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A. ZNCC Optimality Proof

Proposition 1 (ZNCC Decoding in presence of ambient light). If observation vectors and code vectors are related according

to:

oq = T[p, q].cp + aq + eq (1)

Then

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= argmax
1≤p≤N

ZNCC(oq, cp) (2)

where ZNCC(oq, cp) is the zero-mean normalized cross-correlation of two vectors, and v is the variance of the variances of

the code vectors:

ZNCC(oq, cp) =
oq −mean(oq)

‖oq −mean(oq)‖
· cp −mean(cp)

‖cp −mean(cp)‖
, v = var({ var(c1), . . . , var(cN )}) (3)

Proof of Proposition 1.

Let us define Lp
q as the likelihood of observing oq given that pixel q’s true correspondence is projector pixel p:

Lp
q = Pr(oq | cp)

=

∫ X

0

∫ Y

0

Pr(oq | cp,T[p, q]=x, aq=y)Pr(x)Pr(y)dydx
(4)

Based on our assumption, discussed in Section 3 of the paper, T[p, q] and ambient probabilities, Pr(x) and Pr(y), correspond

to uniform distributions over [0, X ] and [0, Y ] respectively. Following the image formation model in Eq. (1), we can write

the likelihood as following:

Lp
q =

∫ X

0

∫ Y

0

Pr(eq = oq − xcp − y1)
1

XY
dydx (5)

We assumed the noise vector eq contains i.i.d Gaussian distributions with standard deviation σ (refer to Section 3 of the main

paper); therefore the likelihood can be further expanded as:

Lp
q =

1

XY

∫ X

0

∫ Y

0

(
√
2πσ)

−K
exp

(
( −1

2σ2

)
(oq − xcp − y1)

t
(oq − xcp − y1)

)

dydx (6)

Where ()
t

denotes the transpose operator. By denoting the constant terms with G, and expanding the expression inside the

exponential function, we have:

Lp
q = G

∫ X

0

∫ Y

0

exp

(

(
−1

2σ2
)(oq

t
oq − 2xoq

t
cp − 2yoq

t
1+ x2

cp
t
cp + 2xycp

t
1+Ky2)

)

dydx (7)



Before continuing the proof of Proposition 1, we first consider the special case of image formation model expressed in Eq. (1),

where the ambient contribution for every camera pixel is zero.

Lemma 1 (NCC Decoding in absence of ambient light). If observation vectors and code vectors are related according to:

oq = T[p, q].cp + eq (8)

Then

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= argmax
1≤p≤N

NCC(oq, cp) (9)

where NCC(oq, cp) denotes the normalized cross-correlation of two vectors and v is the variance of code vectors’ norms:

NCC(oq, cp) =
oq

‖oq‖
· cp

‖cp‖
, v = var({ ‖c1‖, . . . , ‖cN‖}) (10)

Proof of Lemma 1. The general expression for the likelihood described in Eq. (7) can be simplified into:

Lp
q = G

∫ X

0

exp

(

(
−1

2σ2
)(oq

t
oq + x2

cp
t
cp − 2xoq

t
cp)

)

dx (11)

By taking the constant term oq
t
oq out of the integral and completing the square inside the exponential function, we have:

Lp
q = G exp

(−‖oq‖2
2σ2

)

exp

(
(oq

t
cp)

2

2σ2‖cp‖2
)∫ X

0

exp

(

−
(x‖cp‖√

2σ2
− oq

t
cp√

2σ2‖cp‖
)
2)

dx (12)

The integral is related to the error function: erf(x) = 1√
π

∫ x

−x
exp(−t2)dt, and does not have closed-form expression. Using

this function, the integral in Eq. (12) can be written as:

Lp
q =

( 1

X

)(√
2πσ

)−K
exp

(−‖oq‖2
2σ2

)

exp

(
(oq

t
cp)

2

2σ2‖cp‖2
)

︸ ︷︷ ︸

A(σ)

(
√
πσ√

2‖cp‖
)

︸ ︷︷ ︸

B(σ)

[

erf

(
X‖cp‖2 − oq

t
cp√

2σ‖cp‖

)

︸ ︷︷ ︸

C(σ)

− erf

( −oq
t
cp√

2σ‖cp‖

)

︸ ︷︷ ︸

D(σ)

]

(13)

