves 𝑆 , which we denote by Q. We denote the
function constructing the quadtree over that discretization by

Q = quadtree(𝑆) . (32)

The next set of quantities which can be precomputed are the vari-
ous terms that appear in the operators used by the Fast Multipole
Method. We denote the collection of precomputed quantities associ-
ated with these operators by P𝐺 ,P𝐹 , corresponding to the single-
layer and double-layer FMM respectively, and denote the function
constructing these quantities by

P𝐺 ,P𝐹 = pre_FMM(𝑆, 𝑞,Q). (33)

We describe the precise quantities which are precomputed for each
one of the FMM operators in Appendix H.
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When these precomputed quantities are available, we can accel-
erate the FMM by skipping the associated calculations. We indicate
that precomputed quantities are used by providing the precomputed
quantities as additional arguments to the FMM, writing

𝑢𝑞 = FMM𝐺 (𝑆, 𝜎, 𝑞,Q,P𝐺 ) . (34)

6.5 BEM + FMM
In this section, we describe how to combine the BEM, described
in Section 4.2, with the FMM, described in Section E.7, in order to
rapidly solve and render diffusion curves.

6.5.1 BEM + FMM for solving for unknown density. Suppose that
we would like to evaluate a single-layer potential 𝜎 on a collection
of curves 𝑆 using the boundary element method. We denote the
density and curves, discretized into𝑀 boundary elements, by 𝝈 and
𝑆 , respectively. Using the BEM described in Section 4.2, we can eval-
uate the target-from-source Eq. 79, outgoing-from-source Eq. 80, and
incoming-from-source Eq. 83 operators using the discretized density
𝝈 . If the target points 𝑞 are chosen to be same as the source points
(the midpoints of the BEM segments, also called the collocation
points), then the FMM

𝒖 = FMM𝐺 (𝑆,𝝈 , 𝑞) (35)

provides an O(𝐾𝑀) algorithm (recalling that 𝐾 is the number of
terms in each expansion) for evaluating the matrix-vector product

𝒖 = 𝑮𝝈 , (36)

described in Section 4.2.
If we are given a desired potential 𝒖∗ at the BEM collocation

points, then we can solve Eq. 9 for the unknown density 𝝈 by a
direct solver for linear systems, which will have cost O(𝑀3), which
is usually prohibitively large. To use the FMM given by Eq. 29 to
solve the linear system, we must use a so-called iterative method,
which requires only a fast method for evaluating the product of the
matrix 𝑮 with a vector. If the number of iterations required by the
iterative method is small, then the cost will be proportional to the
cost of the FMM, O(𝑀).

One such iterative method is the Generalized Minimum Residuals
Method, or GMRES, which solves a linear system 𝑨𝒙∗ = 𝒚∗ for a
possibly nonsymmetric matrix 𝑨, and which minimizes the residual
∥𝑨𝒙 −𝒚∗∥, where 𝒙 ≈ 𝒙∗ is the approximate solution computed
by GMRES. To indicate that the GMRES method is used to solve
the linear system 𝑨𝒙 = 𝒚 to within an error of 𝜖 in the residual,
where 𝑓 (·) is a function approximating the matrix-vector product
𝑓 (𝒙) ≈ 𝑨𝒙 , and where 𝒙0 is the initial guess for the solution, we
write

𝒙 = GMRES(𝑓 (·), 𝒙0,𝒚, 𝜖). (37)

Thus, to solve for the unknown density 𝝈 in Eq. 9 using the FMM,
we compute

𝝈 = GMRES(FMM𝐺 (𝑆, (·), 𝑞),𝝈0, 𝒖
∗, 𝜖), (38)

using a random initial guess 𝝈0. (we typically choose 𝝈0 =
−→1 )

6.5.2 BEM + FMM for double-sided boundary condition. If a double
sided boundary condition is given, like the one described in Sec-
tion 5.3, we need to solve for unknown density 𝝈 in Eq. 23. In other
words, given a discretized curve 𝑆 and boundary conditions 𝒖∗+ and
𝒖∗− on each side, we must solve for 𝝈 in

1
2
(u∗+ + u∗−) = G𝝈 + F 𝝁, (39)

where 𝝁 = 𝒖∗+ − 𝒖∗− .
Using the FMM, we can rapidly solve for 𝝈 , as follows. First, we

compute a right hand side vector 𝒃 by the computation

b =
1
2
(u∗+ + u∗−) − FMM𝐹 (𝑆, 𝝁, 𝑞). (40)

Next, we solve for 𝝈 using GMRES:

𝝈 = GMRES(FMM𝐺 (𝑆, (·), 𝑞),𝝈0, b, 𝜖), (41)

using a random initial guess 𝝈0. The total cost of this computation
will be O(𝑀), where𝑀 is the number of BEM segments used.

To improve things further, we can precompute the quantities
needed by the FMM, as described in Section 6.4. The full algorithm
for solving for a double-sided boundary condition using the FMM
and BEM is described in Algorithm 1.

Algorithm 1 FMM + BEM for Solving

Input: source curves 𝑆 , collocation points 𝑞, boundary values
𝒖∗+, 𝒖

∗
− , initial guess for density 𝝈0
Output: density values 𝝈 , quadtree Q, precomputed values

P𝐺 , P𝐹
1: Q = quadtree(𝑆)
2: P𝐺 ,P𝐹 = pre_FMM(𝑆, 𝑞,Q)
3: Set 𝝁 = 𝒖∗+ − 𝒖∗−
4: b = 1

2 (𝒖
∗
+ + 𝒖∗−) − FMM𝐹 (𝑆, 𝝁, 𝑞,Q,P𝐹 )

5: 𝝈 = GMRES(FMM𝐺 (𝑆, (·), 𝑞,Q,P𝐺 ),𝝈0, b, 𝜖)

6.5.3 Diffusion Curve with BEM + FMM. The overall algorithm for
using the BEM and FMM to compute pixel values 𝑢𝑞 at all pixels
𝑞 on 2D domain, given a set of discretized diffusion curves 𝑆 with
collocation points 𝒒, and a double-sided boundary condition 𝒖∗+ and
𝒖∗− , is as follows:

Algorithm 2 Diffusion Curve with FMM + BEM

Input: source curves 𝑆 , collocation points 𝑞, pixel targets 𝑞,
boundary values 𝒖∗+, 𝒖∗− , initial guess for density 𝝈0

Output: target pixel values: 𝑢𝑞

1: Use Algorithm 1 to solve for the density of the single layer 𝝈 at
the collocation points 𝑞, using the inputs (𝑆, 𝑞, 𝒖∗+, 𝒖∗−)

2: Set 𝝁 = 𝒖∗+ − 𝒖∗−
3: 𝑢𝑞 = FMM𝐺 (𝑆,𝝈 , 𝑞,Q,P𝐺 ) + FMM𝐹 (𝑆, 𝝁, 𝑞,Q,P𝐹 )

6.6 Hybrid Method + FMM
In this section, we describe how to combine our Hybrid Method,
described in Section 5, with the FMM, described in Section E.7, in
order to rapidly solve and render diffusion curves.
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Fig. 11. Visualization of the first few iterations of GMRES

6.6.1 Hybrid Method + FMM for double-sided boundary condition.
When the FMM is combined with BEM for solving for an unknown
density with a double-sided boundary condition (see Section 6.5.2),
the target points 𝑞 coincide with the collocation points on the dis-
cretized curves 𝑆 :

𝒖 = FMM𝐺 (𝑆,𝝈 , 𝑞) . (42)

On the other hand, when the Hybrid Method is used, the density
𝜎 is represented at 𝑔 Gauss-Legendre nodes 𝑞, and this discretized
density is written as �̊� (see Section 5). The potential at these quad-
rature nodes 𝑞 is evaluated using the BEM, where the curve 𝑆 is
descretized into 𝑠 line segments 𝑆 , with 𝑠 > 𝑔. The density �̊� is inter-
polated to the 𝑠 BEM collocation points by the formula 𝝈 = PP̊−1�̊� .
The potential created by the density �̊� can thus be evaluated at the
points 𝑞 using the calculation

�̊� = FMM𝐺 (𝑆, 𝑷𝑷−1�̊� , 𝑞). (43)

This is an O(𝑠) algorithm for evaluating the matrix-vector product

ů = G̊ PP̊−1︸  ︷︷  ︸
G̊H

�̊� ,

where G̊ ∈ R𝑔×𝑠 and G̊H ∈ R𝑔×𝑔 .
The FMM + BEM method for solving for an unknown density

with double-sided boundary conditions can thus be reformulated
using the Hybrid Method, as follows:

Algorithm 3 FMM + Hybrid Method for Solving

Input: source curves 𝑆 , quadrature nodes 𝑞, boundary values
�̊�∗+, �̊�

∗
− , initial guess for density �̊�0
Output: density values �̊� , quadtree Q, precomputed values

P𝐺 , P𝐹
1: Q = quadtree(𝑆)
2: P𝐺 ,P𝐹 = pre_FMM(𝑆, 𝑞,Q)
3: Set 𝝁 = �̊�∗+ − �̊�∗−
4: b = 1

2 (ů
∗
+ + ů∗−) − FMM𝐹 (𝑆, PP̊−1𝝁, 𝑞,Q,P𝐹 )

5: �̊� = GMRES(FMM𝐺 (𝑆, PP̊−1 (·), 𝑞,Q,P𝐺 ), �̊�0, b, 𝜖)

With the Hybrid Method, the dimensionality of the unknown
density is much smaller than for the standard BEM, and the number
of BEM segments 𝑠 used can also be smaller than for the standard
BEM. Hence, the FMM evaluation step above is much faster. Further-
more, since the number of degrees of freedom in the discretization
is smaller, the number of iterations of GMRES is much smaller as
well. This is because we are solving an integral equation involving
a single-layer potential, and the condition number of such a system
grows with the number of degrees of freedom in the discretization.
Fig. 11 visualizes the first few iterations of GMRES.

6.6.2 Diffusion Curve with Hybrid Method + FMM. The overall
algorithm for using the Hybrid Method, together with the FMM, to
compute pixel values 𝑢𝑞 at all pixels 𝑞 on 2D domain, given a set
of discretized diffusion curves 𝑆 with quadrature points 𝑞, and a
double-sided boundary condition �̊�∗+ and �̊�∗− , is as follows:

Algorithm 4 Diffusion Curve with FMM + Hybrid Method

Input: source curves 𝑆 , quadrature points 𝑞, pixel targets 𝑞,
boundary values �̊�∗+, �̊�∗− , initial guess for density �̊�0

Output: target pixel values: 𝑢𝑞

1: Use Algorithm 3 to solve for the density of the single layer �̊� at
the quadrature nodes 𝑞, using the inputs (𝑆, 𝑞, �̊�∗+, �̊�∗−)

2: Set 𝝁 = �̊�∗+ − �̊�∗−
3: 𝑢𝑞 = FMM𝐺 (𝑆, PP̊−1�̊� , 𝑞,Q,P𝐺 ) + FMM𝐹 (𝑆, PP̊−1𝝁, 𝑞,Q,P𝐹 )

6.7 Need for Adaptive Subdivision
The discussion up to this point provides us with an FMM to solve
for diffusion curves with the Hybrid Method that we introduced in
Sec. 5. Fig. 12 shows the results of several examples generated with
the Hybrid Method + FMM and its corresponding computation time
in Table 2

Fig. 12. Diffusion curve results generated with our Hybrid Method + FMM.
All images are in a resolution of 512 × 512. Lady bug, blue glass, and yellow
roses examples were taken from [Orzan et al. 2008]; kiwi and Monet exam-
ples were taken from [Jeschke et al. 2011]; cherries example was taken from
[Sun et al. 2014].

If the given discretization is not sufficient to represent the given
diffusion curve, as shown in left of Fig. 13, or if the user performs
an extreme zoom-in of small region, as demonstrated in Fig. 1, we
need to employ an adaptive subdivision strategy to ensure accurate
evaluation.

7 ADAPTIVE STRATEGY FOR INFINITE RESOLUTION
To create an infinite resolution image representation, we adopt the
following adaptive strategy. In our Hybrid Method (see Section 5),
there are three discretization parameters that we have control over:

ACM Trans. Graph., Vol. 42, No. 6, Article 215. Publication date: December 2023.



