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ABSTRACT 

Learning to see through data is central to contemporary 

forms of algorithmic knowledge production. While often 

represented as a mechanical application of rules, making 

algorithms work with data requires a great deal of situated 

work. This paper examines how the often-divergent 

demands of mechanization and discretion manifest in data 

analytic learning environments. Drawing on research in 

CSCW and the social sciences, and ethnographic fieldwork 

in two data learning environments, we show how an 

algorithm’s application is seen sometimes as a mechanical 

sequence of rules and at other times as an array of situated 

decisions. Casting data analytics as a rule-based (rather 

than rule-bound) practice, we show that effective data 

vision requires would-be analysts to straddle the competing 

demands of formal abstraction and empirical contingency. 

We conclude by discussing how the notion of data vision 

can help better leverage the role of human work in data 

analytic learning, research, and practice. 
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INTRODUCTION 
Algorithmic data analysis has come to enable new ways of 

producing and validating knowledge [15, 25]. Algorithms 

are integral to many contemporary knowledge practices, 

especially ones that rely on the analysis of large-scale 

datasets [15, 20, 21, 34]. At the same time, we know that 

algorithms can be selective [34], subjective [7], and biased 

[3]; that they work on multiple assumptions about the world 

and how it functions [5, 15, 34, 35]; and that they 

simultaneously enable and constrain possibilities of human 

action and knowledge [5, 6]. Algorithmic knowledge 

production is a deeply social and collaborative practice with 

sociocultural, economic, and political groundings and 

consequences. 

In all these ways, data analysis embodies a distinct and 

powerful way of seeing the world. Data analysts learn to 

represent and organize the world through computational 

forms such as graphs, matrices, and a host of standardized 

formats, enabling them to make knowledge claims based on 

algorithmic analyses. But this is just one half of the story. 

The world doesn’t always neatly fit into spreadsheets, 

matrices, and tables. While data analysis is often 

understood as the work of faceless and unbiased numbers 

and algorithms, a large amount of situated and discretionary 

work is required to organize and manipulate the world 

algorithmically. Effective algorithmic analysis also 

demands mastery of the ways that worlds and tools are put 

together, and which worlds and tools are so combined 

(across the wide range of methods, tools, and objects 

amenable to representation). Taken together, these two 

seemingly contradictory features constitute what we call 

data vision: the ability to organize and manipulate the 

world with data and algorithms, while simultaneously 

mastering forms of discretion around why, how, and when 

to apply and improvise around established methods and 

tools in the wake of empirical diversity. 

Integrated, often seamlessly, in the practice of expert 

practitioners, these contradictory demands stand out with 

particular clarity in the moments of learning and 

professionalization through which novices learn to master 

and balance the intricacies of data vision. How do students 

learn to “see” the world through data and algorithms? How 

do they learn to maneuver and improvise around forms and 

formalizations in the face of empirical contingency? This 

paper addresses such questions in the context of data 

analytic learning environments such as classrooms and 

workshops. 

While distinct from other contexts of professional practice 

(e.g., industry settings or research centers), learning 

environments provide partial but meaningful sites to 

understand some of the ways in which would-be 

practitioners are immersed and acculturated into 

professional discourse and practice. [On the relation and 

relevance of learning environments for ‘mature’ 

professional practice, see inter alia 8, 16, and 24]. The 

explicit focus in learning environments on demonstrating 

established methods and theories to would-be professionals 
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allows us to see how particular pedagogic demonstrations 

and analytic examples enable specific algorithmic norms 

and heuristics. More importantly, a study of classrooms and 

workshops draws attention to the social aspects of learning 

– a process of participation and membership in a discourse, 

instead of just a set of individual experiences. In learning 

environments, aspects of professionalization are 

accomplished through guided interactions between 

instructors, students, teaching assistants, educational 

materials, assignments, and exams. Learning environments 

thus function as important sites in which would-be data 

analysts learn to see the world through and as data – a 

crucial rite of passage on their way to becoming full-

fledged members in the data analytic “community of 

practice.” [24] 

This paper describes two separate sequences of events – 

one from a machine-learning classroom, and another from a 

series of digital humanities workshops – to show how 

learning to see through data requires students to maintain a 

balance between viewing the world through abstract 

constructs, while simultaneously adapting to empirical 

contingency. We advance a rule-based (as opposed to a 

rule-bound) understanding of data analytic practice, 

highlighting the situated interplay between formal 

abstraction and mechanical routinization on the one hand, 

and discretionary action and empirical contingency on the 

other. We show how it is the mastery of this interplay – and 

not just the practice of data analytic techniques in their 

formal dimension – that is central to the growing skill and 

efficacy of would-be data analysts. We argue that better 

understanding of data vision in its more comprehensive and 

discretionary forms can help researchers and instructors 

better engage and leverage the human dimensions and 

limits of data analytic learning and practice.  

The sections that follow begin by reviewing CSCW, HCI, 

and social science literatures on professional vision, 

situated knowledge, and discretionary practice. We then 

describe our research sites, before moving to the empirical 

examples. We conclude by discussing the implications of 

the notion and practice of data vision, and the distinction 

between a rule-bound and rule-based understanding of data 

analysis, for data analytic learning and practice, and for 

CSCW research and practice more broadly. 