The error function erf(x) goes to 1 for large positive x, and goes to −1 for large negative x (Figure 1). Therefore, when the

noise standard deviation σ, goes to zero, we have limσ→0 C(σ) = 1 and limσ→0 D(σ) = −1, and then we can conclude

limσ→0 C(σ)−D(σ) = 2. Furthermore, as the lengths of different code vectors get closer to each other, or strictly speaking

var({ ‖c1‖, . . . , ‖cN‖}) → 0, term B(σ) will be the same in the likelihood of different projector pixels. Therefore, the

likelihood in Eq. (13) will be dominated by term A(σ) and the ML solution is given by:

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= argmax
1≤p≤N

exp

(
(oq

t
cp)

2

2σ2
cp

2

)

= argmax
1≤p≤N

NCC(oq, cp) (14)

QED. �

Proof of Proposition 1 (Continued). By rearranging the general expression for likelihood in Eq. (7), we have:

Lp
q = G exp

(−‖oq‖2
2σ2

)∫ X

0

exp

(
( −1

2σ2

)
(−2xoq

t
cp+x2

cp
t
cp)

)[∫ Y

0

exp

(
( −1

2σ2

)
(−2yoq

t
1+ 2xycp

t
1+Ky2)

)

dy

]

︸ ︷︷ ︸

H

dx

(15)

Let us denote the inner integral inside the bracket by H . As in the proof of Lemma 1, we express H by completing the square
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Figure 1: Error function. erf(x) becomes 1 and −1 for large positive and large negative values respectively.

inside the exponential function, and simplify it as two error functions:

H = exp

(
(oq

t
1− xcp

t
1)

2

2Kσ2

)∫ Y

0

exp

(

−
(
√
Ky√
2σ

− oq
t
1− xcp

t
1√

2Kσ

)2
)

dy

= exp

(
(oq

t
1− xcp

t
1)

2

2Kσ2

)√
2σ√
K

√
π

2

[

erf

(
KY − (oq

t
1− xcp

t
1)√

2Kσ

)

− erf

(

− (oq
t
1− xcp

t
1)√

2Kσ

)] (16)

Using the same argument discussed in Lemma 1 for simplifying Eq. (13) , as σ goes to zero the difference between error

functions goes to 2. Therefore, we can substitute term H in Eq. (15) to compute the integral over x:

Lp
q =

σ→0
G exp

(−‖oq‖2
2σ2

)√
2πσ√
K

∫ X

0

exp

(
( −1

2σ2

)
(−2xoq

t
cp + x2

cp
t
cp −

(oq
t
1− xcp

t
1)

2

K
)

)

dx

=
σ→0

G exp

(−‖oq‖2
2σ2

)√
2πσ√
K

exp

(
(oq

t
1)2

2Kσ2

)

exp

((
oq

t
cp − (oq

t
1)(cp

t
1)

K

)2

2σ2
(
‖cp‖2 − (cpt1)2

K

)

)

∫ X

0

exp

(

−
(
x

√

‖cp‖2 − (cpt1)2

K√
2σ

− (oq
t
cp − (oq

t
1)(cp

t
1)

K
)

√
2σ

√

‖cp‖2 − (cp
t1)2

K

)
2)

dx

︸ ︷︷ ︸

I

(17)

By completing the square inside the exponential function in I , and expressing it as two error functions, we have:

I =
(
√
π

2

)(
√
2σ

√

‖cp‖2 − (cpt1)2

K

)
[

erf

(
X(‖cp‖2 − (cp

t
1)

2

K
)− (oq

t
cp − (oq

t
1)(cp

t
1)

K
)

√
2σ

√

‖cp‖2 − (cp
t1)2

K

)

−erf

(

− (oq
t
cp − (oq

t
1)(cp

t
1)

K
)

√
2σ

√

‖cp‖2 − (cp
t1)2

K

)]

(18)

As noise standard deviation σ goes to zero, the difference between error functions inside I goes to 2. Therefore, the likelihood



function will be:

Lp
q =

σ→0

( 1

XY

)
(
√
2πσ)

−K(
√
2πσ√
K

) (
√
2σ

√

‖cp‖2 − (cp
t1)2

K

)

︸ ︷︷ ︸

U(σ)

exp

(−‖oq‖2
2σ2

)

exp

(
(oq

t
1)2

2Kσ2

)

exp

((
oq

t
cp − (oq

t
1)(cp

t
1)