215:12 • Seungbae Bang, Kirill Serkh, Oded Stein, and Alec Jacobson

Table 2. Computation time comparison between brute force and FMM for
above Fig. 12 examples (N\A: cherries and yellow roses examples hung in
the evaluation stage).

Brute FMM
curves solve eval solve eval

ladybug 151 0.14s 133s 0.33s 0.41s
kiwi 330 0.82s 355s 0.59s 0.81s
monet 423 1.43s 429s 0.53s 0.58s
blue glass 525 2.42s 519s 0.53s 0.68s
cherries 1110 17.26s N\A 3.55s 0.95s
yellow roses 4632 1126s N\A 10.49s 1.8s

𝑔, the number of quadrature nodes; 𝑠 , the number of BEM line
segments used to discretize the source curves during the solution
step; and 𝑒 , the number of BEM segments used to discretize the
curves in the evaluation step.
On the one hand, the number of quadrature nodes 𝑔 must be

large enough so that the single layer density 𝜎 solving the double-
sided boundary value problem is well-represented. In other words,
we would like 𝑔 to be large enough so the Legendre expansions
associated with the quadrature nodes accurately represent 𝜎 . The
number of BEM segments 𝑠 in the solving step should also be large
enough to resolve the potential at all of the quadrature nodes, and,
in practice, this is achieved when 𝑠 is a constant multiple of 𝑔 (we
discuss this in the sequel). The number of discretization nodes 𝑔 and
𝑠 thus depend solely on the smoothness of the solution 𝜎 , and the
desired accuracy of approximation.
On the other hand, the number of BEM segments 𝑒 used in the

evaluation stage must be large enough so that the layer potentials
in the final image look smooth and continuous. This depends on the
particular part of the image the user is requesting to view, called the
viewport, as well as the pixel resolution that the user is requesting.

The key idea behind our adaptive strategy is to select the optimal
number of quadrature nodes 𝑞 and BEM segments for the solution
stage 𝑠 separately from the number of evaluation BEM segments
𝑒 . This is made possible by the interpolation formula described
in Section 5.2, which allows us to interpolate a density known
at Gauss-Legendre nodes to its values at arbitrarily many BEM
segments. Since the optimal number of quadrature nodes 𝑞 will be
significantly smaller than the number of evaluation BEM segments
𝑒 , this will result is a dramatic reduction of cost in the solution stage.
Furthermore, since the density can be interpolated to any number of
BEM segments, this means that it is possible to change the viewport
and pixel density without re-solving the equations for the density,
which gives us an efficient infinite resolution zoom.

In Section 7.1, we describe the optimal strategy for selecting the
number of quadrature nodes 𝑞, and their locations. In Section 7.2,
we describe a strategy for selecting the number of BEM segments
𝑠 and 𝑒 . Finally, in Section 7.4, we describe a strategy for updating
our discretization based on the user’s requested viewport and pixel
resolution.

initial input curve & result subdivided input curve & result

Fig. 13. An initial input curve with its resulting color values (left), and the
same curve subdivided, with its resulting color values (right).

7.1 Adaptive Subdivision
The number of quadrature points needed to represent the density
𝜎 on any particular curve will need to be larger if the associated
double sided boundary condition is complicated, if the curve has an
intricate geometry (e.g. a shape with high curvature), or if the curve
has many other curves nearby. The relationship between the number
of required quadrature nodes and this a priori information can be
somewhat complicated, so instead of using this a priori information
directly, we opt to use a simpler condition depending only on the
density itself.

If we are able to quickly determine whether or not a particular set
of quadrature points has adequately represented the density, then,
by repeatedly adding more degrees of freedom to any underresolved
curve, we can achieve an optimal discretization of 𝜎 . There are
two ways of adding degrees of freedom to a curve: by choosing
a higher-order Gauss-Legendre quadrature, or by subdividing the
curve into two sub-curves, and keeping the order of the quadrature
on each curve the same. Of the two approaches, the latter is more
stable, since increasing the order of the quadrature can cause the
quadrature points to cluster excessively, leading to an increase in the
condition number of the Green’s function matrix. In our examples,
we subdivide the curve while keeping the number of quadrature
points on each curve equal to 4.
To determine whether a panel on a curve needs subdivision, we

examine the size of the highest order expansion coefficient of the
Legendre polynomial expansion of the density. A large value in
the highest order coefficient means that the density function re-
quires more degrees of freedom to be properly resolved. Hence,
we subdivide the curve if the highest order coefficient of the Le-
gendre polynomial expansion is larger than a threshold, which is
set globally independent of the domain. This approach works for
any smooth density, however, if the true density is singular (near a
corner, for example), then this strategy can result in an infinite num-
ber subdivisions if we don’t provide any constraint on the smallest
size of the resulting curves. Thus, we ensure that further subdivi-
sion isn’t performed if the length of the curve is below a second
threshold, which is dependent on the size of the viewport domain.
The overall algorithm can be described as follows:

If a collection of curves is determined to need subdivision, then
their density values need to be re-solved. Fig. 13 shows the initial
bleeding artifact being fixed with our adaptive subdivision algo-
rithm, combined with a re-solving for the density values (note that
subdivision is only applied on a sharp corner of the curve with an
abrupt color change). We accelerate the process of re-solving for the
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Algorithm 5 Adaptive Subdivision

1: loop over every curve:
2: if length of curve < 𝜖1 (depends on size of pixel) then
3: skip
4: if highest order coefficient of Legendre polynomial expan-

sion > 𝜖2 (global) then
5: subdivide curve

subdivided densities by the techniques described in the following
subsections.

7.1.1 Warm start of density value. When re-solving for density
values, it is necessary to re-run GMRES with the FMM (see Sec-
tion 6.5.1). However, instead of re-solving for the density values �̊�
from scratch, we can instead specify an initial guess �̊�0 from the
previous solution, by interpolating the old density to the quadra-
ture nodes on the subdivided curves. This significantly reduces the
number of iterations required by GMRES.

(d) re-solving curves
& fixed curves

(a) quadtree with 
initial curves

(b) subdivided curves
& subdivided cells

(c) outgoing expansion
updating cells

Fig. 14. An initial quadtree is generated from an initial curve (a). Subdivided
curves appear, causing some of cells to further subdivide to satisfy the
condition on the minimum number of segments per cell (b) (Section 7.1.2).
For every cell that includes subdivided curves, we update its outgoing
expansion (c) (Section 7.1.3). Re-solving curves are determined by perturbing
the density value on each subdivided curve (d) (Section 7.1.4).

7.1.2 Local update of quadtree. Instead of re-constructing the quadtree
every time a curve panel is subdivided, we can update the already
pre-constructed quadtree Q, so that we can re-use the pre-computed
expansions P𝐺 (see Section 6.4). Recall that the quadtree is con-
structed by repeatedly subdividing cells, until each cell contains
fewer than 𝑏 degrees of freedom. To update the quadtree, we check
the prescribed condition on the maximum number of BEM line seg-
ments in each cell and, whenever it is violated after curve subdivi-
sion, the containing cell is subdivided until the prescribed condition
is satisfied (see Fig. 14 (b)). Note that, whenever the quadtree is
updated, the cell relationships described in the various lists (the
neighbor list, the interaction list, etc.) also need to be updated. These
lists can also be locally updated by only considering newly gener-
ated cells or any cells that contain newly generated cells in their
relations. We denote the local update of the quadtree by

Q′ = update_quadtree(𝑆 ′,Q), (44)

where Q is the quadtree constructed for the old set of discretized
curves 𝑆 , and where 𝑆 ′ and Q′ denote the updated curves and up-
dated quadtree, respectively.

7.1.3 Local update of expansions. The pre-computed expansion in-
formation from the pre-computation stepP𝐺 = pre_FMM𝐺 (𝑆, 𝑞,Q)
can be also locally updated while preserving some of the previously
computed information. We denote the operator updating the pre-
computed information by

P′𝐺 = update_pre_FMM𝐺 (𝑆
′
, 𝑞′,Q′,P𝐺 ), (45)

where 𝑆 ′, 𝑞′, and Q′ are the updated discretized curves, quadrature
nodes, and quadtree respectively.
Determining which cells have precomputations that need to be

updated depends on the particular precomputation being considered.
For the outgoing-from-source operator, only the leaf cells that have
a change in their contained line segments need to be updated (see
Fig. 14 (c)). For the outgoing-from-outgoing operator, cells that have
a child cell that has been updated need to be updated accordingly.
For the incoming-from-outgoing operator, the cells that have had a
change in their interaction list need to be updated. For the incoming-
from-source operator, the cells that have any change on their bigger
separated list need to updated. For the incoming-from-incoming
operator, essentially all cells will need updating, since the upward
and downward process of the FMM will eventually touch every cell.
Similarly, the target-from-incoming operator will require updates
on every cell. For the target-from-outgoing operator, the cells that
have any change on their seperated list need to be updated, and for
the target-from-source operator, those cells that have any change
on their adjacency list, or any change on their own cells, need to
be updated. All newly generated cells will also obviously need to
constuct every pre-computation for each of the FMM operators.

7.1.4 Local re-solve of density value. When some curves are subdi-
vided, the density does not necessarily have to be updated every-
where. The density on curves with subdivided panels must naturally
be updated, as well as the density on nearby curves which might be
affected by this subdivision. Curves that are far away may not need
updating at all.
We use the following method to determine which curves are in

need of re-solving. We run the FMM separately on each of the newly
subdivided curves 𝑆𝛼 ∈ 𝑆

′, using a density 𝝆 that is given the value
one on the subdivided 𝑆𝛼 , and is given the value zero on all other
curves:

𝒗 = FMM𝐺 (𝑆
′
, 𝝆, 𝑞′,Q′,P′𝐺 ) (46)

where 𝑆 ′, 𝑞′, Q′, and P′
𝐺
are the updated discretized curves, quad-

rature nodes, quadtree, and precomputations, respectively. We use
the resulting output potential 𝒗 to determine which curves are
influenced most by the subdivision. Intuitively, this can be seen
as perturbing the density value with a unit charge on each sub-
divided curve to check for its effect on other curves. We then de-
termine which other curves need to be updated, by the following
procedure. First, we determine how much the induced potential
changes over the subdivided curve 𝑆𝛼 by computing the quantity
max 𝒗𝑆𝛼 −min 𝒗𝑆𝛼 . We then find all curves 𝑆𝛽 in need of re-solving
by checking if the change in the induced potentialmax 𝒗𝑆𝛽 −min 𝒗𝑆𝛽
is greater than 0.9 times the change over 𝑆𝛼 . In other words, a curve
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𝑆𝛽 is determined to be in need of re-solving if

max 𝒗𝑆𝛽 −min 𝒗𝑆𝛽 > 0.9(max 𝒗𝑆𝛼 −min 𝒗𝑆𝛼 ). (47)

We label all such curves as the re-solving curves (see Fig. 14 (d)).
One of the reasons that this scheme works so well in practice is
that the mean-value theorem tells us that the change in the induced
potential over the curve is related to the integral of the derivative
of the potential. The potential induced by the kernel 𝐺 (𝑝, 𝑞) is
proportional to log(∥𝑝 − 𝑞∥) and decays very slowly, and does not
provide a good measure for identifying nearby re-solving curves.
On the other hand, its derivative 𝐹 (𝑝, 𝑞) is proportional to 1/∥𝑝 −𝑞∥
and decays much more quickly, and provides an excellent measure
for identifying nearby curves.

The extra step of potential evaluation for each subdivided curve
𝑆𝛼 needed to identify the re-solving curves saves a great amount of
computation in the end, because it reduces the dimensionality of
the linear system we must solve for the new density value, which
needs to be computed using several steps of FMM evaluation within
GMRES. In fact, it is not necessary to compute the full FMM in
Eq. 46, since, as we describe later in this section, a more efficient
local FMM can be performed instead.