PROFESSIONAL VISION, SITUATED KNOWLEDGE, AND 
DISCRETIONARY PRACTICE 
Our work on data vision builds on a classic and growing 

body of work in the social sciences that has explored forms 

of identity, practice, and perception underpinning and 

constituting forms of professional knowledge. Goodwin’s 

work on professional vision [16] analyzes two professional 

activities (archaeological field excavation and legal 

argumentation) to show how professionals learn to “see” 

relevant objects of professional knowledge with and 

through practice: the exposure to and exercise of theories, 

methods, and tools to produce artifacts and knowledge in 

line with professional goals. Learning professional practice, 

he argues, help professionals make salient specific aspects 

of phenomena, transforming them into objects of 

knowledge amenable to professional analysis. Learning to 

see the world professionally, however, is not reducible to 

the mastery of generic rules and formal techniques. Instead, 

professional vision is slowly and carefully built through 

training, socialization, and immersion into professional 

discourse [16, 24, 30, 32]. Professional vision, thus, is a 

substantive and collaborative sociocultural accomplishment 

– a way of seeing the world constructed and shaped by a 

“community of practice.” [24] 

A key aspect of professional vision, as Abbott [1] argues, is 

the way in which practitioners situate given problems 

within existing repertoires of professional knowledge, 

methods, and expertise. According to Abbott, the process of 

situating given problems – of “seeing” professionally – 

must be clear enough for professionals to create relations 

between a given problem and existing knowledge (e.g., 

what can I say about this specific dataset?), yet abstract, 

even ambiguous, enough to enable professionals to create 

such relations for a wide variety of problems (e.g., what are 

the different kinds of datasets about which I can say 

something?). 

A similar interplay between abstraction, clarity, and 

discretion exists within data analytic practices. Algorithms, 

developed in computational domains such as machine-

learning, information retrieval, and natural language 

processing, provide means of analyzing data. It is often 

argued that a specific algorithm can work on multiple 

datasets as long as the datasets are modeled in particular 

ways. However, data analysis requires much more work 

than simply applying an algorithm to a dataset. As 

Mackenzie argues: certain data analytic practices such as 

vectorization, approximation, and modeling often mask the 

inherent subjectivity of dataset and algorithms, imbuing 

them with a sense of inherent “generalization.” [26] From 

choice of analytic method, to choices concerning data 

formatting, to decisions about how best to represent and 

communicate data analytic results to ‘outside’ audiences, a 

large amount of situated and discretionary work – e.g., in 

the form of data collection, data cleaning, data modeling, 

and other forms of pre- and post-processing – is required to 

make datasets work with chosen algorithms. Data analysts 

not just learn to see and organize the world through data 

and algorithms, but also learn and discern meaningful and 

effective combinations of data and algorithms. As Gitelman 

et al. [15] argue: “raw data” – at least as a workable entity – 

is an oxymoron. It takes work to make data work. 

Abbott’s [1] example of chess is instructive in evoking the 

situated and discretionary work characteristic of all forms 

of practice. The opening and closing moves in a game of 

chess, Abbott argues, often appear methodical and rigorous. 

However, in between these two moves, he argued, is the 

game itself in which knowledge, expertise, and experience 
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intermingle as the game progresses. On one hand, we can 

summarize and teach chess as a collection of formal rules 

and techniques (e.g., how a pawn moves, how the rook 

moves, ways to minimize safe moves for your opponent, 

etc.). On the other hand, however, we have to acknowledge 

that any and all application of such rules is situated – 

contingent to the specific layout of the game at hand. In this 

way, chess (and professional vision) is rule-based but not 

rule-bound – a distinction we return to in the discussion.  

These insights are backed in turn by a long line of 

pragmatist social science dealing with the nature of 

‘routines’ and ‘routinizable tasks’ in organizational and 

other contexts. Building on Dewey’s [12] foundational 

work, Cohen [9] argues against the common understanding 

of routinized tasks as collections of rigid and mundane 

actions, guided by “mindless” rules and mechanized 

actions; instead, the performance of a routine is both skilled 

and unique: 

“For an established routine, the natural fluctuation of 

its surrounding environment guarantees that each 

performance is different, and yet, it is the ‘same.’ 

Somehow there is a pattern in the action, sufficient to 

allow us to say the pattern is recurring, even though 

there is substantial variety to the action.” [9: 782] 

Klemp et al. [22] also draw on Deweyan roots to address 

these “similar, yet different” applications of routines 

through the vocabulary of plans, takes, and mis-takes. 

There might be a plan (a method, an algorithm, a script), 

and there might be known mistakes (incompatibility, 

inefficiency, misfit), but every application of the plan is a 

take ripe for mis-takes. Mis-takes occur when professionals 

are faced with something unexpected during the execution 

of formal and established routines. Drawing on the example 

of a Thelonious Monk jazz performance, the authors 

explore the complex discretionary processes by which a 

musician deals with mis-takes: 

“When we listen to music, we hear neither plans nor 

mistakes, but takes in which expectations and 

difficulties get worked on in the medium of notes, tones 

and rhythms. Notes live in connection with each other. 

They make demands on each other, and, if one note 

sticks out, the logic of their connections demands that 

they be reset and realigned.” [22: 10] 

Mis-takes, then, mark elements of “contingency, surprise, 

and repair [found] in all human activities.” [22: 4] 

Signifying the lived differences between theoretical reality 

and empirical richness, mis-takes necessitate situated, often 

creative, improvisations on the part of professionals and 

other social actors. 

