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What are neural networks not good at?
On artificial creativity

Anton Oleinik

Abstract

This article discusses three dimensions of creativity: metaphorical thinking; social interaction; and going beyond extrapo-

lation in predictions. An overview of applications of neural networks in these three areas is offered. It is argued that the

current reliance on the apparatus of statistical regression limits the scope of possibilities for neural networks in general,

and in moving towards artificial creativity in particular. Artificial creativity may require revising some foundational

principles on which neural networks are currently built.
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Introduction

Significant progress in the development and practical
implementation of neural networks leaves little doubt
about their potential. ‘A neural network is a massively
parallel distributed processor made up of simple pro-
cessing units that has a natural propensity for storing
experiential knowledge and making it available for use’
(Haykin, 2009: 1; see also Goodfellow et al., 2016: 438;
Thaler, 2016a: 138). This basic ‘connectivist’ principle
allows for dividing complex problems into multiple
simple tasks that can be performed with the help of
standard mathematical models,1 with regression
models being among the most commonly used.

Distributed processing paves the way for achieving
important breakthroughs. Modelling of the XOR logi-
cal operation (the output is true only when inputs
differ), in contrast to the AND or OR operations, has
no linear solution. With the help of a neural network,
the XOR operation can be broken down into several
components that may have a linear solution (Haykin,
2009: 141; Jurafsky and Martin, 2018: chapter 8).
Pattern recognition represents a particularly promising
application of neural networks.

The breakthroughs come at a cost, however. Exact
specifications of mathematical models that underpin
neural networks are difficult to extract and make expli-
cit. Synaptic connections joining processing units

(neurons) are depositories of information about net-
works (Haykin, 2009: 2, 171; Nielsen, 2015; Thaler,
2016a: 138). Connection weight values can be com-
pared with coefficients in regression models. In contrast
to regression and other models, however, connection
weight values are difficult to identify and, hence, to
enter in a formal ‘model’, especially in the case of
multi-layered networks with ‘hidden’ neurons. Similar
to a ‘black box’, inputs (training data) and outputs
(revealed patterns) of a neural network are known,
whereas many internal parameters remain hidden.
The relative lack of transparency complicates the for-
mulation of ‘if/then’ rules with the help of which one
spots and describes patterns in data (Thaler, 1998: 22).
It also slows down progress in understanding limits of
the reliance on neural networks.

This paper offers a view of a social scientist, albeit
with a background in mixed research methods, on
internal limitations of neural networks. It contains a
critical reading of the recent developments in neural
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networks that may be of interest to scholars of compu-
tational culture.2 The article does not have an ambition
to offer a comprehensive ‘archaeology’ of neural net-
works (cf. Mackenzie, 2017), being focused rather on
prospects for achieving artificial creativity with their
help. Nor does this article offer a comprehensive over-
view of limitations of artificial creativity – a broader
topic in artificial intelligence. The focus is placed on
the inherent limits of neural networks as a driver of
artificial creativity. The research question addressed in
what follows is how sociological thinking helps better
understand the limits of artificial creativity based on
neural networks. It is argued that neural networks get
us very close to artificial creativity without quite being
able to perform several creative tasks. In the words of a
sociologist, a robot powered by neural networks may
be a good Actor, i.e. someone who closely follows the
script, but not a Subject, i.e. someone who meaning-
fully changes and re-writes the imposed rules
(Touraine, 1992: 238–239).

More specifically, this paper aims to explore some
limits in the further evolution of neural networks that
derive from the foundational principles on which they
are based. Limits in the development of a technology
can be either internally or externally set. Andrei
Sakharov, a Soviet physicist, who worked on military
applications of nuclear technologies in the 1950s, sub-
sequently became an advocate for placing limits – by
political and civic means – on their further improve-
ment. The development of neural networks has also
been influenced by military needs: namely, by a high
priority given to target-recognizing (‘smart’) bombs
(Thaler, 1998: 21). Attempts to ban the work on killer
robots as the other military application of artificial
intelligence in general and neural networks in particular
represents an example of externally imposed limits. In
August 2017, a group of leading robotics and artificial
intelligence experts wrote an open letter to the United
Nations calling for a ban on lethal autonomous weap-
ons (Gibbs, 2017).

Particularities of technical solutions implemented at
early stages in the development of a technology lie at
the origin of the other – internal, set of limits. They
determine the scope of the possible and cause ‘lock-
in’ effects. Early adopters face significant costs if they
wish to switch to a competing technology later on: they
are ‘locked in’, literally (Arthur, 1989). The reliance on
statistical regression, linear and logistic, limits the scope
of possibilities for neural networks. Neural networks
are very good at identifying patterns, but only if train-
ing data has a structured character.3 Internal limita-
tions of neural networks take particularly manifest
forms when they deal with pattern changes in addition
to pattern recognition. Artificial creativity powered by
neural networks has a problematic character as a result.