After we have determined the re-solving curves, we only need to
re-solve for the density on the re-solving curves, while leaving the
density on the remaining curves, which we call the constrained
curves, unchanged. We denote the set of re-solving curves by 𝑟 ⊂ 𝑆 ,
and the set of constrained curves by 𝑐 ⊂ 𝑆 . We then denote the
quadrature nodes on the resolving curves by 𝑞′𝑟 , and the quadrature
nodes on the constrained curves by 𝑞𝑐 . Likewise, we denote the BEM
segments on the re-solving curves by𝑞′𝑟 and on the constrained curves
by 𝑞𝑐 (omitting the (·)′ from the constained curves, since the nodes
and BEM segments on those curves are unchanged). We represent
the above procedure for determining which curves are re-solving
curves and which are constrained curves by

𝑟, 𝑐 = label_curves(𝑆 ′, 𝑞′,Q′,P′𝐺 ), (48)

where 𝑆 ′, 𝑞′, Q′, and P′
𝐺
are the updated discretized curves, quad-

rature nodes, quadtree, and precomputations, respectively.

7.1.5 Accelerating the local re-solve. Since the density is unchanged
on all of the constrained curves, we can solve a much smaller lin-
ear system than we would if we were solving for the density from
scratch. Let’s first formulate this problem with a matrix system so
that we have clear idea what we want to achieve, and then refor-
muate the problem using the FMM. Recall that, using our Hybrid
Method, the unknown density �̊� ′ is the solution to the linear system

G̊H�̊�
′ = 𝒃∗

′
, (49)

for some right hand side 𝒃∗′, where G̊H = G̊ PP̊−1 ∈ R𝑔×𝑔 , and
G̊ ∈ R𝑔×𝑠 (see Section 5.2). Solving for the potential only at the
quadrature nodes 𝑞′𝑟 on the re-solving curves, while constraining the
density at the quadrature nodes 𝑞𝑐 on the constrained curves, gives
us the linear system[

(G̊H)𝑟𝑟 (G̊H)𝑟𝑐
] [

�̊� ′𝑟
�̊�𝑐

]
= 𝒃∗

′
𝑟 (50)

Then, setting �̊�𝑐 to the previously solved value and placing it on
right hand side:

(G̊H)𝑟𝑟 �̊� ′𝑟 = 𝒃∗
′
𝑟 − (G̊H)𝑐𝑟 �̊�𝑐 . (51)

To solve this equation with the FMM, we compute:

𝒃#′
𝑟 = 𝒃∗

′
𝑟 − FMM𝐺 (𝑆𝑐 , PP̊−1�̊�𝑐 , 𝑞

′
𝑟 ), (52)

and then solve for �̊� ′𝑟 using GMRES:

�̊� ′𝑟 = GMRES(FMM𝐺 (𝑆
′
𝑟 , PP̊

−1 (·), 𝑞′𝑟 ), (�̊� ′𝑟 )0, 𝒃#′
𝑟 , 𝜖), (53)

where (�̊� ′𝑟 )0 is the initial guess for �̊� ′𝑟 at the updated quadrature
nodes 𝑞′𝑟 .
While we can use the FMM to compute the potentials created

by densities on the constrained curves 𝑆𝑐 and the resolving curves
𝑆 ′𝑟 from scratch, we can dramatically accelerate the calculations by
using the fact that the 𝑆𝑐 and 𝑆 ′𝑟 are subsets of the updated curves
𝑆 ′, for which we already have an updated quadtree Q′ and updated
precomputations P′

𝐺
. We thus define the following modified FMM,

for performing local calculations that take advantage of precompu-
tations on a larger set of curves and targets.
Suppose that Q and P𝐺 are the quadtree and precomputations

for the FMMwith source curves 𝑆 and targets 𝑞. We define the FMM

𝑢𝑞 = local_FMM𝐺 (𝑆, 𝜎, 𝑞,Q,P𝐺 ) (54)

for computing the potential created by a subset 𝑆 ⊂ 𝑆 of source
curves at a subset 𝑞 ⊂ 𝑞 of target points, by modifying the outgoing-
from-source, incoming-from-source, target-from-incoming, target-from-
outgoing, and target-from-source operators (see Section E.1), as fol-
lows. First, the two operators used to construct outgoing expansions
and incoming expansions from sources are modified to only use the
source curves 𝑆 . The last three operators used to compute potentials
at the targets are modified to only compute the potentials at the
points 𝑞. Note that the operators for translating expansions can
remain unchanged from Algorithm 8.
Finally, using this local FMM, we can find the solution to the

system Eq. 51 for the density �̊� ′𝑟 on the re-solving curves, by first
computing

𝒃#′
𝑟 = 𝒃∗

′
𝑟 − local_FMM𝐺 (𝑆𝑐 , PP̊−1�̊�𝑐 , 𝑞

′
𝑟 ,Q′,P′𝐺 ), (55)

and then solving for �̊� ′𝑟 using GMRES:

�̊� ′𝑟 = GMRES(local_FMM𝐺 (𝑆
′
𝑟 , PP̊

−1 (·), 𝑞′𝑟 ,Q′,P′𝐺 ), (�̊�
′
𝑟 )0, 𝒃#′

𝑟 , 𝜖),
(56)

where (�̊� ′𝑟 )0 is the initial guess for �̊� ′𝑟 at the updated quadrature
nodes 𝑞′𝑟 .

7.1.6 Local update for adaptive subdivision. The overall algorithm
for locally re-solving for the density on the re-solving curves can be
described as follows:
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(a) Estimated 
ground truth

(b) Fixed 
line segments

(c) Adaptive 
line segments

(d) Curve
subdivided

summed 
error: 59

30 16

Fig. 15. Result comparison of snail example with fixed line segments, adap-
tive line segments (Sec. 7.2), and adaptive curve subdivision (Sec. 7.1) (top)
and its error (bottom).

Algorithm 6 Local Re-solve after Curve Subdivision

Input: source curves 𝑆 , quadrature nodes 𝑞, right hand side 𝒃∗,
previous density �̊� , sources curves after subdivision 𝑆 ′, quadrature
nodes after subdivision 𝑞′

Output: updated density value �̊� ′

1: Q′ = update_quadtree(𝑆 ′,Q)
2: P′

𝐺
= update_pre_FMM𝐺 (𝑆

′
, 𝑞′,Q′,P𝐺 )

3: 𝑟, 𝑐 = label_curves(𝑆 ′, 𝑞′,Q′,P′
𝐺
)

4: (�̊� ′𝑟 )0 = legendre_interpolation(�̊�𝑟 )
5: 𝒃∗

′
𝑟 = legendre_interpolation(𝒃∗𝑟 )

6: 𝒃#′
𝑟 = 𝒃∗

′
𝑟 − local_FMM𝐺 (𝑆𝑐 , PP̊−1�̊�𝑐 , 𝑞′𝑟 ,Q′,P′𝐺 )

7: �̊� ′𝑟 = GMRES(local_FMM𝐺 (𝑆
′
𝑟 , PP̊−1 (·), 𝑞′𝑟 ,Q′,P′𝐺 ), (�̊�

′
𝑟 )0, 𝒃#′

𝑟 , 𝜖)

7.2 Adaptive BEM Line Segments
The number of line segments 𝑠 at the solving stage can be set to
be a small multiple of the number of quadrature points 𝑔, so if the
number of quadrature points on each panel of curve is fixed, then
the number of line segments 𝑠 for the solution stage is fixed as well.
In our examples, we set 𝑠 = 5𝑔.
The number of line segments 𝑒 at the evaluation stage, on the

other hand, needs to be determined to be just fine enough so that
user does not perceive a discretized poly-line, but not so fine as
to result in a burdensome computation. Such a choice of 𝑒 is best
determined by the size of the pixel and by the user’s viewport.
Interestingly, it turns out we do not have to make 𝑒 depend on

the pixel size directly. If we set number of the line segments at
evaluation stage 𝑒 to be proportional to the arc-length of the curve
plus a constant with the following simple equation,

𝑒 = (length of curve)/10 + 𝑠, (57)

then the result looks perfectly smooth when zooming in, without
requiring an excessive number of calculations. The reason for this
is that our adaptive subdivision algorithm for the density, Algo-
rithm 7.1, uses the pixel size as a threshold for subdivision. When

updating
viewport

subdivided
interpolated

fixed

re-solved

(a) full viewport (b) updated viewport
w/o subdivision

(d) updated viewport
w/ subdivision

(c) subdivided
& re-solved curves

Fig. 16. Starting from the full viewport (a), when the user updates the
viewport with an extreme zoom-in, artifacts are visible without adaptive
subdivision (b). Assigning each curve with a suitable label for efficiency (c)
and updating the viewport with adaptive subdivision gives a plausible result
(d).

the pixel size becomes smaller upon zooming in, the large curves
are subdivided, which causes the total number of line segments 𝑠
on that curve to increase.

Note also that this formula ensures that 𝑒 ≥ 𝑠 , since if 𝑒 is smaller
than 𝑠 , the potential created by the curve will not approximate the
potential we solved for in the solution stage.

7.3 Diffusion Curve with Adaptive Subdivision
The overall algorithm for computing a diffusion curve with adaptive
subdivision is described by the following algorithm:

Algorithm 7 Diffusion Curve with Adaptive Subdivision
1: Solve for the density at the quadrature points using Algorithm 3

(with a fixed a priori discretization)
2: while running the adaptive subdivision Algorithm 5 results in

subdivided curves do
3: Update the density with a local re-solve using Algorithm 6
4: Use the FMM to evaluate the single and double-layer potentials

at the pixel targets on the viewport domain, choosing the BEM
line segments as described in Section 7.2.

Fig. 15 compares the fixed line segments, adaptive line segments,
and adaptive curve subdivision (top), showing the resulting error
(bottom). Note that the error has been amplified for clear visualiza-
tion.

7.4 Updated Viewport
Suppose that the user is exploring the domain with their viewport,
so that pixel values need to be re-computed whenever the viewport
changes. Re-evaluating pixel values can be done very quickly with
Eq. 29, however, whenever the discretization of curves into BEM
line segments must change (if the user zooms in, for example), re-
solving for the density values will require a heavy re-computation
if a BEM-only algorithm is used. This is the moment our hybrid
method shines, since we can simply construct interpolated density
values for any re-discretized curves using Legendre polynomial
interpolation as in Eq. 14. This process of interpolation will work
until the viewport domain is zoomed in on such a small region,
that the adaptive subdivision process of Algorithm 5 needs further
subdivision due to the smaller threshold resulting from the reduced
pixel size (see line 2 from Algorithm 5).
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subdivided
re-solved

0m11s

0m52s

Fig. 17. Visualization our of adaptive subdivision procedure while the view-
port is zooming in.

To account for a change in viewport, we assign to each curve one
of the following three labels: fixed curve, interpolating curve, or re-
solving curve (see Figure 16). All curves that are fully outside of the
domain of the viewport are labelled as fixed curves. Such curves do
not require re-discretization, and can retain their BEM discretization.
The curves for which the density must be re-solved according to the
algorithm described in Sec. 7.1.4 are labelled as re-solving curves,
and include both subdivided curves and neighboring curves. Finally,
all of the remaining curves the intersect the viewport are labelled
as interpolating-curves, and are re-discretized with smaller BEM
line segments using only Legendre polynomial interpolation, with
no need for re-solving. Note that, when labeling curves to account
for the user’s viewport, the constrained curves of Section 7.1.4 can
be either fixed curves or interpolating curves, depending on whether
or not they intersect the viewport. Fig. 17 visualizes subdivided and
local re-solving curves determined by its viewport domain while a
user is zooming-in. Table. 3 is a comparison of computation time
with global re-solve and with our local re-solve.

8 ANTI ALIASING
Anti aliasing can be smartly handled using the quadtree structure we
built for the FMM. Instead of sampling color values at the mid point
of each pixel, we can compute a better estimate of the color values
by using area-weighted integration. This can be easily achieved by
recursively computing pixel values as weighted sums of pixel values
from child cells.

Table 3. Computation time comparison between the initial solve of the curve,
the global re-solve, and the local re-solve with zoom-in for the example from
Fig. 17.