Like Abbott’s description of chess, Klemp et al.’s analysis 

draws out the situated nature of professional knowledge and 

practice, even in apparently straightforward and routinized 

procedures. This point is further elaborated by Feldman & 

Pentland [14], who show how routines are ostensive (the 

structural rule-like elements of a routine) as well as 

performative (the situated and contingent execution of a 

routine). It is the interplay between the two aspects that 

allows for the discernable but shifting reality of routinized 

work and professional practice. Along similar lines, 

Wylie’s study of paleontology laboratories [37] shows how 

adapting situated routines and practices to deal with new 

problems-at-hand is considered an integral aspect of 

learning by doing. “Problem-solving in ways acceptable to 

a field [...] can be an indicator of skill, knowledge, and 

membership in that particular field.” [37: 43] 

However, the situatedness of a practice is not always 

visible. Ingold [17: 98], using the example of a carpenter 

sawing planks, describes how to an observer, “it may look 

as though […a] carpenter is merely reproducing the same 

gesture, over and over again.” Such a description, he 

reminds us, is incomplete: 

“For the carpenter, [...] who is obliged to follow the 

material and respond to its singularities, sawing is a 

matter of engaging ‘in a continuous variation of 

variables…” [17: 98] 

To improvise on seemingly routine tasks then is to “follow 

the ways of the world, as they open up, rather than to 

recover a chain of connections, from an end-point to a 

starting-point, on a route already travelled.” [17: 97] 

Such social science insights on professional vision and 

discretionary practice have translated into important CSCW 

and HCI research programs. For instance, Suchman and 

Trigg [32] demonstrate the role and significance of 

representational devices for ways in which Artificial 

Intelligence (AI) researchers see and produce professional 

objects and knowledge. Mentis, Chellali, & Schwaitzberg 

[27] show how laparoscopic surgeons demonstrate ways of 

“seeing” the body through imaging techniques to students: 

“seeing” the body in a medical image is not a given, but a 

process requiring discussion and interpretation. Mentis & 

Taylor [28] similarly argue that “work required to see 

medical images is highly constructed and embodied with 

the action of manipulating the body.” Situating objects or 

phenomena in representations, they argue, is a situated act: 

representations don’t just reveal things, but also produce 

them, turning the “blooming, buzzing confusion” of the 

world [19] into stable and tractable “objects” amenable to 

analytic and other forms of action. 

Performing analytical and other forms of action on the 

world, however, requires people to deal directly with 

empirical contingency. Suchman [33] argues that “plans” 

are theoretical, often formulaic, representations of human 

actions and practices. “Situated action,” however, requires 

people to work with continuous variation and uncertainty in 

the world. Human action, she argues, is a form of iterative 

problem solving in an attempt to accomplish a task. 

Creativity often emerges within such situated and 

discretionary forms of problem solving. As Jackson & 
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Kang’s [18] study of interactive artists shows, dealing with 

material mess and contingency (in this case, attached to the 

breakdown of technological systems and objects) may 

necessitate and drive forms of improvisation and creativity 

at the margins of formal order. Creativity – understood not 

as an abstract and free-standing act of cognition but rather 

as a situated sociomaterial accomplishment – emerges 

through the interplay between routines and applications, 

between plans, takes, and mis-takes, and between empirical 

mess and theoretical clarity. 

Such situated and discretionary acts are no less central to 

forms of data analysis and algorithmic knowledge studied 

and practiced by CSCW and HCI researchers. Clarke [11], 

for instance, analyzes the human collaborative work in data 

analytics that is often overlooked in the face of the growing 

“popularity of automation and statistics.” He analyzes the 

processes used by online advertising professionals to create 

user models, bringing to light ways in which we can design 

better software to accommodate the mundane, assumptive, 

and interpretive deliberation work that goes into producing 

such “social-culturally constituted” models. Pine & 

Liboiron [30] study the use of public health data, showing 

how data collection practices are actually social in nature. 

One does not simply collect “raw data.” Data collection 

practices are shaped by values and judgments about “what 

is counted and what is not, what is considered the best unit 

of measurement, and how different things are grouped 

together and ‘made’ into a measurable entity.” [30: 3147] 

Along similar lines, Vertesi & Dourish [36] show how the 

use and sharing of data in scientific collaboration depends 

on the contexts of production and acquisition from which 

such data arise. Taylor et al. [35] show how data 

materializes differently in different places by and for 

different actors. Indeed, it is precisely the erasure of these 

kinds of work that produces the troubling effects of 

neutrality, “opacity”, and self-efficacy that all too often 

clouds public understanding of “big data,” and makes 

algorithms appear ‘magical’ in learning, but also ‘real-

world’ environments [8]. 

These bodies of CSCW and HCI research call attention to 

aspects of formalism, contingency, and discretion at the 

heart of algorithmic knowledge and data analytic practices. 

An algorithm is a collection of formal rules – indeed, a 

routinizable plan of action – that organizes data in 

predictable and actionable ways. Yet each dataset poses 

unique challenges (and opportunities) for the data analyst, 

necessitating ways to accommodate the variations in the 

seemingly routine acts of “applying” algorithms. To learn 

data vision then is to learn to see similarities as well as 

differences in the ways in which data, algorithms, and 

worlds are put together. To see with data is to see the 

unknown, the different, and the singular within the space of 

the mundane and predictable. Advancing an understanding 

of data analytics as a rule-based (as opposed to a rule-

bound) practice, this paper argues that data vision is not 

merely a collection of formal and mechanical rules, but a 

situated and discretionary process requiring data analysts to 

continuously straddle the competing demands of formal 

abstraction and empirical contingency. 

METHODS AND FINDINGS 

The arguments that follow build on ethnographic fieldwork 

conducted at a major U.S. East Coast University. We 

conducted a four month long participant-observation study 

in a graduate level machine-learning class taught at the 

university in fall 2014. One of the authors was enrolled as a 

student in one section of the course with ~80 students. We 

also conducted a participant-observation study of a series of 

three digital humanities workshops organized at the same 

university during spring 2015. The workshops’ purpose was 

to expose students to computational techniques for text 

analyses. Each workshop lasted two hours, and the number 

of participants in each workshop ranged from nine to 

thirteen. 

CASE 1: MACHINE-LEARNING CLASSROOM 

Our first case follows an instance of data analysis and 

learning revealed during a machine-learning class. At the 

point we pick up the story, the instructor is about to 

introduce a type of algorithm that classifies things into 

groups (called clusters) such that things within a cluster are 

sufficiently similar to each other, and things across clusters 

are sufficiently different from each other.  