Boden (1999: 351) defines creativity as ‘the gener-
ation of ideas that are both novel and valuable’. She
further differentiates (2009: 24–25) between three types
of creativity: combinatorial (production of new com-
binations of known elements); exploratory (probing
the boundaries of what is possible without radically
changing existing procedures and approaches); and
transformational (transforming these boundaries by
altering procedures and approaches). Boden made
contradictory statements as to what kind of artificial
creativity is most difficult to achieve: combinatorial
(2009: 25) or transformational (1999: 365). Whichever
it may be, the key outstanding issue is the determin-
ation of what counts as a ‘valuable’ novelty.

Thaler (1998, 2016a) discusses more specifically arti-
ficial creativity driven by neural networks, seeing its
source in perturbations and noise. According to him,
creativity is the opposite of the ‘training’ of a network –
something that shakes its operation by altering connec-
tion weight values. In other words, creative shocks
undermine the ‘normal’ operation of neural networks.

Take the example of self-driving cars. Driverless cars
powered by neural networks can be seen on the streets,
but their performance is not yet very impressive. On the
one hand, rules of the road are more difficult to define
exhaustively: the traffic code represents their subset
only. A number of situations remain unspecified by
the law, such as an obstructed line with visibility to
the horizon, with no oncoming vehicles but the solid
centre line. Any reasonable driver would cross into the
oncoming lane to pass the obstacle. A driverless car
may well stop and wait there before the obstacle is
cleared (Riley, 2017). On the other hand, as long as
humans continue to drive cars – some of them are
unpredictable drivers – neural networks will have a
hard time to adjust to all manoeuvres of human drivers.
Training data tend to be ‘messy’ as a result.

The paper has two sections, along with the introduc-
tion and conclusion. Several areas in which neural net-
works underperform compared with humans are
identified in the first section. The second section high-
lights consequences of this relative underperformance
on artificial creativity powered by neural networks.

Areas in which neural networks
underperform

When assessing the performance of neural networks, it
is conventionally measured against the results achieved
by humans as a ‘gold standard’ (Amini et al., 2011:
1574; DiMaggio, 2015: 1; Huang et al., 2012: 1601;
Jurafsky and Martin, 2018). Following this line of
thinking, artificial creativity could be compared with
human creativity. Instead of asking the question of
whether a neural network could ever be ‘really’ creative,
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a more relevant inquiry is whether neural networks
under- or over-perform in creativity compared with
humans. Attempts to develop artificial creativity cover
a wide range of areas: literature, music, visual arts and
problem solving (Computational creativity, n.d.). This
article focuses on limits of artificial creativity based on
neural networks in the identification and interpretation
of symbols, proactive coordination and prediction.

Identification and interpretation of symbols

Symbols are conventionally understood as meaningful
objects, i.e. objects to which a specific meaning is
attached. Driving a car requires the ability to identify
and read relevant symbols: road marking, road symbol
signs and traffic lights. Objects with a symbolic value in
one situation do not necessarily have it in another.
Perlovsky and Ilin (2012: 807) use the term situation-
symbol in this regard: ‘situation ‘‘office’’ is character-
ized by the presence of a chair, a desk, a computer, a
book, a book shelf. Situation ‘‘playground’’ is char-
acterized by the presence of a slide, a sandbox, etc.
The principal difficulty is that many irrelevant objects
are present in every situation’. In order to navigate
various situations, one needs to correctly establish
their type (road, office, or playground) and then to
identify relevant objects that have meaning in this
context. Is a car model relevant for the ‘road’ situ-
ation, i.e. does it have an impact on successful
(collision-free) driving?

Situation-symbols and object-symbols are socially
embedded. There is no ‘universal’ system of symbols
pertaining to driving. There are symbols specific to
left- and right-hand traffic. In some countries, licence
plates acquire a symbolical value: they serve to signal
the privileged status of the car’s user (Oleinik, 2016:
20). The same goes for the ‘office’ situation. This situ-
ation cannot be taken for granted everywhere and at
any point in time. It results from the process of mod-
ernization and rationalization accompanied by ‘the sep-
aration of the bureaucratic office as a ‘‘vocation’’ from
private life, the bureau from the private household’
(Weber, 1968: 379). Before this separation occurred,
the office and the household shared a similar set of
relevant objects. Even mathematical symbols, appar-
ently the most context-free, have multiple interpret-
ations; the meaning attached to them varies across
particular communities (Kripke, 1982: 106–110).