K

)2

2σ2
(
‖cp‖2 − (cp

t1)2

K

)

)

︸ ︷︷ ︸

V (σ)

(19)

To better understand Eq. (19), we will simplify two terms:

‖cp‖2 −
(cp

t
1)

2

K
=
(
cp −

(cp
t
1)

K
1
)
t
(
cp −

(cp
t
1)

K
1
)
= Kvar(cp) (20)

(
oq

t
cp − (oq

t
1)(cp

t
1)

K

)

√
(
‖cp‖2 − (cp

t1)2

K

)
=

(
oq − (oq

t
1)

K
1
)t(

cp − (cp
t
1)

K
1
)

√
(
cp − (cp

t1)
K

1
)t(

cp − (cp
t1)

K
1
)
= ‖oq −mean(oq)‖ · ZNCC(oq, cp) (21)

It is worth mentioning that
(cp

t
1)

K
1 represents a constant vector containing the mean value of cp, and

(
cp − (cp

t
1)

K
1
)

is the

average-subtracted code vector at pixel p.

Based on Eq. (20), as the variances of code vectors get closer to each other, or in other word var({ var(c1), . . . , var(cN )}) →
0, term U(σ) in the likelihood of different correspondences will be the same, and the projector pixel that maximizes term

V (σ), has maximum likelihood; and also based on Eq. (21), term V (σ) is a monotonic function of ZNCC(oq, cp). Thus, we

can conclude:

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= argmax
1≤p≤N

exp

(
(oq

t
cp − (oq

t
1)(cp

t
1)

K
)
2

2σ2(‖cp‖2 − (cp
t1)2

K
)

)

= argmax
1≤p≤N

ZNCC(oq, cp) (22)

QED. �

B. Incorporating Projector Defocus

B.1. The Defocus Blur Coefficients

We assume that the only source of blur is projector defocus, i.e., the camera’s aperture is small enough to ensure that scene

points are imaged blur-free on the camera’s image plane. In this case, the 3D scene point corresponding to projector pixel p
and camera pixel q will be illuminated by a defocused projection pattern. In the epipolar-only image formation model this

defocus occurs exclusively on the epipolar plane, i.e., blur can be expressed as a 1D blur kernel along the epipolar line.

Consider a projector lens with aperture A and focal length F that follows the thin-lens model. The blur radius at projector

pixel p is given by (Figure 2):

ρ = A
|f2 − f1|

f1
(23)

where f2 is the distance of the aperture from the projector’s image plane and f1 is the aperture’s distance from the plane that

brings into focus the scene point projecting to pixel p. According to the thin-lens model,

f1 =
d1F

d1 − F
(24)

where d1 is the depth of the scene point projecting to projector pixel p and camera pixel q.
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Figure 2: Thin-lens model of projector defocus.

We model the blur kernel as a 1D pillbox function whose radius is the radius of the blur circle:

K(x) =

{
1
2ρ if x ≤ ρ

0 otherwise.
(25)

Assuming for simplicity that ρ is measured in units of projector pixels and that it takes on discrete values, we obtain the

following expression for the coefficients b
pq
i in Eq. (7) of the paper:

b
pq
i =

{
1
2ρ if |i− p| ≤ ρ

0 otherwise.
(26)

B.2. Optimality of Defocused ZNCC Decoding.

Corollary 1 (Defocused ZNCC Decoder). If observation vectors and code vectors are related according to Eq. (7) in the

paper, then:

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= Decode(oq,CT
q) (27)

Proof. Using the same notation as ZNCC optimality proof, and following the image formation model in Eq. (7) of the paper,

likelihood Lp
q can be written as:

Lp
q =

∫ X

0

∫ Y

0

Pr(eq = oq − x
(

N∑

i=1

b
pq
i ci

)
− y1)

1

XY
dydx (28)

By denoting (
∑N

i=1 b
pq
i ci) with c̄pq , we can write:

Lp
q =

∫ X

0

∫ Y

0

Pr(eq = oq − xc̄pq − y1)
1

XY
dydx (29)
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Figure 3: Hyper-parameter tuning Validation error (on 500 fixed random samples) over iterations in optimization of a

sample code matrix of 4 patterns and 608 pixels with maximum frequency 16.

which has the same form as Eq. (5) in this supplemental document. Following exactly the same steps as proof for Proposition