 

Figure 1. Class exercise to introduce the notion of clusters. 

The instructor starts by showing an image to the students 

(figure 1) and inquiring: how many clusters do you see? 

Most students give the same answer: “three clusters.”  

 

Figure 2. The three clusters that the students initially saw. 
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Having anticipated this response, the instructor shows 

another image with three clearly marked clusters (figure 2). 

The instructor informs the students that the number of 

clusters present in the image is actually unclear: 

How many clusters? I don’t know. I haven’t even told 

you what the similarity measure is [i.e., how do you 

even know which two dots are similar to each other in 

this graph.] But, you all somehow assumed Euclidean 

Distance [i.e., the closer two dots are, the more similar 

they are.] 

He now shows other types of clusters that could have been 

“seen” (figure 3). As is clear from these images, there could 

have been two or three clusters. Moreover, there could have 

been different kinds of two clusters (figure 3a/3b) and 

different kinds of three clusters (figure 3c/3d). After the 

students have had a chance to digest this lesson, the 

instructor goes on to introduce the concept of a clustering 

algorithm:  

A clustering algorithm does partitioning. Closer points 

are similar, and further away points are dissimilar. We 

haven’t yet defined what we mean exactly by similarity, 

but it’s intuitive, right? 

Having made this point, the instructor moves on to a more 

specific algorithm. The instructor explains that this 

algorithm works on a simple principle: the similarity of two 

clusters is equal to the similarity of the most similar 

members of the two clusters. 

Having made this point, the instructor moves on to a more 

specific algorithm. The instructor explains that this 

algorithm works on a simple principle: the similarity of two 

clusters is equal to the similarity of the most similar 

members of the two clusters. The idea is to take a cluster 

(say, X), find the cluster that is most similar to it (say, Y), 

and then merge X and Y to make a new cluster. It is 

important to note that knowing the premise on which this 

algorithm functions is different from knowing how to apply 

it to data. How do we find a cluster most similar to a given 

cluster? What does it mean when we say “most similar 

members of the two clusters”? Such questions, as we will 

see, are key to this algorithm’s application. 

The instructor now demonstrates the application of this 

algorithm by drawing a 2-dimensional graph marked with 

eight dots (figure 4a). The closer the two dots are, he 

explains, the more similar they are for the purpose of this 

algorithm. At the start (figure 4a), there are no clusters but 

only a set of eight dots. The instructor tells the students that 

Figure 4. In-class exercise to learn a particular clustering algorithm. 

Figure 3. Different kinds of clusters that could have been seen. 
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each dot will be treated initially as a cluster. He then starts 

to apply the algorithm beginning with dot-1. On visual 

inspection, the instructor and students infer that dot-1 is 

closer to dot-2, dot-3, and dot-4, than it is to the other dots. 

The instructor and the students then look again, and 

determine that of the three remaining points, dot-2 is the 

one closest to dot-1. Thus, based on the chosen similarity 

metric of physical distance, dot-1 and dot-2 are merged to 

form cluster-A (figure 4b). 

The instructor now moves on to dot-3. Following the same 

logic, the instructor and students infer that dot-3 is closer to 

cluster-A and dot-4 than it is to the other dots. The 

instructor reminds the students that for this algorithm, two 

clusters are compared based on their most similar members 

(i.e. two dots – one in each cluster – that are closest to each 

other). Thus, comparing dot-3 and cluster-A, he says, 

means comparing dot-3 and dot-1 (as dot-1 is the dot in 

cluster-A that is closest to dot-3). Looking at dot-3, dot-1, 

and dot-4, the instructor and students infer that dot-4 is the 

one closest to dot-3; dot-3 and dot-4 are then merged to 

form cluster-B (figure 4c). In the next two steps, the 

instructor and students go on to dot-3 and dot-4, forming 

cluster-C (figure 4d) and cluster-D (figure 4e) respectively. 

At this point, eight dots have been lost, and four clusters 

(with two dots each) gained (figure 4e). After reminding the 

students that comparing two clusters requires finding two 

dots – one in each cluster – that are closest to each other, 

the instructor moves on to cluster-A. A few students point 

out that the similarity between cluster-A and cluster-B is 

equivalent to the similarity between dot-1 and dot-3. Other 

students argue that it is equivalent to the distance between 

dot-2 and dot-4, as the distances between them look the 

same. The instructor agrees with the students, and informs 

them that these distances represent the similarity between 

cluster-A and cluster-B. The students go on to perform the 

same analysis to compare cluster-A, -C, and –D. 

With regard to cluster-A, the comparison is now down to 

three sets of distances: between a) dot-2 and dot-4, b) dot-2 

and dot-5, and c) dot-2 and dot-7. On visual inspection, the 

students observe that dot-2 is closest to dot-5. Cluster-A 

and cluster-C are therefore merged to form cluster-1 (figure 

4f). A similar operation merges cluster-B and cluster-D to 

form cluster-2 (figure 4g). In the last step, cluster-1 and -2 

are merged to form a single cluster containing all eight dots 

(figure 4h). With this, the instructor tells the students, they 

have reached the end of the exercise, having successfully 

“applied” the clustering algorithm. 

There are three striking features about the in-class exercises 

described in this section. The first is the step-by-step 

mechanical nature of the instructor’s demonstration of the 

algorithm. Explicit in the algorithm’s demonstration is a 

collection of formal rules specifying how to treat individual 

dots, how to compare two dots, how to compare a dot and a 

cluster, etc. Aspects of data vision, as we see in this case, 

are built sequentially with students learning an algorithm’s 

application as a set of mechanical and routine steps through 

which data – represented as dots – are manipulated, 

enabling the formation of similarity clusters. 

