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Key Objective: Maximally Accurate & Robust Structured Light

Epipolar-Only Generative Image Formation Model

Decoding Comparison: ZNCC vs. Encoding-Specific Decoding Algorithms

We optimize 3D reconstruction performance of any given projector-camera system
Our emphasis is on the most challenging cases of structured-light triangulation:

e fast acquisition (& very small # of projection patterns)

* |low-power projectors (<& low-SNR images)

K-Pattern Structured Light: Traditional Approach

1. Adopt an abstract encoding scheme that assigns a  «—Projector columns

K-dimensional vector ¢, to each projector column p
(e.g., shifted cosines, MPS codes [1], gray codes, XOR codes [3])

2. This defines a sequence of K projection
patterns that are used regardless of the

projector-camera system’s specs or
the scene’s geometry & appearance ,
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3. An encoding-specific decoding algorlthm \ 1 m
then maps the vector of K observations at ‘ .
camera pixel g to its corresponding column p Decode(o,)
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ZNCC for XOR [3]

. . experiment setup and gray codes ZNCC for MPS [1]
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Optimal Column Encodings: Computed in < 3 mins on Standard Laptop

Contribution #1: A Simple Near-Optimal Generic Decoder

Our Approach: Optimal Structured Light Framework

1. Structured light formulated as a maximume-likelihood (ML) classification task

The ZNCC decoder: Choose the projector column whose vector ¢, maximizes its

zero-mean normalized cross-correlation (ZNCC) with the observation vector, where:

/

normalized cross-correlation

/NCC(0,4,c,) = NCC(o, — mean(o,), c, — mean(c,))

Proposition. The ZNCC decoder is optimal in the limit, i.e. it yields the ML solution
when (a) noise is additive Gaussian, (b) its standard deviation o is sufficiently small
and (c) the variance v of variances of vectors c1, C2, ..., cnis sufficiently small .
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(pixel label < corresponding projector column)
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2. We derive an encoding-independent (C, 0q)
decoding algorithm that is near-optimal afgprgix Prob(og | cp)

Contribution #2: The Optimal Column Encoding Loss Function

& trivial to implement

expectation over # of misclassified pixels

plausible scenes in a given scene

3. We derive an efficient algorithm to generate (13 = arg min [Error((;e)]
: C

column enCOdlng schemes on the ﬂy’ optimal error tolerance: min disparity error

Optimized for the imaging conditions at hand enCOding for Iabehng p|X€| as misclassified

Proposition. For a sufficiently large softmax temperature 7, the number of

misclassified pixels in a given scene can be approximated as:

Error(C,e) ~ M — ZsoftmaxT(ZNCC(oq,cmatch(q)))
-

q pixel g true corresponding projector column
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Depth Map Comparison: Optimal Encoding vs. State-of-the-Art Encoding

Optimal encoding optimized for the region of interest in front of camera (K=6)
Depth maps showing the pixels whose disparity error < 1 pixel

scene MPS codes [1] EPS codes [2] optimal encoding

Optimal encoding optimized for low-SNR conditions and an error tolerance (K=4)
Depth maps showing the pixels whose disparity error <1 pixel, and the dlstrlbutlon of dlsparlty error

0.7
[SIREY
:
0.2
4
| S

>CENE MPS codes [1] optlmalencodmg(e-o)  optimal encoding (e=1)
References

[1] Gupta & Nayar, “Micro Phase Shifting”, CVPR’12
[2] Moreno et.al, “Embedded Phase Shifting: Robust Phase Shifting with Embedded Signals”, CVPR’15

[3] Gupta et.al, “A Practical Approach to 3D Scanning in the Presence of Interreflections, Subsurface Scattering and Defocus”, IJCV’13
[4] Kingma et.al, “Adam: A Method for Stochastic Optimization”, ICLR’15




	Optimal Structured Light à la Carte