1, we will have:

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= argmax
1≤p≤N

ZNCC(oq, c̄pq) (30)

Based on the definition of Tq in section 4 of the paper, c̄pq is the p’s column of CT
q . Therefore, based on the ZNCC

decoding definition in Eq. (11) of the paper, we can conclude:

lim
v→0
σ→0

(

argmax
1≤p≤N

Pr(oq | cp)
)

= Decode(oq,CT
q) (31)

QED. �

C. Optimization Hyper-parameters

Two hyper-parameters require tuning in our framework: (1) the multiplier µ in the softmax approximation of Eq. (17) in the

main paper, and (2) the mini-batch size for performing stochastic gradient descent. Figure 3 shows the effect of these two

parameters in optimizing a code matrix with 4 patterns and maximum frequency 16, without any geometry constraints.

As can be seen from Figure 3 (left), when the multiplier µ decreases, the softmax approximation of the objective function

is less accurate. As a result, the optimization does not lead to a good local minimum. On the other hand, increasing

the multiplier beyond 300 does not have any noticeable impact on minimizing the objective function. Thus, to avoid any

floating-point arithmetic issues and to have more stable gradients, we picked µ = 300 for all of our code optimizations.

To perform the gradient descent, in each iteration we draw random samples of T, E, and a, where each sample includes

all the valid camera pixels. It can be seen from Figure 3 (right) that increasing the sample size does not affect the attained

minimum of the objective function over the pre-drawn validation set. Therefore, to speed up the optimization process we

used 2-sample mini-batches for all our code optimizations.

To gain some intuition about why the mini-batch size does not affect the results, consider the following. Since in each

iteration we draw new samples of T, E, and a, we are essentially training on an infinite-sized dataset, which helps avoid

overfitting. As a result, even small mini-batch sizes can still converge to good local minima.

Together, the fast convergence rate of our optimization–less than 250 iterations–and the ability to use very small mini-batch

sizes for gradient computation, allow us to optimize code matrices at near-interactive rates.



D. Additional Experimental Results

All the results discussed below were obtained with the experimental system discussed in Section 6 of the main paper. The

setup is shown in Figure 7 (row 2, col 3) of the main paper. We performed three sets of experiments:

• Reconstructing the object shown in Figure 8 top row (“statue”) with many different optimized code matrices, and

comparing the depth maps to each other and to those obtained with MPS [1] and EPS [2] codes matrices. Here we

report results from a total of 58 individual 3D acquisition experiments (refer to the project web page [3] for an identical

suite of experiments with the object shown in Figure 1).

• Reconstructing cross-sections of an additional object that exhibit significant subsurface scattering. We used epipolar-

only imaging for this set of experiments, and compare the results from our optimized code matrices to those obtained

by MPS and EPS code matrices under epipolar-only imaging conditions. Here we report results from another 59

individual 3D acquisition experiments (see the project web page [3] for a similar set of experiments with an object

exhibiting inter-reflection).

• We also show additional quantitative comparisons that extend the results in Figure 7 of the main paper by taking

projector defocus into account.

D.1. Experimental Evaluation of Optimal Code Matrices

Figures 6-10 show reconstruction results for a large set of 3D acquisition experiments. Each experiment uses a different

code matrix, i.e., a different sequence of projection patterns. A single experiment consists of projecting a sequence of

patterns one by one onto the scene, capturing the resulting images, and using ZNCC decoding to establish correspondences

between camera pixels and projector pixels. In each case, we compare the results to those obtained by MPS and EPS codes,

respectively, and to a pattern sequence with more than 20× the number of patterns. The set of code matrices shown in

Figures 6-10 corresponds to a “walk” in the space of optimal codes, as in Figure 6 of the main paper.

Our choice of ZNCC decoding for all depth map calculations is justified on two grounds: (1) the goal of these experiments is

to assess the quality of the optimized codes themselves, not the decoding algorithm and (2) as shown in Figure 5 of the main

paper, ZNCC decoding yields comparable results to native decoders.