A second and related feature is the abstract nature of the 

represented and analyzed data. These exercises do not have 

a specific “real-world” context supplementing them. The 

students were never told, and they never inquired, what the 

dots and the graph represented. The dots were presented 

and analyzed simply as label-less dots on a nameless graph, 

generic representations of any and all kinds of data that this 

algorithm can work on. 

A third and final point concerns the reliance on visuals to 

demonstrate the operation of the algorithm. We see how 

visual forms such as dots, circles, and graphs helped 

students learn to “see” data in ways amenable to formal 

representation and organization. This allows the students to 

learn to manipulate the world as a set of data points arrayed 

in 2-dimensional space. The algorithm, it appears, “works” 

as long as data is in the form of dots in n-dimensions.  

While seeing and organizing the world through mechanical 

rules and abstract representations is key to data vision, 

students also need to learn to see the application of an 

abstract, generic method as a situated and discretionary 

activity. An instance of this appears in the case below. 

CASE 2: DIGITAL HUMANITIES WORKSHOPS 

Our second case follows the construction of data vision as 

revealed during a series of digital humanities workshops. 

Digital humanities, broadly put, is a research area in which 

humanists and information scientists use computational as 

well as interpretive methods to analyze data in domains 

such as history and literature. The vignette that follows 

describes how workshop conveners and students decide 

what dataset to work on and what happens when they begin 

to analyze the chosen dataset. 

It hasn’t been straightforward for the workshop conveners 

to decide what texts (i.e., data) the students should work on 

as a group not only because students have different research 

interests but also because not all texts are digitally 

available. In the first workshop session, there is a long 

discussion on how to get digitized version of texts (e.g., 

from Project Gutenberg, HathiTrust, etc.), what format to 

use (e.g., XML, HTML, or plain-text files), how to work 

with specific elements of a file (e.g., headers, tags, etc.), 

and how to clean the files (e.g., fixing formatting issues, 

removing stop-words, etc.). The students can, of course, 

simply download a novel, and start reading it right away, 

but the point of the discussion is to find ways in which the 

students can make algorithms do the work of “reading.” 

While describing ways to convert files from one format to 

another, something catches the convener’s eyes as he shows 

the students an online novel’s source code. There is a 

vertical bar (|) in certain words such as ‘over|whelming’ and 

‘dis|tance.’ At first, students suspect the digitized version 

has not been properly proofread. However, after noticing 
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more and more words with the vertical bar symbol, the 

convener returns to the non-source-code version of the 

novel to discover that these are actually words that cut 

across lines with a hyphen (-). The computer has been 

joining the two parts of these words with a vertical bar. At 

this point, a student asks about ways in which she can 

recognize such errors, separating “good” from “bad” data. 

A discussion ensues about ready-to-use scripts and 

packages. Several students observe that manual reading can 

help spot such errors, but the whole point of using 

algorithms is to allow work with much more text than can 

be read and checked in this way. The discussion ends with 

no clear answers in sight. 

A second question concerns the dataset to be used for 

purposes of the common class exercises. This decision is 

reached only by the end of the second session: English 

Gothic novels. This choice is arrived at on the basis of 

convenience rather than common interest – only one student 

has a research interest in Gothic literature. But a complete 

set of English Gothic novels in digital form is perceived to 

be easier to obtain than other candidates suggested by the 

group. “The allure of the available,” as the convener 

remarks, “is a powerful thing.” But this raises another issue: 

what actually qualifies as a Gothic novel? Something with 

the word Gothic in the title? One tagged as Gothic by the 

library? Or one acknowledged as Gothic by the wider 

literary community? After some discussion, the conveners 

and students agree to ask one of the library’s digital 

curators to select a set of Gothic novels, and at the start of 

the third workshop session students are presented with 

plain-text files of 131 English Gothic novels. 

While discussing ways in which this dataset can be used, a 

student inquires whether it is possible to create a separate 

file for each novel containing only direct quotes from 

characters in the novel. The workshop convener and 

students decide to try this out for themselves and 

immediately encounter a question: how can an algorithm 

know what is and isn’t a character quote? After some 

discussion, the students decide to write a script that parses 

the text, inserting a section break each time a quotation 

mark is encountered. They surmise that this procedure will 

thereby capture all quotes as the text falling between 

sequential pairs of quotes. The total of such pairs will also 

indicate the number of quotes in each novel. Based on this 

understanding, the students create the below algorithm (in 

Python) to perform this work: 

import sys 

text = “” 

 

for line in open(sys.argv[1]): 

text += line.rstrip() + “ ” 

 

quote_segments = text.split(“\””) 

is_quote = False 

 

for segment in quote_segments: 

print “{0}\t{1}\{2}\n”.format(“Q” if is_quote else 

“N”, len(segment), segment) 

## every other segment is a quote 

is_quote = not is_quote 

When tested against one of the novels in the set however 

the results are surprising: the script has produced just one 

section break. Most students feel that this result is “wrong.” 

“Oh wow! That’s it?” “I think it didn’t even go through the 

file.” “Just one quotation mark?” To see what went wrong, 

students scroll through the chosen novel, glancing through 

the first twenty paragraphs or so. Upon inspection, they 

conclude that there is nothing wrong with their script. It is 

just that this particular novel actually does not have any 

quotes in it. (The single quotation mark that the script 

encountered was the result of an optical character 

recognition error.) This leads to a discussion of differences 

in writing styles between authors. A couple of students 

mention how some authors don’t use quotation marks, but 

instead a series of hyphens (-) to mark the beginning and 

end of character quotes. This raises a new problem. Is it 

safe to use quotation marks as proxies for character quotes, 

or should the script also look for hyphens? Are there still 

other variations that students will need to account for? 