Initial Initial Global Local
curves solve re-solve re-solve

snail in forest 1493 9.48s 5.35s 0.95s
lady with blue eyes 3126 17.47s 11.29s 1.12s

Pixels that are inside cells which are bigger than the pixel size
will not benefit from the above strategy. Since we don’t require
every pixel to be assigned smaller child cells, the color strategy for
such pixels reduces to naive multi sampling. With the key insight
that the aliasing happens mostly near boundary curves, we modify
the quadtree construction condition so that, if a cell includes any
boundary curves, then it will be subdivided until the leaf cell size
becomes smaller then the pixel size. This gives a very efficient way of
anti aliasing. One limitation of this method is that the total number
of pixels is restricted to be 2𝑛 , so that the pixels will always align
with the quadtree.

anti-alised anti-alised

Fig. 18. Our method with naive computation of pixel values (left) as well as
anti-aliased pixel values (right) on a domain with 128 × 128 pixels.

9 RESULTS
We demonstrate that our method can accurately compute diffusion
curves for a complex set of input curves with drastically differing
scales and sizes of details, as demonstrated in Fig. 1. Our algorithm
renders the initial diffusion curves by an adaptive method. The diffu-
sion curves then retain their accuracy when the viewport is zoomed
into the figure, by an efficient adaptive algorithm that involves re-
solving for the density only on a small subset of curves, as shown in
Fig. 17. Our adaptive technique is facilitated by our Hybrid Method,
which combines the BIEM and BEM, and allows the density to be
accurately interpolated on those curves appearing in the viewport
which are not re-solved, as shown in Fig. 16.

Our method can also be used to generate high resolution images
with existing diffusion curve data from [Orzan et al. 2008], [Jeschke
et al. 2011], and [Liu 2009] as shown in Fig. 19.
We report the computation time in Tables 1, 2, and 3, but note

that our implementation is not fully optimized, and has a lot of room
for faster computation.

To demonstrate the effect of setting different values of the number
of solving BEM segments 𝑠 , Gauss-Legendre nodes 𝑔, and evaluation
BEM segments 𝑒 , we compared the error for different sets of param-
eters as visualized in Fig. 20. The ground truth here is derived by
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Fig. 19. 4K resolution results generated with our method. The blurred scalar
field is computed using diffusion curves applied as a postprocessing step.
This figure is best viewed on a high-resolution digital screen. Lady bug,
person with purple cloak, and yellow roses examples were taken from [Orzan
et al. 2008]; kiwi and Monet examples were taken from [Jeschke et al. 2011];
cherries example was taken from [Sun et al. 2014].

running BEM with a very large number of BEM segments 𝑒 = 200
for each curve. As is clear from the figure, the error gets smaller if
we increase the discretization parameters, but the difference is not
too large if the numbers are already high enough. Empirically, we
found that 𝑠 = 20, 𝑔 = 4, 𝑒 = 20 works best in balancing accuracy
and performance. Hence, for all the examples in this paper with
fixed resolution (in other words, for all of the examples besides Fig. 1
and Fig. 17), we set 𝑠 = 20, 𝑔 = 4, 𝑒 = 20, except for the example in
Fig. 6, where we set 𝑠 = 40, 𝑔 = 8, 𝑒 = 40 for our Hybrid Method.

9.1 Implementation
We implemented the main algorithm of our method in C++ with
[Jacobson et al. 2018], and additionally used MATLAB and GPTOOL-
BOX [Jacobson et al. 2021] for development and experimentation.

g=2

s=e=10

3341
summed 
error: 89

61659

61758

s=e=20 s=e=40

g=4

g=6

Fig. 20. Comparison of different sets of discretization parameters, with
highlighted color difference between ground truth, and the summed error
indicated in white text. This behind curtain example was taken from [Orzan
et al. 2008].

We note that our implementation is not fully optimized, and has
a lot of room for improvement. Importantly, our code runs almost
entirely on the CPU, and could be accelerated dramatically by an
optimized GPU implementation. All the timings were computed on
a MacBook Pro laptop with an Intel 2.4GHz Quad-Core i9 Processor
and 16GB RAM. Please check the accompanying code to try out the
examples.

9.2 Comparison with other Methods
The Finite Difference (FD) method [Bezerra et al. 2010; Finch et al.
2011; Orzan et al. 2008] has its strength in its easy parallelization and
speed when combined with Multigrid solvers. The main advantage
of our method compared to the FD method, is that our method
correctly constructs diffusion curves around tiny features, while the
FD method flattens down all of its curves to a pixel size, which loses
a lot of detailed information. The resulting pixel-level rasterization
errors are further amplified by the diffusion process. In Fig. 2 (left),
for example, all of the important detail is lost around eye of the
woman. Compare this result to Fig. 1 (left). Furthermore, even when
no tiny features are present, the rasterization process is not stable
to small translations, resulting in strobing artifacts when curves are
repositioned.

A solution to this rasterization problem was proposed in [Jeschke
et al. 2009]. There, rather than rasterizing just the boundary curves,
the authors propose rasterizing the entire image by initializing each
pixel to the color of the closest curve point. This initial image is
then smoothed with a Jacobi-like iteration scheme, in which each
pixel is averaged with four axis-aligned pixels lying on a circle,
chosen to be sufficiently small so as to not intersect any boundary
curves. Since averaging over only axis-aligned pixels instead of
the entire circle can create mach-banding-like artifacts, the stencil
size is decreased linearly at each step, either immediately, or after
performing half of the total number of iterations with the stencil at
full size. The iterations on the final stencil are equivalent to classical
Jacobi iterations, with boundary constraints enforced by fixed color
data near the curves, performed on a good initial guess produced
by blending the original image rasterization on the larger stencils.
Provided an appropriate shrinking strategy is used, this method can
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produce a visually excellent diffusion curve image in real-time, with
only slight differences with the fully converged image. This method
is, however, limited to Dirichlet boundary conditions, and does not
take into account curves outside of the image domain. Our method
can potentially be extended to Neumann boundary conditions, and
handles curves outside of the image domain in a natural way via
the FMM.
The Finite Element Method (FEM) [Boyé et al. 2012; Pang et al.

2011; Takayama et al. 2010] is the most widely used method in
computer graphics, due to its easy and intuitive implementation
with fast Cholesky solvers. However, FEMs suffer from the prob-
lem of triangulating the domain. Triangulation of a complex set of
curves is itself very difficult problem, and is the subject of current
research [Hu et al. 2019]. We have attempted to use TriWild [Hu
et al. 2019] with the input curves for Fig. 2, but TriWild discarded
all of the highly detailed features, and failed if we tried to preserve
these features. Even when the triangulation succeeds, the FEM ex-
hibits a bleeding artifact which can be seen in Fig. 3. Using Triangle
[Shewchuk 2005] led to successful triangulation but resulted in more
than 10 million triangles given data from Fig. 2. Even with dense
triangulations, FEM still shows nonsmooth results near curve end-
points, caused by singularities there. When singularities are present
in the PDE solution, both increasing only the polynomial order on
elements of fixed size (called p-refinement) or fixing the polynomial
order and refining the mesh (called h-refinement) are known to pro-
vide only modest improvements in solution accuracy. However, if a
carefully chosen combination of mesh refinement and polynomials
of varying degree is used, then the FEM can be made to converge ex-
ponentially fast (this process is called hp-refinement or the hp-FEM).
Such methods, while often effective, can be extremely challenging
to implement in a fully automatic fashion (see [Gopal and Trefethen
2019b]). A heuristic solution for dealing with singularities, proposed
by [Boyé et al. 2012], is to linearly blend colors around the vertex of
a triangular element lying on a curve endpoint. While visually quite
satisfactory, it is worth noting that this approximation is nonethe-
less very different from the true power-type singularities present at
such points. These difficulties, namely the triangulation problem,
the bleeding artifact problem, and the singularity problem, are all
completely absent in our method. There is no need for triangula-
tion since our method is a boundary-only method, and the bleeding
artifact is resolved completely by adaptive subdivision, as seen in
Fig. 9.
The pros and cons of the Boundary Element Method (BEM) and

Boundary Integral Equation Method (BIEM) are described in Sec. 4.
As we discuss in that section, the boundary element method can
produce accurate results when many BEM line segments are used,
but results in an extremely large linear system to solve. On the other
hand, the BIEM has a highly efficient representation of the solution,
and results in a small linear system, but creates artifacts when the
density is evaluated near the curves. Our Hybrid Method takes the
advantages of both, namely, it retains the efficient representation of
BIEM while also obtaining the visual quality of BEM, as shown in
Fig. 4.
The Walk on Spheres (WoS) method [Sawhney and Crane 2020]

has its strength in its simplicity and its robustness to input data and
geometry, but does not generalize efficiently to Neumann boundary

conditions, which is a significant limitation, since such boundary
conditions are so useful in practice. The two main issues that arise
are that WoS can require extremely long walks, and that the sphere
sizes near Neumann boundaries become very small, significantly im-
pacting performance. The recently proposed Walk on Stars (WoSt)
method [Sawhney et al. 2023] overcomes this second issue by re-
placing these small spheres with the boundaries of much larger
star-shaped domains. Nonetheless, when the boundary is predom-
inantly Neumann (like the boundaries in Fig. 5), WoSt will still
can take very long walks, since, like WoS, it must reflect back into
the domain from Neumann boundaries and can only terminate at
Dirichlet boundaries. This issue can be somewhat ameliorated by
caching solution values on the boundary of the domain [Miller et al.
2023], but since the solution values must still be generated by, for
example, WoSt, the problem persists. Our method, on the other hand,
generalizes to Neumann boundary conditions without difficulty, as
shown in Fig 5.

10 LIMITATIONS AND FUTURE WORKS
Our proposed method advances diffusion curve representation to a
high-accuracy level, accommodating fine multiscale features and
allowing precise zooming and panning while maintaining accuracy.
Despite its many desirable features, our method still has some

limitations and room for future improvement.
Our Adaptive Strategy was constructed with the assumption that

diffusion curves mostly remain static. It will not work efficiently
for animated diffusion curves, as it will require large portion of the
curve to be re-computed every step.

Our requirement of ensuring accurate computations can become
burdensome computationally, because messy or wild curve data
will exhibit a lot of intersecting and overlapping curves, which will
require heavy adaptive subdivision to resolve. We developed a pre-
processing step to deal with ill-posed curves, but it is difficult to
distinguish between an intentional ill-posed curve placed by an
artist and an unintended ill-posed curve. It will be useful to have
a version of our algorithm with softer and less stringent accuracy
requirements, which would allow for wilder curve data.
We demonstrate Neumann boundary conditions in the exam-

ple of Fig. 5. However, our current implementation only supports
one-sided Neumann boundary conditions on closed curves. These
examples were generated by subdividing a region into disconnected
closed subregions. A more general and powerful double-sided Neu-
mann boundary condition is possible, but will require the intro-
duction of a hyper-singular kernel, as described in Sec 2.3 of [Liu
2009].
Our current implementation is not fully optimized, and does

not reach real-time computation speeds. We observed that a GPU-
accelerated implementation of brute force computation leads to a
speedup of more than 100 times. A GPU-accelerated version of FMM
and adaptive re-computation would put on wings on our method
and make it truly practical. We leave this extension to our future
work.
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Appendix A ARC LENGTH LINE SEGMENT
INTEGRATION

Unlike classical BEM, our hybrid method allows for different num-
bers of BEM line segments at the solution and evaluation stages. In
order for us to use different discretizations at each stage, it turns
out to be essential that the BEM integration is performed in a way
that accounts for the true length of the curve, since the length of
a polyline approximation can change if the number of segments
changes. Thus, if we naively integrate the line segments, the re-
sult will be different if the number of line segments is different.
Hence, we employ arc length integration to make sure that different
numbers of line segments do not give a different result.