Acquiring “ground-truth” disparities To evaluate the reconstructed disparities both qualitatively and quantitatively, we

compare them to disparities computed by a completely different and much longer pattern sequence: 160 phase-shifted sinu-

soidal projection patterns (10 shifts of 16 sinusoidal patterns, with frequencies 1 through 16). We decode the 160 captured

images by ZNCC decoding to assign a depth to each pixel. We manually segmented this ground-truth depth map to create a

binary mask that indicates which pixels actually lie on the object. All these pixels were marked as having a valid ground-truth

depth; the remaining pixels correspond to pixels that were on the black backdrop onto which the object was placed, and were

marked as having an unknown ground-truth depth. The resulting binary mask is shown in the top row of Figure 6.

Visualizing the results of a single 3D acquisition experiment Figure 5 describes how we present the results of an individual

acquisition experiment. To qualitatively assess the performance of a code matrix, we show the raw depth maps computed

when using it. To assess it quantitatively, we compare 2D slices of the reconstructed 3D pointset against those computed by

the ground-truth sequence, and show the histogram of differences in the computed and ground-truth disparities.

Code performance as a function of maximum spatial frequency Figure 6 shows 3D acquisition results for a different

portion of the wooden object shown in Figure 8 of the main paper. Across all encoding schemes, the choice of maximum

frequency has a big impact on the reconstructed depth maps, both in the 4-pattern and 5-pattern experiments. These results

suggest that our optimized codes produce better reconstructions overall, with a bigger fraction of the pixel disparities having

a ground-truth error of a pixel or less, and fewer outliers overall. It is also important to note that our codes are able to exploit

higher frequencies more effectively, with the best performance observed at higher spatial frequencies than MPS and EPS

codes. This is significant given that both MPS and EPS codes were specifically designed to enable 3D reconstruction using

pattern sequences with high spatial frequencies.

Code performance as a function of camera noise model Figure 7 shows 3D acquisition results using codes that were

optimized for three different noise models. Of the three, the exponential-plus-additive-Gaussian model is the most pes-

simistic about the effect of signal-dependent noise: unlike Poisson shot noise whose variance increases linearly with the



signal, noise variance in the exponential model increases quadratically with the signal. Nevertheless, despite the very signif-

icant difference between the three noise models, reconstruction results for all three noise-optimized codes were very similar.

While the Poisson-plus-additive-Gaussian codes yielded error histograms which were marginally better for four patterns—as

would be expected from a model that captures the actual noise statistics of a conventional CMOS sensor under incoher-

ent illumination—the effect is relatively small. We decided to fix the model to exponential-plus-additive-Gaussian for all

subsequent code optimizations. This intentionally gave a slight disadvantage to our optimized codes.

Code performance as a function of error tolerance Figure 8 shows 3D acquisition results using codes that were optimized

for four different tolerances in disparity error. Perhaps counterintuitively, codes optimized for one- and two-pixel error

tolerance performed considerably better than codes optimized for perfect correspondences: almost 50% of the pixels were

within a pixel of the true disparity for optimized 4-pattern codes, and almost 80% of them for optimized 5-pattern codes.

This also significantly increased the performance margin over the MPS and EPS results shown in Figure 6.

Code performance as a function of geometric constraints Figure 9 shows 3D acquisition results using codes that were

optimized for three different geometric constraints. Unlike the experiments in Figures 6-8, a priori geometric information

can improve the decoding of any coding scheme, not just our optimized codes. In particular, during decoding we only search

the set of valid correspondences, as specified by the geometry matrix G, and choose the one whose code maximizes its

ZNCC score. Compared with the baseline reconstruction results in Figure 6, this improves the depth map across all coding

schemes, frequencies and number of patterns. The reconstruction results from our geometry-optimized codes, however, is

significantly better. This indicates that applying these constraints both for code optimization and for decoding yields superior

performance.

Code optimization for 3-pattern sequences In theory, our optimization scheme can be used to generate optimized code

matrices for just three projection patterns. As shown in Figure 10, however, we found these matrices to be less effective than

conventional 3-pattern phase shifting. While the reason behind this sub-optimal performance is unclear, we believe that the

available degrees of freedom in code matrix design are probably too small to yield an improvement over conventional phase

shifting.