Out of curiosity, the students randomly open a few files to 

manually search for hyphens. Some authors are indeed 

using them in place of quotation marks: 

------Except dimity, ------ replied my father. 

Others, however, are using them to mark incomplete 

sentences: 

But ‘tis impossible, ---- 

In some cases, hyphens have resulted because em-dashes 

(—) or en-dashes (–) were converted to hyphens by the 

optical character recognition system: 

Postscript--I did not tell you that Blandly… 

It is now clear to the students that if hyphens sometimes 

mark speech, they are less robust than quotation marks as 

proxies for character quotes. They decide to use only 

quotation marks for the remainder of the exercise to keep 

things “relatively simple.”  

It is now time to choose another novel to test the script. 

This time, the choice is not so random, as students want a 

novel that has many character quotes as a “good” sample or 

test case. The script is changed such that it now parses the 

text of all the novels, returning a list of novels along with 

the number of sections produced in each novel. These range 

from 0 to ~600. Since there are no pre-defined expectations 

for number of quotes in a novel, there is no way to just look 

at these numbers and know if they are accurate. However, 

some students still feel that something has gone “wrong.” 

They argue that because every quote needs two quotation 

marks, the total number of “correct” quotation marks in a 
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novel should be an even number. By the same logic, the 

number of sections produced on this basis should also be 

even. But the result returned shows odd numbers for almost 

half the novels. Students open some of these “wrong” 

novels to manually search for quotation marks. After trying 

this out on five different novels, they are puzzled. The 

novels do have an even number of quotation marks in them. 

Why then is the script returning odd numbers? 

It does not take long to identify the problem. The students 

are right in pointing out that the number of quotation marks 

in a novel should be even. However, they have 

misconstrued how the script creates sections in a novel. A 

student explains this by reference to one of the novel’s in 

the set: Ann Radcliffe’s The Mysteries of Udolpho. In the 

passage below, the python script will go through the text 

inserting four section breaks: 

She discovered in her early years a taste for works of 

genius; and it was St. Aubert's principle, as well as his 

inclination, to promote every innocent means of 

happiness. <>“A well-informed mind, <>” he would 

say, <>“is the best security against the contagion of 

folly and of vice.”<> The vacant mind is ever on the 

watch for relief, and ready to plunge into error, to 

escape from the languor of idleness. 

This example shows the students that they had been 

confusing sections with section-breaks. Although the script 

creates four section-breaks in the novel, the number of 

sections created by the script is actually five. The students 

realize that the number of sections will thus be one more 

than the count of quotation marks. Since these will always 

be even, the number of sections created by the script must 

always be odd. 

The problem has now reversed itself. Whereas earlier the 

participants believed that an odd number of sections was 

“wrong”, they now agree that having an odd number of 

sections is actually “right”. Why then, they puzzle, do some 

novels have an even number of sections? The participants 

manually check out a few “even” novels to search for 

quotation marks. They discover another set of optical 

character recognition errors, formatting issues, and variance 

in authors’ writing styles that is producing the “wrong” or 

unexpected result. At the conclusion of the workshop 

session shortly thereafter, the students still do not have a 

script that can reliably extract all character quotes in an 

automated way. 

There are many ways to explain what has happened here. 

One is to say that the novels were not in the “right” format 

– they had formatting issues, exhibited style 

inconsistencies, and contained typographical errors. This, 

however, is true for most, if not all, kinds of data that 

analysts have to deal with on a daily basis. Clean, complete, 

and consistent datasets – as every data analyst knows – are 

a theoretical fantasy. Outside of theory, data is often 

inconsistent and incomplete. The requirement of prim and 

proper datasets, we argue, does not do justice either to the 

reality of the data world or to the explanation of this 

workshop exercise. 

Another explanation is that the students simply lacked skill 

and experience, and were making what some would call 

“rookie mistakes”. After all, these students were here to 

learn these methods, and were not expected to know them 

beforehand. However, the ability to identify and avoid 

“rookie mistakes” is in itself an important artifact of the 

training and professionalization of would-be professionals. 

In large part, what makes a rookie a rookie is his/her 

inability to recognize and avoid these kinds of errors. As 

sites for learning and training, classrooms and workshops 

thus provide avenues for seeing how would-be 

professionals learn to “see” and avoid “rookie mistakes.” 

Similar if less stark examples of such mistakes appeared in 

the machine-learning class (using part of training data as a 

test case, confusing correlation for causation, etc.). 

Our workshop case brings together prior knowledge, human 

decisions, and empirical contingency. The choice of the 

dataset is not a given, but a compromise between thematic 

alignment and practical accessibility. Moreover, as seen in 

the case of vertical bars, hyphens, and quotation marks, data 

is often idiosyncratic in its own ways, necessitating situated 

and discretionary forms of pre-processing. Even clearly 

articulated computational routines (e.g., search for 

quotation marks, label text between marks as a section, 

count sections, put sections in a separate file) often require 

a host of situated decisions (e.g., what novels to look at, 

what stylistic elements to account for, how to alleviate 

formatting errors, how to infer and manage empirical 

contingency, etc.). In all these ways, algorithmically 

identifying and extracting character quotes is a situated 

activity that requires practitioners to find their way around 

specificities of the data at hand. 