Appendix B ARC LENGTH PARAMETRIZATION
Unfortunately, there is no closed form solution for the arc length
parametrization of a cubic Bézier curve. We employ an iterative
method to find the arc length parametrization. Suppose that we
have a cubic Bezier curve

𝐵 : [0, 1] → R2, (58)

𝐵(𝑡) = (1 − 𝑡)3𝐶0 + 3𝑡 (1 − 𝑡)2𝐶1 + 3𝑡2 (1 − 𝑡)𝐶2 + 𝑡3𝐶3, (59)

where 𝐶0,𝐶1,𝐶2,𝐶3 ∈ R2 are the control points. Then the cumula-
tive length of the Bezier curve up to some parameter 𝑡 = 𝑠 may be
written as an integral:

𝐿(𝑠) =
∫ 𝑠

0
∥𝐵′ (𝑡)∥𝑑𝑡 . (60)

We apply Newton’s root finding method to find 𝑠 for a given target
arc length 𝑇 such that 𝑇 = 𝐿(𝑠). Given some guess 𝑠0, we can
improve this guess by the update formula

𝑠 ← 𝑠0 − (𝐿(𝑠) −𝑇 )/𝐿′ (𝑠) . (61)

However, this requires evaluation of 𝐿(𝑠) and 𝐿′ (𝑠). To compute
these quantities, we use Gauss-Legendre quadrature to approximate
a definite integral over the finite interval [0, 𝑠].

Appendix C SINGULAR GREEN’S FUNCTION
INTEGRALS

The Green’s function𝐺 (𝑝, 𝑞) and its normal derivative 𝐹 (𝑝, 𝑞) both
have singularities at 𝑝 = 𝑞, where the kernel is infinite. To perform
accurate BEM integration involving these kernels, it is important to
carefully consider how these singularities influence the integrals.
Suppose that 𝑥 is a target point that approaches the boundary.

We divide the boundary 𝑆 into two parts: 𝑆 − 𝑆𝜖 and 𝑆𝜖 , where 𝑆𝜖
is a small segment with arc length 2𝜖 centered around the point to
which 𝑥 will approach.

Let us first consider single layer potential, which involves the
integral of the Green’s function 𝐺 (𝑝, 𝑞):∫

𝑆

𝐺 (𝑝, 𝑥)𝜎 (𝑝)𝑑𝑆 (𝑝) =

lim
𝜖→0

∫
𝑆−𝑆𝜖

𝐺 (𝑝, 𝑥)𝜎 (𝑝)𝑑𝑆 (𝑝) + lim
𝜖→0
𝑥→𝑆

∫
𝑆𝜖

𝐺 (𝑝, 𝑥)𝜎 (𝑝)𝑑𝑆 (𝑝)
(62)

The limit of the second integral on the right-hand side of Eq. 62
turns out to be

lim
𝜖→0
𝑥→𝑆

∫
𝑆𝜖

𝐺 (𝑝, 𝑥)𝜎 (𝑝)𝑑𝑆 (𝑝) = 0. (63)

Analytic integration of the limit of the first integral on the right-hand
side of Eq. 62 over a BEM line segment is described in Appendix D.3.
Let us now consider double layer potential, which involves the

integral of the normal derivative of Green’s function, 𝐹 (𝑝, 𝑞):∫
𝑆

𝐹 (𝑝, 𝑥)` (𝑝)𝑑𝑆 (𝑝) =

lim
𝜖→0

∫
𝑆−𝑆𝜖

𝐹 (𝑝, 𝑥)` (𝑝)𝑑𝑆 (𝑝) + lim
𝜖→0
𝑥→𝑆

∫
𝑆𝜖

𝐹 (𝑝, 𝑥)` (𝑝)𝑑𝑆 (𝑝)
(64)

The limit of the second integral on the right-hand side of Eq. 64
turns out to be:

lim
𝜖→0
𝑥→𝑆

∫
𝑆𝜖

𝐹 (𝑝, 𝑥)` (𝑝)𝑑𝑆 (𝑝) = ±1
2
` (𝑥), 𝑥 ∈ 𝑆. (65)

The sign of the one-half ` (𝑥) depends on which side of the curve
the point 𝑥 approaches.

C.1 Singular Integrals in our Hybrid Method
For standard BEM, the query points are located on the midpoints of
each line segment. Thus, for each query point, integration over the
singularity happens on the one line segment that is located on the
query point, which corresponds to the diagonal entries of 𝐺 and 𝐹 .
For our Hybrid Method, the query point can be located at any

place along the input curve. If evaluation points (which are also
the quadrature points) are positioned near the intersection of two
BEM line segments, this situation should be considered as a singular
integration for both line segments, and evaluated by invoking Eq. 70
and Eq. 71 in Appendix D.

Appendix D ANALYTIC INTEGRATION
In this section, we provide various analytical formulas for evaluating
the integrals of the Green’s function kernels𝐺 (𝑝, 𝑞) and 𝐹 (𝑝, 𝑞) over
the line segment 𝑝1𝑝2.

D.1 Integration of Green’s function
The integral of a Green’s function on a line segment can be evaluated
analytically as follows:

−
∫
𝑆

𝐺 (𝑝, 𝑞)𝑑𝑆 =

∫
𝑆

log( |𝑝 − 𝑞 |)
2𝜋

𝑑𝑝

=
|𝑎 |
2𝜋

∫ 1

0
log( |𝑏 + 𝑎𝑡 |)𝑑𝑡 = |𝑎 |

2𝜋

∫ 1

0
log(

√︁
𝑎2𝑡2 + 2𝑎𝑏𝑡 + 𝑏2)𝑑𝑡,

(66)

where 𝑎 = 𝑝2 −𝑝1, 𝑏 = 𝑝1 −𝑞, with 𝑝1, 𝑝2 being the endpoints of the
line segment. Denoting 𝑎2 = Z , 2𝑎𝑏 = [, 𝑏2 = b , we get the following
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anti-derivative:

|𝑎 |
4𝜋

∫ 1

0
log(Z𝑡2 + [𝑡 + b)𝑑𝑡 =

|𝑎 |
4𝜋

[
log(Z𝑡2 + [𝑡 + b) (𝑡 + [

Z
) − tan−1

(
2Z𝑡 + [√︁
4bZ − [2

) (
2Z + [

Z
√︁

4bZ − [2

)]1

0
=

|𝑎 |
4𝜋

[
log(Z + [ + b) (1 + [

Z
) − log(b)[

Z

]
+

|𝑎 |
4𝜋

[
tan−1

(
[√︁

4bZ − [2

)
− tan−1

(
2Z + [√︁
4bZ − [2

)] (
2Z + [√︁
4bZ − [2

)
.

(67)

D.2 Integration of Normal Derivative of Green’s function
The integral of the normal derivative of the Green’s function on a
line segment can be evaluated analytically as follows:

−
∫
𝑆

𝐹 (𝑝, 𝑞)𝑑𝑆 =

∫
𝑆

(𝑝 − 𝑞) · 𝑛
2𝜋 |𝑝 − 𝑞 |2

𝑑𝑝

1
2𝜋

∫ 1

0

(𝑎𝑡 + 𝑏) · 𝑛
|𝑎𝑡 + 𝑏 |2

𝑑𝑡 =
𝑏 · 𝑎⊥

2𝜋

∫ 1

0

1
𝑎2 + 2𝑎𝑏𝑡 + 𝑏2𝑑𝑡,

(68)

where the numerator in the last integral becomes constant because
𝑛 = 𝑎⊥. Denoting 2𝑏 · 𝑎⊥ = a , we get the following anti-derivative:

a

2𝜋

∫ 1

0

1
Z𝑡2 + [𝑡 + b

𝑑𝑡

a

2𝜋

[
tan−1

(
2Z𝑡 + [√︁
4bZ − [2

) (
a√︁

4bZ − [2

)]1

0
=

a

2𝜋

[
tan−1

(
2Z + [√︁
4bZ − [2

)
tan−1

(
[√︁

4bZ − [2

)] (
a√︁

4bZ − [2

)
.

(69)

D.3 Singular Integration of Green’s function
Singular integration happens when 𝑞 lies on the line segment 𝑝1𝑝2.
Letting 𝑏 = 𝑎𝑡∗, the integral can be expressed simply as:

|𝑎 |
2𝜋

∫ 1

0
log( |𝑎(𝑡 − 𝑡∗) |)𝑑𝑡 =

|𝑎 |
2𝜋

lim
𝜖→0

(∫ 𝑡∗−𝜖

0
log( |𝑎(𝑡 − 𝑡∗) |)𝑑𝑡 +

∫ 1

𝑡∗+𝜖
log( |𝑎(𝑡 − 𝑡∗) |)𝑑𝑡

)
=

|𝑎 |
4𝜋

lim
𝜖→0

[
−2𝑡 + (𝑡 − 𝑡∗) log(𝑎2 (𝑡 − 𝑡∗)2)

]𝑡∗−𝜖
0 +

|𝑎 |
4𝜋

lim
𝜖→0

[
−2𝑡 + (𝑡 − 𝑡∗) log(𝑎2 (𝑡 − 𝑡∗)2)

]1
𝑡∗+𝜖 =

1
4𝜋

(
2|𝑎 | − |𝑎 |𝑡∗ log( |𝑎 |2𝑡∗2) + (|𝑎 |𝑡∗ − |𝑎 |) log( |𝑎 |2 (1 − 𝑡∗)2)

)
=

1
2𝜋
(𝑠 − 𝑒1 log 𝑒1 − 𝑒2 log 𝑒2),

(70)

where 𝑠 = |𝑎 |, 𝑒1 = 𝑞𝑝1 = |𝑎 |𝑡∗, and 𝑒2 = 𝑞𝑝2 = |𝑎 | (1 − 𝑡∗).

D.4 Singular Integration of Normal Derivative of Green’s
function

Similar to the above approach, we can express the singular integral
as:

|𝑎 |
2𝜋

∫ 1

0

𝑎(𝑡 − 𝑡∗) · 𝑛
|𝑎(𝑡 − 𝑡∗) |2

𝑑𝑡 . (71)

The above equation becomes 0 since (𝑡 − 𝑡∗) · 𝑛 = 0.

Appendix E FAST MULTIPLE METHOD
Consider the evaluation of the BEM integrals in Eq. 8 over𝑚 dif-
fusion curves, for a total of 𝑁 = 𝑚𝑠 BEM line segments. Directly
evaluating the BEM integrals in Eq. 8 or Eq. 10 at𝑀 target points
requires O(𝑁𝑀) operations. Greengard and Roklin [Greengard
and Rokhlin 1987] demonstrated that the task could be done in
O(𝑁 + 𝑀) operations in finite precision by introducing the Fast
Multipole Method (FMM), which is asymptotically even better than
the O(𝑁 log(𝑁 ) + 𝑀 log(𝑀)) operations required by the Barnes-
Hut algorithm [Barnes and Hut 1986; Pfalzner and Gibbon 1997].
In this section, we provide an introduction to the FMM for the
complex-valued kernel𝐺 (𝑝, 𝑞) = − 1

2𝜋 log(𝑞 − 𝑝), whose real part is
the Green’s function defined in Eq. 2, where 𝑝 and 𝑞 are treated as
points in the complex plane.

E.1 Multipole expansion
The key idea behind the Fast Multipole Method is the observation
that, if a potential is induced by a source involving a Green’s func-
tion, then the potential away from the source can be approximated
to high accuracy by a finite sum involving certain basis functions,
where the number of terms involved in the sum is independent of the
complexity of the source distribution. These sums approximating
the induced potential are called expansions.

p

q

outgoing-from-source

target-from-outgoing

Ωβ
cβ

E.1.1 Outgoing expansion. Suppose
we have the source curve 𝑆𝛽 con-
tained in a cell Ω𝛽 , and that we have
a query point located far from this
cell, separated by at least one cell
width (see inset). In this case, we say
that a query point iswell-separated
from cell Ω𝛽 . The outgoing expan-
sion is the expansion which repre-
sents the potential induced by this
source curve, at all well-separated
target points. The word outgoing reflects the fact that this expansion
is directed outwards from the source curve, and is valid for all target
points far away.
Letting 𝑐𝛽 be the point at the center of the cell Ω𝛽 , we observe

that the Green’s function kernel 𝐺 (𝑝, 𝑞) can be written as

𝐺 (𝑝, 𝑞) = − 1
2𝜋

log(𝑞 − 𝑝) (72)

= − 1
2𝜋
[log(𝑞 − 𝑐𝛽 ) + log(1 −

𝑝 − 𝑐𝛽
𝑞 − 𝑐𝛽

)] . (73)
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Using the Taylor series expansion for log,

log(1 − 𝑧) = −
∞∑︁
𝑘=1

𝑧𝑘

𝑘
for |𝑧 | < 1, (74)

we see that

𝐺 (𝑝, 𝑞) = − 1
2𝜋
[log(𝑞 − 𝑐𝛽 ) −

∞∑︁
𝑘=1

1
𝑘

(𝑝 − 𝑐𝛽
𝑞 − 𝑐𝛽

)𝑘 ] . (75)

Since 𝑝 is in Ω𝛽 , and 𝑞 is at least one cell width away, it’s not
difficult to show that that |𝑝 − 𝑐𝛽 |/|𝑞 − 𝑐𝛽 | ≤

√
2/3 < 1. Therefore,

the terms in the infinite sum above decay exponentially fast at the
rate (

√
2/3)𝑘 . This means that we can truncate the series to only 𝐾

terms, where 𝐾 is independent of the source curve 𝑆𝛽 and the query
point 𝑞, and depends only on the desired accuracy.