D.2. Experiments under Epipolar­Only Imaging Conditions

To evaluate our codes’ performance for objects that exhibit significant indirect light transport we performed preliminary

epipolar-only imaging experiment with a translucent candle. This object is most appropriately imaged with an epipolar-only

imaging system [4, 5]. These systems block all light transport paths that lie outside the epipolar plane in order to diminish

their influence on the reconstructed geometry. In lieu of such a system, we show reconstruction results for just 3 epipolar

slices of this object. Each slice was reconstructed by simulating the epipolar-only imaging procedure as follows:

1. The i-th projection pattern: we define a 2D pattern that is zero everywhere except along one specific epipolar line on

the projector plane. The pattern along that epipolar line is given by the i-th row of the code matrix.1

2. The i-th image: after capturing an image of the scene under the i-th projection pattern, we extract the pixels along the

corresponding epipolar line on the camera plane.2 These pixels are the epipolar-only image of the scene’s intersection

with the epipolar plane defined by the chosen epipolar line.

3. Reconstruction procedure: After acquiring K images of that intersection, we perform ZNCC decoding as in the

previous experiments.

For each code matrix, we repeated this procedure three times to reconstruct three different epipolar slices of the object. As in

the experiments of the previous section, we obtained ground-truth estimates of the 1D depth map of these slices by performing

the above epipolar-only imaging procedure for each of the 160 cosine-shifted patterns used in the previous experiments.

Figures 11-15 show reconstruction results, following exactly the same conventions as in Figures 6-10.

As a final epipolar-only imaging experiment, we repeated the above procedure for all epipolar lines on the image plane,

using three six-pattern sequences: one derived by optimizing a six-pattern code matrix and one for six-pattern MPS and EPS

patterns. Figure 16 shows the reconstruction results for a scene consisting of a bowl and the candle side by side.

1In practice, we avoid discretization effects by projecting “thick” epipolar stripes that consist of 10 adjacent epipolar lines on the projector’s pixel grid.
2Even though we project 10-pixel wide epipolar stripes onto the scene, we do only extract one epipolar line from the captured image.
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Figure 4: ZNCC Decoding versus Defocused ZNCC Decoding. Dashed lines correspond to standard ZNCC decoding where defocus

blur is not taken into account. Solid lines show what happens when we use defocused ZNCC decoding instead. Each datapoint in these

graphs represents a distinct 3D acquisition experiment.

D.3. Quantitative Evaluation of Defocused ZNCC Decoding

Our last experiment is a quantitative comparison of ZNCC decoding and defocused ZNCC decoding for the planar scene

shown in Figure 7 (2nd row, 3rd column). All our codes were optimized without taking defocus into account, i.e., we

consider the effect of modeling defocus in the decoding stage only.

This experiment was conducted as follows. We positioned the planar scene at the midpoint of the working volume, manually

focused the projector onto that plane and set the camera’s aperture to be small enough to ensure that the entire working

volume was within the camera’s depth of field. We then displaced the planar scene to the far end of the volume, to the

position shown in Figure 7 of the main paper. After projector calibration, the maximum size of its defocus blur kernel over

the working volume was estimated to be approximately one pixel. Ground-truth depth was acquired using a 160-pattern

sequence of shifted cosines, as explained in the previous experiments.3

We then optimized code matrices for K = 4 and K = 5 patterns, an error tolerance of zero pixel, and several frequencies.

Figure 4 shows the reconstruction results, as a function of frequency, for both our optimized codes as well as MPS and

EPS codes. Despite the small amount of projector defocus blur, our results show that defocused ZNCC decoding does

have a significant impact on the results, especially for MPS and EPS codes, and especially for 4 patterns. The somewhat

smaller performance improvement exhibited by our codes suggests that they are already quite robust to defocus, even without

modeling this effect directly into the optimization.
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Figure 5: Visualizing the results of a 3D acquisition experiment. Depth map: Raw depth map computed in the experiment. Depth

values are color-coded, with the darkest blue corresponding to a depth of 400 millimeters or less and darkest red corresponding to a depth

of 800 millimeters or more. Geometry matrix: The matrix G used for code optimization and ZNCC decoding in the experiment. In

the example above the geometry matrix G was all ones, i.e., no geometry constraints were imposed during code optimization and during

decoding. ZNCC scores: Pairwise scores of the columns of the code matrix used in the experiment. Dark red regions signify sets of

code vectors that are very similar according to the ZNCC similarity score whereas dark blue regions represent sets of very dissimilar code

vectors. Epipolar slices: We show a top view of three 2D slices of the reconstructed 3D pointset, along three different epipolar planes.