DISCUSSION 

The cases above provide important insight into the practice 

and professionalization of would-be data analysts. In case 

one, we saw how machine learning students learn to see 

data in forms amenable to algorithmic manipulation, and an 

algorithm’s application as a collection of formal rule-like 

steps. The rules to be followed appear methodical, rigorous, 

and mechanical, and the algorithm is demonstrated using an 

abstract representational form: label-less dots on a name-

less graph. Whether it is discerning the similarity between 

two dots or knowing ways to compare and merge clusters of 

dots, students learn to work with and organize the world 

through a fixed set of rules. Such a demonstration privileges 

an abstract understanding of data analytics, allowing 

students to learn to manipulate the world in predictable and 

actionable ways. This, we argue, is a great source of 

algorithmic strength: if the hallmark of real-world empirics 

is its richness and unpredictability, the hallmark of data 

analysis is its ability to organize and engage the world via 
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abstract categorization and computationally actionable 

manipulation. 

In case two, by contrast, we saw how processes of learning 

and practicing data analysis are also situated, reflexive, and 

discretionary, in ways that abstract representations and 

mechanical demonstrations significantly understate. 

Multiple decisions were required to effectively combine the 

script with the given dataset ranging from identifying how 

to isolate character quotes, discerning ways in which quotes 

appear in data, to figuring out how to test the script. Unique 

datasets necessitate different fixes and workarounds, 

requiring a constant adjustment between prior knowledge, 

empirical contingencies, and formal methodologies. 

Making prior knowledge and abstract methods work with 

data is indeed hard work. Data may be hard to find, 

unavailable, or incomplete. Under such circumstances, 

practitioners have to make do with what they can get, in 

ways that go against the abstracted application story usually 

shared in data analytic research papers and presentations. 

Recognizing the incomplete nature of the abstracted data 

story helps situate an algorithm’s application as a site not 

only for abstract categorization and formal manipulation 

but also for discretion and creativity. Learning to apply an 

algorithm, as we saw, involves a series of situated decisions 

to iteratively, often creatively, adapt prior knowledge, data 

analytic routines, and empirical data to each other. 

Elements of creativity manifest themselves as professional 

acts of discretion in the use of abstract, seemingly 

mechanical methods. While certain datasets may share 

similarities that support mechanical applications of rules 

across contexts, mastery of operations in their mechanical 

form constitutes only one part of the professionalization of 

data analysts. Each dataset is incomplete and inconsistent in 

its own way, requiring situated strategies, workarounds, and 

fixes to make it ready and usable for data analysis. Data 

analysts are much like Suchman’s [33] problem solvers, 

Klemp et al.’s [22] musicians, and Ingold’s [17] carpenters: 

constantly negotiating with and working around established 

routines in the face of emergent empirical diversity. 

Viewing data analysis as an ongoing negotiation between 

rules and empirics helps mark a clear distinction between 

two ways of describing the professionalization and practice 

of data analytics that are relevant for CSCW and HCI 

researchers. One of these approaches data analytics as a 

rule-bound practice, in which data is organized and 

analyzed through the application of abstract and mechanical 

methods. Casting data analytics as a rule-bound practice 

helps make visible specific aspects of data analytic learning 

and practice. First, it allows data analysts to better 

understand the abstract nature of data analytic theories, 

facilitating novel ways of computationally organizing and 

manipulating the world. Second, it enables researchers to 

focus on constraints and limits of algorithmic analyses, 

providing a detailed look at some of the critical 

assumptions underlying data analyses. Finally, it allows 

students to learn not only how to work with basic, yet 

foundational, data analytic ideas, but also how to organize 

and manipulate the world in predictable and actionable 

ways. However, the same properties that make these aspects 

visible, tend to render in-visible the empirical challenges 

confronting efforts to make algorithms work with data, 

making it difficult to account for the situated, often 

creative, decisions made by data analysts to conform 

empirical contingency to effective (and often innovative) 

abstraction. What’s left is a stripped down notion of data 

analytics – analytics as rules and tools – that only tells half 

the data analytic story, understating the breadth and depth 

of human work required to make data speak to algorithms. 

Significantly underappreciating the craftsmanship of data 

analysts, the rule-bound perspective paints a dry picture of 

data analysis – a process that often comprises of artful and 

innovative ways to produce novel forms of knowledge. 

A more fruitful way to understand data analytics, we argue, 

is to see it not as rule-bound but rather as rule-based: 

structured but not fully determined by mechanical 

implementations of formal methods. In a rule-bound 

understanding, an algorithm’s application requires 

organization and manipulation of the world through abstract 

constructs and mechanical rules. In a rule-based 

understanding, however, emergent empirical contingencies 

and practical issues come to the fore, reminding us that the 

world requires a large amount of work for it to conform to 

high-level data analytic learning, expectations, and 

analyses. Following Feldman & Pentland’s [14] view of 

routines, a rule-based understanding of data analysis casts 

algorithms as ostensive as well as performative objects, 

highlighting how the performances of algorithms draw on 

and feed into their ostensive nature, and vice versa. 

Seeing data analytics as a rule-based practice focuses our 

attention on the situated, discretionary, and improvisational 

nature of data analytics. It helps make salient not only the 

partial and contingent nature of the data world (i.e., data is 

often incomplete and inconsistent), but also the role of 

human decisions in aligning the world with formal 

assumptions and abstract representations of order as 

stipulated under abstract algorithmic methods and theories. 

Data analysis is a craft, and like every other form of craft it 

is never fully bound by rules, but only based on them. A 

rule-based understanding of data analysis acknowledges 

and celebrates the lived differences between theoretical 

reality, empirical richness, and situated improvisations on 

the part of data analysts. 

It is in and through these lived differences that data analysts 

gain data vision. As with Dewey’s [12], Cohen’s [9], and 

Feldman & Pentland’s [14] descriptions of routines and 

routinized tasks, we see in data vision the always-ongoing 

negotiation between abstract algorithmic “routines” and the 

situated and reflexive “applications” of such “routines.” 

Data vision is much like an array of plans, takes, and mis-

takes [22] – a constant reminder of the situated and 
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discretionary nature of the professionalization and practice 

of data analysis.  