Applying this observation to the Green’s function kernel, we have

𝐺 (𝑝, 𝑞) = 1
2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 )𝐼𝑘 (𝑝 − 𝑐𝛽 ), (76)

where

𝐼𝑘 (𝑝 − 𝑐𝛽 ) =
(𝑝 − 𝑐𝛽 )𝑘

𝑘!
for 𝑘 ≥ 0, (77)

and

𝑂𝑘 (𝑞−𝑐𝛽 ) =
(𝑘 − 1)!
(𝑞 − 𝑐𝛽 )𝑘

for 𝑘 ≥ 1 and 𝑂0 (𝑞−𝑐𝛽 ) = − log(𝑞−𝑐𝛽 ) .

(78)
Thus, to evaluate the potential 𝑢𝑞 created by the density 𝜎 on the
curve 𝑆𝛽 ,

𝑢𝑞 =

∫
𝑆𝛽

𝐺 (𝑝, 𝑞)𝜎 (𝑝)𝑑𝑆 (𝑝),︸                       ︷︷                       ︸
target-from-source

(79)

all that is needed are the coefficients �̂�𝛽 ,

�̂�
𝛽

𝑘
=

∫
𝑆𝛽

𝐼𝑘 (𝑝 − 𝑐𝛽 )𝜎 (𝑝)𝑑𝑆 (𝑝),︸                           ︷︷                           ︸
outgoing-from-source

(80)

for 𝑘 = 0, 1, . . . , 𝐾 , from which the potential 𝑢𝑞 is evaluted by the
formula

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 )�̂�
𝛽

𝑘
.︸                       ︷︷                       ︸

target-from-outgoing

(81)

Suppose that the integrals in the target-from-source and outgoing-
from-source formulas require𝑀 degrees of freedom to evaluate. To
create the outgoing expansion, we expend 𝐾𝑀 = O(𝑀) operations
to evaluate the outgoing-from-source formulas. If we then evaluate
the potential at 𝑁 well-separated target points 𝑞 using the target-
from-outgoing formula, the cost will be only 𝐾𝑁 = O(𝑁 ). This is
much faster than evaluating the potential directly using the target-
from-source formula, since that would require𝑀𝑁 operations.

p

q

target-from-incoming

incoming-from-source

Ωα

cα

E.1.2 Incoming expansion. There is
another alternative way of acceler-
ating the evaluation of the potential
induced by an integral of a Green’s
function over a source curve. Sup-
pose that we have a query point 𝑞
contained in a cell Ω𝛼 , and that there
is a source curve 𝑆 that is separated
from Ω𝛼 by at least on cell width (see
inset). We can construct an incom-
ing expansion on Ω𝛼 for the poten-
tial created by this source curve, which is directed inwards, in the
sense that it is valid only for target points 𝑞 inside Ω𝛼 .

We can express the Green’s function kernel as:

𝐺 (𝑝, 𝑞) = 1
2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑝 − 𝑐𝛼 )𝐼𝑘 (𝑞 − 𝑐𝛼 ), (82)

where 𝑞 is in Ω𝛼 and 𝑝 is at least one cell-width away. Thus, to
evaluate the potential 𝑢𝑞 generated by the density 𝜎 on the curve 𝑆
(see Eq. 79), all that is needed are the coefficients û𝛼 ,

û𝛼
𝑘
=

∫
𝑆

𝑂𝑘 (𝑝 − 𝑐𝛼 )𝜎 (𝑝)𝑑𝑆 (𝑝)︸                           ︷︷                           ︸
incoming-from-source

, (83)

for 𝑘 = 0, 1, . . . , 𝐾 , from which the potential 𝑢𝑞 is evaluated by the
formula

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑘=0

𝐼𝑘 (𝑞 − 𝑐𝛼 )û𝛼𝑘 .︸                     ︷︷                     ︸
target-from-incoming

(84)

Suppose, like before, that the integrals in the target-from-source and
incoming-from-source formulas require 𝑀 degrees of freedom to
evaluate. To create an incoming expansion, we expend 𝐾𝑀 = O(𝑀)
operations to evaluate the incoming-from-source formulas. If we then
evaluate the potential at𝑁 target points𝑞 inside Ω𝛼 using the target-
from-incoming formula, then the cost will be only𝐾𝑁 = O(𝑁 ). This
is much faster than evaluating the potential directly using the target-
from-source formula, since that would require𝑀𝑁 operations.

E.1.3 Incoming-from-Outgoing. Suppose now thatwe have𝑁 query
points contained in a cell Ω𝛼 with center 𝑐𝛼 , and that there are𝑚
cells containing source curves, all well-separated from the cell Ω𝛼 .
If we construct outgoing-from-source expansions for each source
cell, then the cost of evaluating the potential using the target-from-
outgoing expansions will be𝑚𝐾 for each query point 𝑞 in Ω𝛼 , for
a total evaluation cost of 𝑁𝑚𝐾 = O(𝑁𝑚). However, if we could
construct a single incoming expansion on Ω𝛼 from all 𝑚 outgo-
ing expansions, then the cost of evaluating the potential using the
target-from-incoming expansion would be only 𝐾 for each query
point 𝑞 in Ω𝛼 , for a total evaluation cost of 𝑁𝐾 = O(𝑁 ). We can
construct an incoming expansion from an outgoing expansion, as
follows.
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Suppose that �̂�𝛽 is an outgoing expansion for the cell Ω𝛽 , where
Ω𝛽 is well-separated from Ω𝛼 . Recall the target-from-outgoing for-
mula

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 )�̂�
𝛽

𝑘

=
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 [(𝑞 − 𝑐𝛼 ) + (𝑐𝛼 − 𝑐𝛽 )]�̂�
𝛽

𝑘
,

(85)

where 𝑢𝑞 is the potential at the query point 𝑞 in Ω𝛼 . If there are
two terms inside the 𝑂𝑘 function, we can separate them using the
formula

𝑂𝑘 (𝑧1 + 𝑧2) =
𝐾∑︁
𝑙=0
(−1)𝑙𝑂𝑘+𝑙 (𝑧1)𝐼𝑙 (𝑧2). (86)

Applying Eq. 86 and exchanging the order of summation, we have

𝑢𝑞 =

𝐾∑︁
𝑘=0

𝐼𝑘 (𝑞 − 𝑐𝛼 )û𝛼𝑘 , (87)

where

û𝛼
𝑙
= (−1)𝑙

𝐾∑︁
𝑘=0

𝑂𝑙+𝑘 (𝑐𝛼 − 𝑐𝛽 )�̂�
𝛽

𝑘
.︸                              ︷︷                              ︸

incoming-from-outgoing

(88)

Thus, we can turn an outgoing expansion into an incoming expansion
with𝐾2 operations. The cost of turning all outgoing expansions into
incoming expansions in the previous example is thus 𝐾2𝑚 = O(𝑚).
Recalling that the cost of evaluating the incoming expansion is
O(𝑁 ), we have a total cost of O(𝑚 +𝑁 ), which is much better than
the O(𝑁𝑚) cost of evaluating all of the outgoing expansions naively.

p q

outgoing-from-source target-from-incoming

incoming-from-outgoingcβ

Ωβ Ωα

cα

E.2 A Single-level Method
Suppose that the computational domain contains a collection of
diffusion curves, and that all of their integrals can be discretized
using a total of 𝑀 degrees of freedom. Suppose further that we
would like to evaluate the potential induced by these curves at 𝑁
points. Suppose finally that the computational domain containing
all curves and evaluation points is divided into𝑚 boxes or cells. The
three expansions described in the previous section can be used to
accelerate the evaluation of the potential.
First, we define the following relations betweens cells in our

computational domain.

The neighbor list Lnei
𝜏 of the cell Ω𝜏 (dark

blue cell inset) is the set of all boxes that di-
rectly touch Ω𝜏 (light blue cells inset).
The well-separated list Lsep

𝜏 of the cell Ω𝜏
is the set of all boxes that do not touch Ω𝜏
(orange cells inset).
The algorithm proceeds as follows. An outgoing expansion is

constructed for every box using the outgoing-from-source formula
Eq. 80. Next, for each box Ω𝜏 , all outgoing expansions in the well-
separated list Lsep

𝜏 are turned into incoming expansions using the
incoming-from-outgoing formula Eq. 88. Finally, for each box Ω𝜏 ,
all incoming expansions are evaluated at the target points using
the target-from-incoming formula Eq. 84, and then added to the
potentials produced by all sources in the neighbor list Lnei

𝜏 using the
target-from-source formula Eq. 79. If𝑚 is chosen to be𝑚 = (𝑁𝑀)

1
3 ,

then we show in Appendix F that the overall cost is O((𝑁𝑀)
2
3 ),

which is substantially better than the O(𝑁𝑀) cost of computing
the potential at all 𝑁 points naively.

E.3 Moving Between Levels in the Fast Multipole Method
The single-level method described in the previous section can be
further improved by defining a multi-level hierarchy of boxes on
the computational domain, and taking advantage of the fact that
the number of terms 𝐾 in the incoming and outgoing expansions
stays constant across levels in this hierarchy. The resulting method
is called the Fast Multipole Method (FMM).
The primary geometric data structure used by the FMM is the

quadtree, which is constructed recursively by starting from a single
cell containing the whole domain, and splitting each cell into 4 equal-
sized smaller cells until each cell contains a small number of degrees
of freedom, or the algorithm reaches a prescribed maximum depth.

E.3.1 Relations between Cells. To describe the multi-level scheme,
we must first introduce several additional relations between cells in
the hierarchy, besides the neighbor list Lnei

𝜏 and well-separated list
Lsep
𝜏 of the box Ω𝜏 , introduced in the previous section.

The parent of a cell Ω𝜏 is the cell on the next coarsest level that
contains Ω𝜏 .
The child list of a cell Ω𝜏 is the set Lchild

𝜏 containing the 4 cells
whose parent is Ω𝜏 .
The leaf cells are the cells that don’t have any children.
The interaction list of a cell Ω𝜏 is the set Lint

𝜏 containing all
cells Ω𝜎 such that: 1) Ω𝜏 and Ω𝜎 are on the same level and well-
separated to each other, 2) the parents of Ω𝜏 and Ω𝜎 is not well-
separated

Note that the interaction list is a subset of the well-separated list
defined in the previous section, since two boxes on the same level
cannot touch without their parents also touching.

To proceed, we need a way of moving information between levels
in the multi-level hierarchy, in the form of outgoing and incoming
expansions. The formulas relating expansions between different
levels of the quadtree are also called translation operators.
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cβ'

cβ

Ωβ'

Ωβ

E.3.2 Outgoing-from-Outgoing. Consider
a parent cell Ω𝛽 ′ containing 4 child cells.
Suppose that Ω𝛽 is a child of Ω𝛽 ′ , and that
we have already computed the outgoing
expansion �̂�𝛽 on Ω𝛽 . Then, we can trans-
fer the outgoing expansions from the child
to the parent, as follows. First, recall the
target-from-outgoing formula

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 )�̂�
𝛽

𝑘

=
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 [(𝑞 − 𝑐𝛽 ′ ) + (𝑐𝛽 ′ − 𝑐𝛽 )]�̂�
𝛽

𝑘
.