For each slice, we plot the depth z of each pixel along the epipolar line, in millimeters. Blue points are the reconstructed 3D points on the

slice; red points are the 3D points reconstructed by the “ground-truth” pattern sequence, which uses many more patterns. Points whose

reconstructed depth is either smaller or larger than the indicated range of z values are plotted as 3D points at the minimum or maximum

depth, respectively. We use this convention to improve legibility of the reconstructed surface, while also indicating the presence of outliers.

Note that some of the “ground-truth” depths can be incorrect as well (e.g., “floating” red points in the above plots that are far from the

apparent cross-sections of the scene with the epipolar planes). Histogram of disparity errors: Here we quantify the difference between

reconstructed and “ground-truth” disparities. Specifically, bin ǫ holds the fraction of pixels with known ground-truth disparity whose

reconstructed disparity in this experiment differs by exactly ǫ pixels from their ground-truth value.
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Figure 6: Code performance as a function of maximum spatial frequency. Please zoom into the electronic copy for details. In these

experiments our codes were optimized for the exponential-plus-additive-Gaussian noise model; for exact disparity estimation (i.e., error

tolerance ǫ = 0); and with no geometric constraints. To generate MPS codes, we set their maximum spatial frequency and use the MPS

author-supplied code to generate the codes themselves. Embedded Phase Shifting (EPS) requires a minimum of five patterns. We use our

own implementation of EPS code generation. For 5-pattern EPS sequences, their maximum spatial frequency is one unit higher than their

power-of-two base frequency. Color frames indicate the best-performing codes for each case (red for ours, green for MPS, blue for EPS).

The three epipolar lines corresponding to the epipolar slices shown are highlighted on the ground-truth depth map in the top row.
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Figure 7: Code performance as a function of camera noise model. Please zoom into the electronic copy for details. Red-framed

experiments are identical to the red-framed experiments in Figure 6; they are shown here for completeness.
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Figure 8: Code performance as a function of error tolerance. Please zoom into the electronic copy for details. Red-framed experiments

are identical to the red-framed experiments in Figure 6; they are shown here for completeness.
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5 patterns, max frequency: 32, exponential and additive Gaussian noise, error tolerance ǫ: 0
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Figure 9: Code performance comparisons as a function of geometric constraints. Please zoom into the electronic copy for details.

Red-, green- and blue-framed experiments are identical to the corresponding ones shown in Figure 6; they are shown here for completeness.
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Figure 10: Optimized 3-pattern code matrices versus 3-pattern phase shifting. Top row: Reconstruction results for two optimized

3-pattern code matrices, both with and without geometry constraints. The results shown are for the best-performing maximum frequencies

in the set {4, 8, 16, 32, 64}. Bottom row: For comparison, we also show reconstruction results for conventional 3-pattern phase shifting.

In the absence of geometry constraints (left) a cosine of frequency of 1 is required to avoid phase-wrapping ambiguities. For the depth

range we consider in the right column, ambiguities can be avoided with a cosine of maximum frequency 7.
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Figure 11: Code performance as a function of maximum spatial frequency. Since we only reconstructed three slices of the scene, a

full depth map is not available. In lieu of that, we show an image of the scene with the three chosen epipolar lines superimposed.
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Figure 12: Code performance as a function of camera noise model.

Error tolerance ǫ: 0 Error tolerance ǫ: 1 Error tolerance ǫ: 2 Error tolerance ǫ: 3
4 patterns, max frequency: 8, exponential and additive Gaussian noise
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5 patterns, max frequency: 8, exponential and additive Gaussian noise
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Figure 13: Code performance as a function of error tolerance.
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4 patterns, max frequency: 8, exponential and additive Gaussian noise, error tolerance ǫ: 0
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5 patterns, max frequency: 8, exponential and additive Gaussian noise, error tolerance ǫ: 0
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Figure 14: Code performance comparisons as a function of geometric constraints.



No geometry constraints 42cm ≤ Depth ≤ 66cm
3 patterns, max frequency: 4, exponential and additive Gaussian noise, error tolerance ǫ: 0
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Figure 15: Optimized 3-pattern code matrices versus 3-pattern phase shifting.

Optimized 6 patterns, max frequency:16 MPS 6 patterns, max frequency:16 EPS 6 patterns, max frequency:16
error tolerance ǫ: 1

Figure 16: Reconstruction results for six-pattern sequences under epipolar-only imaging conditions. The candle is the same object

shown in Figure 11. For a full set of experiments on the bowl refer to the project web page [3].