Such an understanding of data vision can inform data 

analytic learning, research, collaboration, and practice in 

three basic ways. First, it helps focus attention on the role 

of human work in the professionalization and practice of 

data analytics; while models, algorithms, and statistics 

clearly matter, focusing on situated and discretionary 

judgment helps contextualize algorithmic knowledge, 

facilitating a better understanding of the mechanics, 

exactness, and limits of such knowledge. Algorithms and 

data don’t produce knowledge by themselves. We produce 

knowledge with and through them. The notion of data 

vision puts humans back in the algorithm. 

Second, data vision can help us better attend to the ways in 

which algorithmic results are documented, presented, and 

written up. Although algorithmic and statistical choices 

constitute a significant part of data analytic publications, 

also providing an explicit description of key decisions that 

data analysts take can not only help communicate a 

nuanced understanding of technical choices and algorithmic 

results, but also enable students as well as practitioners to 

think through aspects of their work that though may seem 

“non-technical,” greatly impact their knowledge claims. 

This helps to not only reduce the “opacity” [8] of data 

analytic practices, but also better teach and communicate, 

what some call, the “black art” or “folk knowledge” [13] of 

data analysis, contributing to the development of a 

complete and “reflective practitioner” [31]. 

Third, better understanding of data vision can help inform 

both professional training and community conversations 

around data analysis. In data analytics, and in many other 

forms of research (including our own!), we often present 

research setup, process, and results in a dry and 

straightforward manner. We had a question, we collected 

this data, we did this analysis, and here is the answer. Open 

and effective conversations about the messy and contingent 

aspects of research work – data analytic or otherwise – tend 

to escape the formal descriptions of methods sections and 

grant applications, reserved instead for water cooler and 

hallway conversations by which workarounds, ‘tricks of the 

trade’, and ‘good enough’ solutions are shared. The result is 

an excessively “neat” picture that fails to communicate the 

real practices and contingencies by which data analytic 

work proceeds. This becomes even more difficult outside 

the classroom. In industry, research centers, and other 

contexts of algorithmic knowledge production, data 

analysts often work with huge volumes of data in multiple 

teams, simultaneously interfacing with a host of other 

actors such as off-site developers, marketers, managers, and 

clients. Where the results of data analytics meet other kinds 

of public choices and decisions (think contemporary 

debates over online tracking and surveillance, or the 

charismatic power of New York Times infographics) these 

complications – and their importance – only multiply. Data 

analytic results often travel far beyond their immediate 

contexts of production, taking on forms of certainty and 

objectivity (even magic!) that may or may not be warranted, 

in light of the real-world conditions and operations from 

which they spring. Here as in other worlds of expert 

knowledge, “distance lends enchantment” [10]. 

More broadly, an understanding of data vision helps 

support the diverse forms of oft-invisible collaborative data 

analytic work. Data analysis not only warrants algorithmic 

techniques and computational forms, but also comprises 

answers to crucial questions such as what is the relation 

between data and question, what can actually be answered 

through data, what are some of the underlying assumptions 

concerning data, methods, etc. By bringing such questions – 

and, indeed, other forms of human work – to the fore, data 

vision directs our attention to forms of situated 

discretionary work enabling and facilitating data analysis. 

Data are never “raw” [15], and a large amount of work goes 

into making data speak for themselves. The notion of data 

vision can help us to identify and build acknowledgment 

and support mechanisms for sharing such folk knowledge 

that, though immensely useful, is often lost. Data vision is 

not merely about perceiving the world, but a highly 

consequential way of seeing that turns perception into 

action. Data often speak specific forms of knowledge to 

power. Like all forms of explanation, data analysis has its 

own set of biases [3, 15], assumptions [4, 7, 34], and 

consequences [4, 5, 6]. Understanding data vision allows us 

to better delineate and communicate the strengths as well as 

the limitation of such collaborative knowledge – indeed, of 

seeing the world with and through data. 

CONCLUSION 

Given our growing use of and reliance on algorithmic data 

analysis, an understanding of data vision is now integral to 

contemporary knowledge production practices, in CSCW 

and indeed many other fields. In this paper we presented 

two distinct, yet complementary, ways of learning and 

practicing data analysis. We argued in favor of a rule-based, 

as opposed to a rule-bound, understanding of data analytics 

to introduce the concept of data vision – a notion that we 

find integral, if not foundational, to the professionalization 

and practice of data analysts. We described how a better 

understanding of data vision allows us to better grasp and 

value the intimate connection between methodological 

abstraction, empirical contingency, and situated discretion 

in data analytic practice. Shedding light on the diverse 

forms of data analytic work, data vision produces a more 

open and accountable understanding of algorithmic work in 

data analytic learning and practice. 

Studying learning environments helps showcase basic, yet 

formative, aspects in the training and professionalization of 

data analysts. In this paper, using empirical examples from 

classrooms and workshops, we have described not only a 

rule-based view of data analysis, but also the outline of the 

notion and practice of data vision. Studying learning 
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environments, however, has its limitations. Classrooms are 

but one step in the professionalization of data analysts. Data 

analysis, like all practices, is a constant learning endeavor. 

To better understand data analytic practice, we then need to 

also study other contexts of algorithmic knowledge 

production such as those in industry, research centers, 

startups, and even hackathons. Acting as avenues for future 

research, diverse contexts of data analyses provide 

opportunities to further and strengthen our understanding of 

data vision. In different contexts, data analysis is shaped by 

a diverse set of professional expectations and organizational 

imperatives, reminding us that the practice of data analysis 

remains a deeply social and collaborative accomplishment. 

This paper has suggested early steps in defining and 

understanding data vision. Future work will seek to extend 

and deepen this holistic approach. 
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