(89)

Applying Eq. 86 and exchanging the order of summation, we have

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 ′ )�̂�
𝛽 ′

𝑘
(90)

where

�̂�
𝛽 ′

𝑘
=

𝑘∑︁
𝑙=0

𝐼𝑘−𝑙 (𝑐𝛽 − 𝑐𝛽 ′ )�̂�
𝛽

𝑙
.︸                      ︷︷                      ︸

outgoing-from-outgoing

(91)

This outgoing-from-outgoing formula transfers an outgoing expan-
sion from the child cell Ω𝛽 to the parent cell Ω𝛽 ′

Ω

αΩ

α'

c

α'c

α

E.3.3 Incoming-from-Incoming. Likewise,
an incoming expansion can be transferred
from a parent cell to a child cell. Suppose
that Ω𝛼 is a child of Ω𝛼 ′ , and that we have
already computed the incoming expansion
of �̂�𝛼

′
of Ω𝛼 ′ . We can transfer the incom-

ing expansion from the parent to the child,
as follows. Recall the target-from-incoming
formula

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑙=0

𝐼𝑙 (𝑞 − 𝑐𝛼 ′ )�̂�𝛼
′

𝑙

=
1

2𝜋

𝐾∑︁
𝑙=0

𝐼𝑙 [(𝑞 − 𝑐𝛼 ) + (𝑐𝛼 − 𝑐𝛼 ′ )]�̂�𝛼
′

𝑙
.

(92)

Similarly to Eq. 86, when there are two terms inside the 𝐼𝑙 function,
we can separate them:

𝐼𝑙 (𝑧1 + 𝑧2) =
𝑙∑︁
𝑘=0

𝐼𝑙−𝑘 (𝑧1)𝐼𝑘 (𝑧2). (93)

Applying Eq. 93, we obtain the following equation:

𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑙=0

𝐼𝑙 (𝑞 − 𝑐𝛼 )�̂�𝛼𝑙 , (94)

where,

�̂�𝛼
𝑙
=

𝐾∑︁
𝑘=𝑙

𝐼𝑘−𝑙 (𝑐𝛼 − 𝑐𝛼 ′ )�̂�𝛼
′

𝑘︸                      ︷︷                      ︸
incoming-from-incoming

. (95)

This incoming-from-incoming formula transfers an incoming expan-
sion from the parent cell Ω𝛼 ′ to its child cell Ω𝛼 .

E.4 The Fast Multipole Method on a UniformQuadtree
A uniform quadtree is a quadtree in which all leaf cells occur at the
same level of the tree. On a uniform quadtree, the Fast Multipole
Method proceeds as follows. Suppose that the computational domain
contains a collection of diffusion curves which can be discretized
using𝑀 degrees of freedom. Suppose further that we would like to
evaluate the potential induced by these curves at 𝑁 points. Suppose
finally that we construct our quadtree by subdividing until fewer
than𝑏 degrees of freedom are contained in each leaf box. To proceed,
first, all outgoing expansions are formed on all of the leaf cells on
the lowest level in the hierarchy using the outgoing-from-source
formula Eq. 80. Then, outgoing expansions are formed on coarser
grids, going from finest to coarsest, by merging outgoing expansions
using the outgoing-from-outgoing formula Eq. 91.

Once all outgoing expansions on all levels have been constructed,
incoming expansions are formed, going from the coarsest grid to
the finest. In particular, incoming expansions are first formed on all
cells on the coarsest grid by applying the incoming-from-outgoing
formula Eq. 88 to all outgoing expansions in the well-separated list
Lsep
𝜏 of each cell Ω𝜏 . Then, on each successive level, the incom-

ing expansion of each cell Ω𝜏 is formed by first transferring the
incoming expansion from the parent cell Ω𝜏 ′ using the incoming-
from-incoming formula Eq. 95, and then by turning all outgoing
expansions in the interaction list Lint

𝜏 into incoming expansions,
using the incoming-from-outgoing formula Eq. 88.
Finally, for each cell Ω𝜏 , the incoming expansions are evaluated

at the target points using the target-from-incoming formula Eq. 84,
and then these values are added to the potentials from the sources
in the neighbor list Lnei

𝜏 , which are evaluated directly using the
target-from-source formula Eq. 79.
In Appendix G, we show that if we choose 𝑏 = 𝐾 , then the total

cost is O(𝐾𝑀 + 𝐾𝑁 ), so it is linear in both the number of degrees
of freedom in the sources𝑀 and the number of targets 𝑁 .

E.5 Extension to a Non-uniformQuadtree
If we allow leaf cells to occur on different levels of the quadtree,
then the quadtree is called non-uniform. For such a quadtree, the
method described in Section E.4 can fail, since there may be cells
which end up unaccounted for.

E.5.1 Relations between Cells. We will need to introduce two more
relations between cells, in addition to the ones introduced already
in Section E.2 and E.3.1.
The smaller separated list Lsmall

𝛼 of the leaf cell Ω𝛼 is the set of
cells Ω𝛽 that are smaller than the cell Ω𝛼 , such that Ω𝛼 is in the
well-separated list Lsep

𝛽
of Ω𝛽 , and Ω𝛼 is not in the well-separated

list Lsep
𝛽 ′

of the parent cell Ω𝛽 ′ of Ω𝛽 (see Fig. 22 (d)).

The bigger separated list Lbig
𝛼 is the dual of the smaller separated

list, in the sense that a cell Ω𝛽 is in Lbig
𝛼 if and only if Ω𝛼 is in

Lsmall
𝛽

. It is not too hard to show that the bigger separated list Lbig
𝛼

of the cell Ω𝛼 is the set of leaf cells Ω𝛽 that are larger than the cell
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Ω𝛼 , such that that Ω𝛽 is in the well-separated list Lsep
𝛼 of Ω𝛼 , and

Ω𝛽 is not in the well-separated list Lsep
𝛼 ′ of the parent cell Ω𝛼 ′ of

Ω𝛼 (see Fig. 22 (e)).

In the FMM literature, the lists Lsmall
𝜏 and Lbig

𝜏 are sometimes
called list 3 and list 4, and denoted by L(3)

𝜏 and L(4)
𝜏 , respectively

[Martinsson 2019].
It is not difficult to show that the interactions between any two

leaf cells on a non-uniform quadtree are accounted for by the
outgoing-from-source to incoming-from-outgoing to target-from-incoming
calculation, if and only if those two leaf cells are in each other’s
separated lists (see Fig. 21). If two leaf cells Ω𝛼 and Ω𝛽 are not mu-
tually well-separated, then one of the following three cases must
occur: Ω𝛼 and Ω𝛽 are touching; Ω𝛽 (or one of its parent cells on a
sufficiently high level) is in the smaller separated list of Ω𝛼 ; or Ω𝛽
is in the bigger separated list of Ω𝛼 (or one of its parent cells on a
sufficiently high level).
When two cells are not mutually well-separated and are not

touching, it is necessary to skip part of incoming-from-outgoing and
directly proceed target-from-outgoing or incoming-from-source

incoming-from-source
outgoing-from-source

target-from-outgoing

cβ
Ωβ

Ωα

target-from-incoming

p

Ωβq
Ωα

cα

E.5.2 Target-from-Outgoing. Suppose that Ω𝛽 is in the smaller
separated list Lsmall

𝛼 of the leaf cell Ω𝛼 . In this case, we cannot use
the incoming expansion on Ω𝛽 , but the outgoing expansion on Ω𝛼
is still valid. Hence, we use the target-from-outgoing formula Eq. 81,
skipping the incoming expansion step (see above Figure and Fig. 21).

E.5.3 Incoming-from-Source. Suppose that the leaf cell Ω𝛽 is in
the bigger separated list Lbig

𝛼 of Ω𝛼 . In this case, we cannot use the
outgoing expansion on Ω𝛽 , but the incoming expansion on Ω𝛼 is
still valid. Hence, we use the incoming-from-source formula Eq. 83,
skipping the outgoing expansion step (see above Figure and Fig. 21).

E.6 Interaction between Cells
Through Sec. E.1 to Sec. E.5, we have established various routes of
integration depending on the cell relations. In summary, there are 4
paths of integration between source and target.

(1) target-from-source (direct integration)

(2) outgoing-from-source →incoming-from-outgoing
→target-from-outgoing

(3) outgoing-from-source →target-from-outgoing

(4) incoming-from-source →target-from-incoming

Fig. 21 visualizes each path of integration between cells.

target-from-source (direct)

p q

outgoing-from-source

incoming-from-source

target-from-outgoing

incoming-from-outgoing

outgoing-from-outgoing

source

outgoing expansion incoming expansion

target

target-from-incoming

cβ

Ωβ Ωα

cα

incoming-from-incoming

Fig. 21. Diagram describing the flow of computations in the FMMby various
routes.

E.7 The Fast Multipole Method
Suppose that the computational domain contains a collection of dif-
fusion curves which can be discretized using𝑀 degrees of freedom.
Suppose further that we would like to evaluate the potential induced
by these curves at 𝑁 points. Suppose finally that we construct our
quadtree by subdividing until fewer than 𝑏 degrees of freedom are
contained in each leaf box, allowing leaf boxes of different sizes.
The Fast Multipole Method, on a nonuniform quadtree, proceeds as
follows. First, all outgoing expansions are formed on all of the leaf
cells on the lowest level in the hierarchy using the outgoing-from-
source formula Eq. 80. Next, the outgoing expansions are formed on
coarser grids, going from finest to coarsest, by merging outgoing
expansions using the outgoing-from-outgoing formula Eq. 91.

Once all outgoing expansions on all levels are formed, incoming
expansions are constructed, going from the coarsest grid to the
finest. In particular, incoming expansions are first formed on all
cells on the coarsest grid by applying the incoming-from-outgoing
formula Eq. 88 to all outgoing expansions in the well-separated list
Lsep
𝛼 of each cell Ω𝛼 . Then, on each successive level, the incoming

expansion of each cell Ω𝛼 is formed from the incoming expansion
of the parent cell Ω𝛼 ′ , by transferring the expansion to Ω𝛼 using the
incoming-from-incoming formula Eq. 95. These incoming expansions
are added to the incoming expansions constructed from all of the
cells in the interaction list Lint

𝛼 using the incoming-from-outgoing
formula Eq. 88, and from all cells in the bigger separated list Lbig

𝛼

using the incoming-from-source formula Eq. 83.
For each leaf cell Ω𝛼 , the potential is evaluated at the target

points using the target-from-incoming formula Eq. 84. This potential
is then added to the potential produced by every cell Ω𝛽 is the
smaller separated list Lsmall

𝛼 using the target-from-outgoing formula
Eq. 81. Finally, these values are added to the potentials from the
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source cells in the neighbor list Lnei
𝛼 , which are evaluated directly

using the target-from-source formula Eq. 79.
The overall algorithm in pseudo code is described in Table 8 and

the cell relations with an example set of input curves is visualized
in Fig. 22. Recalling that the incoming and outgoing expansions
contain only𝐾 terms, if we set𝑏 = 𝐾 , then we have, by an essentially
identical argument to the one provided in Appendix G, that the total
cost is O(𝐾𝑀 + 𝐾𝑁 ), so it is linear in both the number of degrees
of freedom in the source curves𝑀 , and the number of targets 𝑁 .

Algorithm 8 Fast Multipole Method
Inputs: source curves 𝑆 , density values 𝜎 , target points 𝑞
Outputs: target values 𝑢𝑞

1: loop over every leaf cell Ω𝛽 :
2: �̂�𝛽 = outgoing-from-source(𝑆𝛽 , 𝜎)
3: upward (from finest to coarsest level):
4: loop over every cell Ω𝛽 ′ in level:
5: Initialize �̂�𝛽

′
= 0

6: loop over every child cell Ω𝛽 ∈ Lchild
𝛽 ′

:

7: �̂�𝛽
′
= �̂�𝛽

′ + outgoing-from-outgoing(�̂�𝛽 )
8: downward (from coarsest to finest level):
9: loop over every cell Ω𝛼 in level:
10: Initialize �̂�𝛼 = 0
11: loop over every cell Ω𝛽 in interaction list Lint

𝛼 (or sep-
arated list Lsep

𝛼 when at the top level):
12: �̂�𝛼 = �̂�𝛼 + incoming-from-outgoing(�̂�𝛽 )
13: loop over every cell Ω𝛽 in bigger separated list Lbig

𝛼 :
14: �̂�𝛼 = �̂�𝛼 + incoming-from-source(𝑆𝛽 , 𝜎)
15: from the parent cell Ω𝛼 ′ , when it exists:
16: �̂�𝛼 = �̂�𝛼 + incoming-from-incoming(�̂�𝛼 ′ )
17: loop over every target 𝑞 in every leaf cell Ω𝛼 :
18: Initialize 𝑢𝑞 = 0
19: from own cell:
20: 𝑢𝑞 = 𝑢𝑞 + target-from-incoming(�̂�𝛼 )
21: loop over every cell Ω𝛽 in smaller separated list Lsmall

𝛼 :
22: 𝑢𝑞 = 𝑢𝑞 + target-from-outgoing(�̂�𝛽 )
23: loop over every leaf cell Ω𝛽 in neighbor list Lnei

𝛼 :
24: 𝑢𝑞 = 𝑢𝑞 + target-from-source(𝑆𝛽 , 𝜎)

The final FMM Algorithm 8 is thus an algorithm for evaluating
the single-layer potential integral operator Eq. 5 efficiently, in linear
time in both the number of degress of freedom in the sources, and in
the number of targets. We denote the evaluation of the single-layer
integral operator using the FMM by:

𝑢𝑞 = FMM𝐺 (𝑆, 𝜎, 𝑞), (96)

where 𝑆 is a collection of source curves, 𝜎 is a density, and 𝑞 is a
collection of target points.

(a) target cell (b) incoming-from-outgoing
on interaction list of parent

(c) incoming-from-outgoing
on interaction list

(d) target-from-outgoing
on smaller separated list

(e) incoming-from-source
on bigger serpated list

(f) direct integration
on adjacency list 

Fig. 22. If a target point is contained in the blue cell (a), assuming the
outgoing expansions are computed on every cell, incoming-from-outgoing
expansions are computed on its interaction list from coarsest to finest (b),
and transferred to its children. At its finest level, potentials are computed by
summing over incoming-from-outgoing on its interaction list (c), incoming-
from-incoming on its parent, target-from-outgoing on its smaller separated list
(d), incoming-from-source on its bigger separated list (e), target-from-incoming
from its own cell, and target-from-source (direct integration) on its adjacency
list (f).

E.8 Integration of Outgoing Expansion of Green’s
function

Here, we describe the analytic integration of Eq. 80. Suppose the
we have a line element starting at point 𝑝𝑎 and ending at 𝑝𝑏 . The
integral can be expressed as:

�̂�
𝛽

𝑘
= 𝜎

∫ 𝑝𝑏

𝑝𝑎

𝐼𝑘 (𝑝 − 𝑐𝛽 )𝑑𝑆 (𝑝) = 𝜎�̄� [𝐼𝑘+1 (𝑝𝑏 − 𝑐𝛽 ) − 𝐼𝑘+1 (𝑝𝑎 − 𝑐𝛽 )],

(97)
where𝑤 is the complex tangential vector along the boundary 𝑝𝑎𝑝𝑏 ,
and �̄� its complex conjugate.

E.9 Integration of Outgoing Expansion of Normal
Derivative of Green’s function

Similarly, we describe the analytic integration of the outgoing ex-
pansion of the normal derivative of the Green’s function:

𝝁
𝛽

𝑘
= `𝑛

∫ 𝑝𝑏

𝑝𝑎

𝐼𝑘−1 (𝑝 −𝑐𝛽 )𝑑𝑆 (𝑝) = `𝑛�̄� [𝐼𝑘 (𝑝𝑏 −𝑐𝛽 ) − 𝐼𝑘 (𝑝𝑎 −𝑐𝛽 )] .

(98)

E.10 Integration of Incoming Expansion of Green’s
function

Here we describe the analytic integration of Eq. 83:

û𝛼
𝑘
= 𝜎

∫ 𝑝𝑏

𝑝𝑎

𝑂𝑘 (𝑝−𝑐𝛼 )𝑑𝑆 (𝑝) = 𝜎�̄� [𝑂𝑘−1 (𝑝𝑎−𝑐𝛼 )−𝑂𝑘−1 (𝑝𝑏−𝑐𝛼 )] .

(99)
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E.11 Integration of Incoming Expansion of Normal
Derivative of Green’s function

Similarly, we describe analytic integration of the incoming expan-
sion of the normal derivative of the Green’s function:

v̂𝛼
𝑘
= `𝑛

∫ 𝑝𝑏

𝑝𝑎

𝑂𝑘+1 (𝑝−𝑐𝛼 )𝑑𝑆 (𝑝) = `𝑛�̄� [𝑂𝑘 (𝑝𝑏−𝑐𝛼 )−𝑂𝑘 (𝑝𝑎−𝑐𝛼 )] .

(100)

Appendix F COST OF THE SINGLE-LEVEL METHOD
Here, we estimate the computational cost of the single-level method
described in Section E.2. The total cost of computing the potentials
can be estimated as follows, recalling that all incoming and outgoing
expansions contain only 𝐾 terms:

• The cost of constructing all outgoing expansions is O(𝑀𝐾),
since each degree of freedom in the discretization of the diffu-
sion curves contributes to 𝐾 outgoing expansion coefficients
of the box containing that degree of freedom.
• The cost of computing all incoming expansions from all outgo-
ing expansions is O(𝐾2𝑚2), since each incoming expansion
coefficient of each box receives a contribution from each of
the outgoing expansion coefficients of each well-separated
box.
• The cost of evaluating the potential at all 𝑁 points using
the incoming expansions is O(𝐾𝑁 + 𝑁𝑀/𝑚), since every
point receives a contribution from 𝐾 incoming expansion
coefficients of the box containing that point, and also receives
a contribution from every degree of freedom in the O(1)
boxes in the neighbor list, each of which contains O(𝑀/𝑚)
degrees of freedom.

The total cost is thus O(𝑀𝐾 + 𝐾2𝑚2 + 𝐾𝑁 + 𝑁𝑀/𝑚). It is not too
hard to see that this cost is minimized when the number of boxes𝑚
is set to𝑚 = (𝑁𝑀)1/3, which gives an overall cost of O((𝑁𝑀)2/3).
This can be substantially better than the O(𝑁𝑀) cost of computing
the potential at all 𝑁 points naively.

Appendix G COST OF THE FMM ON A UNIFORM
QUADTREE

Here, we estimate the computational cost of the FMM on a uni-
form quadtree described in Section E.4. The cost can be estimated
as follows, once again recalling that all incoming and outgoing
expansions contain only 𝐾 terms.

• The cost of constructing all outgoing expansion from the
sources in the leaf boxes is O(𝐾𝑀), since each source point
contributes to 𝐾 outgoing expansion coefficents in the con-
taining cell.
• The cost of transferring outgoing expansion from the child
boxes to their parents is O(𝐾2𝑀/𝑏 (1 + 1/4 + 1/16 + · · · )) =
O(𝐾2𝑀/𝑏), since there are 𝑀/𝑏 boxes at the lowest level,
𝑀/𝑏 ·1/4 at the next level, and so on. The exact same reasoning
shows that the cost of transferring the outgoing exapnsions
to incoming expansions is also O(𝐾2𝑀/𝑏), as is the cost of
transferring the incoming expansions from parent boxes to
child boxes.

• The cost of evaluating the potential at all 𝑁 target points
using the incoming expansions is O(𝐾𝑁 + 𝑁𝑏), since every
point receievs a contribution from 𝐾 incoming expansion co-
efficients of the cell containing that point, and also receives a
contribution from every degree of freedom in the O(1) boxes
in the neighbor list, each of which contains O(𝑏) degrees of
freedom.

The total cost is thus O(𝐾𝑀 + 𝐾2𝑀/𝑏 + 𝐾𝑁 + 𝑁𝑏). By choosing
𝑏 = 𝐾 , we have that the total cost is O(𝐾𝑀 + 𝐾𝑁 ), so it is linear in
both the number of degrees of freedom in the sources 𝑀 and the
number of targets 𝑁 .

Appendix H PRECOMPUTATIONS FOR THE FMM
When the Fast Multipole Method is used to evaluate the potential
produced by several different density functions 𝜎 over a single set of
discretized curves 𝑆 and target points 𝑞, a large number of quantities
that are independent of the density function can be precomputed. In
particular, many terms appearing in the various operators used by
the FMM can be precomputed. Below, we describe the precise quan-
tities contained in the precomputatons P𝐺 and P𝐹 for the single-
and double-layer respectively (omitting some of the quantities asso-
ciated only with the FMM for the double-layer):

û𝛼
𝑘
=

∫
𝑆

𝑂𝑘 (𝑝 − 𝑐𝛼 )𝜎 (𝑝)𝑑𝑆 (𝑝)︸                           ︷︷                           ︸
incoming-from-source

=

𝑀𝛼∑︁
𝑖=1

𝜎𝑖

∫
(𝑆𝛼 )𝑖

𝑂𝑘 (𝑝 − 𝑐𝛼 )𝑑𝑆 (𝑝)︸                         ︷︷                         ︸
∈P𝐺

,
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�̂�
𝛽

𝑘
=

∫
𝑆𝛽

𝐼𝑘 (𝑝 − 𝑐𝛽 )𝜎 (𝑝)𝑑𝑆 (𝑝)︸                           ︷︷                           ︸
outgoing-from-source

=

𝑀𝛼∑︁
𝑖=1

𝜎𝑖

∫
(𝑆𝛽 )𝑖

𝐼𝑘 (𝑝 − 𝑐𝛽 )𝑑𝑆 (𝑝)︸                        ︷︷                        ︸
∈P𝐺

,

(102)

�̂�
𝛽 ′

𝑘
=

𝑘∑︁
𝑙=0

𝐼𝑘−𝑙 (𝑐𝛽 − 𝑐𝛽 ′ )�̂�
𝛽

𝑙︸                     ︷︷                     ︸
outgoing-from-outgoing

=

𝑘∑︁
𝑙=0

𝐼𝑘−𝑙 (𝑐𝛽 − 𝑐𝛽 ′ )︸            ︷︷            ︸
∈P𝐺 ,P𝐹

�̂�
𝛽

𝑙
, (103)

û𝛼
𝑙
= (−1)𝑙

𝐾∑︁
𝑘=0

𝑂𝑙+𝑘 (𝑐𝛼 − 𝑐𝛽 )�̂�
𝛽

𝑘︸                             ︷︷                             ︸
incoming-from-outgoing

= (−1)𝑙
𝐾∑︁
𝑘=0

𝑂𝑙+𝑘 (𝑐𝛼 − 𝑐𝛽 )︸           ︷︷           ︸
∈P𝐺 ,P𝐹

�̂�
𝛽

𝑘
,

(104)

�̂�𝛼
𝑙
=

𝐾∑︁
𝑘=𝑙

𝐼𝑘−𝑙 (𝑐𝛼 − 𝑐𝛼 ′ )�̂�
𝛼 ′

𝑘︸                      ︷︷                      ︸
incoming-from-incoming

=

𝐾∑︁
𝑘=𝑙

𝐼𝑘−𝑙 (𝑐𝛼 − 𝑐𝛼 ′ )︸            ︷︷            ︸
∈P𝐺 ,P𝐹

�̂�𝛼
′

𝑘
, (105)

𝑢𝑞 =

𝐾∑︁
𝑘=0

𝐼𝑘 (𝑞 − 𝑐𝛼 )û𝛼𝑘︸               ︷︷               ︸
target-from-incoming

=

𝐾∑︁
𝑘=0

𝐼𝑘 (𝑞 − 𝑐𝛼 )︸      ︷︷      ︸
∈P𝐺 ,P𝐹

û𝛼
𝑘
. (106)
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𝑢𝑞 =
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 )�̂�
𝛽

𝑘︸                      ︷︷                      ︸
target-from-outgoing

=
1

2𝜋

𝐾∑︁
𝑘=0

𝑂𝑘 (𝑞 − 𝑐𝛽 )︸       ︷︷       ︸
∈P𝐺 ,P𝐹

�̂�
𝛽

𝑘
. (107)

Appendix I PRE-PROCESSING OF DIFFUSION CURVES
We pre-process input curves to lessen the burden on our adaptive
subdivision algorithm. We split the curves that have intersections,
and also remove (redundant) overlapping curves.
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