It follows that identification and correct interpretation
of symbols requires social competence with sensitivity to
the context as one of its dimensions. It is here that
semiotics provides a useful point of reference. Semiotics
studies symbols regardless of their form, material, visual
or textual, in a systematic manner. Semioticians consider
symbols to be ‘the most stable elements of the cultural

continuum’ (Lotman, 1990: 104). In a sense, symbols
could be compared with ‘plot-genes’ of a culture. The
evolution of these plot-genes depends on the specific con-
text understood here as a set of other symbols.

Machine learning of symbols with the help of neural
networks offers several solutions to the problem of
identification and interpretation of symbols in general,
and textual symbols in particular. Topic analysis and
regression analysis based on Bayesian (conditional)
probability are two of them. They both derive from
the idea of co-occurrence of words in a text as a key
for identification and interpretation of symbols that it
contains.

Specific assumptions, on which these methods are
based, and procedures, which they use, differ, however.
In the case of topic analysis, principles of Latent
Dirichlet Allocation are used for comparing a random
allocation of a given ‘bag’ of words across various
topics in a set of texts with the frequencies actually
observed. Significant departures from the conditions
of a random allocation are indicative of the existence
of a topic understood as a constellation of words in
which a symbol is embedded (Bail, 2014: 472;
Evangelopoulos et al., 2012: 72). From this point of
view, topic analysis allows for contextualizing a
symbol. A topic embodies a particular combination of
words and cannot be separated from those words even
at the most basic, methodological level. This particular
combination of words constitutes an interpretive frame
for attaching a meaning to a person, event, organiza-
tion, practice, condition, or situation (DiMaggio et al.,
2013: 593).

Compared with a human reader of a text, topic ana-
lysis has a number of shortfalls. Its critics point to the
arbitrariness in the choice of the number of topics to be
discovered in a set of texts with the help of machine
learning. This parameter has to be specified at the very
beginning, similar to cluster analysis. Results are sensi-
tive to the a priori assumptions about the number of
possible topics (Bail, 2014: 472). ‘Many people utilize
topic models in an inductive manner that resembles
reading tea leaves’ (Bail, 2015: 2; see also
Wiedemann, 2013: para 48). The absence of clear cri-
teria for validating outcomes of topic analysis does not
help either. ‘The standard for selecting a solution is not
so much accuracy as utility: Does the model simplify
the data in a way that is interpretable’ (DiMaggio et al.,
2013: 602). In other words, much depends on human
input at the final stage as well.

Regression analysis exploiting the concept of
Bayesian probability also aims to identify ideas (sym-
bols) in a text in function of words that it contains. The
presence of particular words is deemed to be indicative
of ‘the range of things that speakers are capable of
doing in (and by) the use of words and sentences’
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(Skinner, 2002: 3). In terms of semiotics, a word is a
signifier, an idea (symbol) is a signified (Derrida, 1967).
For instance, if a text contains the words ‘pleasure’,
‘sex’ and their derivatives,4 then it likely conveys the
idea of sexuality, Foucault’s Histoire de Sexualité
(1976, 1984a, 1984b) being a prime example. The
presence of a specific word in a text thus constitutes a
condition that it ‘symbolizes’, or embodies a particular
idea as well.

Bayesian probability helps operationalize the notion
of conditionality. N-grams (bigrams, trigrams, etc.)
represent its simplest manifestation. The assumption
is that the probability of the last word in an N-gram
depends on the word(s) that occur(s) immediately
before (Jurafsky and Martin, 2018: chapter 3).5 Along
with meaningful N-grams – they can be found with the
help of Google Ngram Viewer6 – there are a great many
meaningless N-grams, such as ‘please turn’, ‘turn your’,
or ‘your homework’.

The conditional probability of y (idea) given the
occurrence of x (word) can be computed with the for-
mula P y ¼ yjx ¼ xð Þ ¼

p y¼y, x¼xð Þ

p x¼xð Þ
, where P (y¼ y, x¼x)

refers to the percentage of texts containing the word x
conveying the idea y, P (x¼ x) – to the percentage of
the word x among all words in a set of texts
(Goodfellow et al., 2016: 57; Murphy, 2012: 177). The
more words-signifiers are taken into account, the more
accurately classification of ideas-symbols can be
achieved even on the basis of the so-called ‘naı̈ve’
Bayes assumption, or the assumption of the conditional
independence of words accounted for in regression ana-
lysis (Evans et al., 2007: 1015; Grimmer and Stewart,
2013: 277; Jurafsky and Martin, 2018: chapter 6;
Mackenzie, 2017: 112).7 Applications of regression ana-
lysis designed along those lines are popular in the social
sciences, ranging from psychology (Schwartz et al.,
2013) to applied economics (Yakovleva, 2017: 6).

The brief outline of two approaches to identifying
and interpreting symbols with the help of neural net-
works suggests that they have some internal limits. On
the one hand, these limits derive from attempts to
extrapolate patterns found in one set of sources, the
training data, to a much larger set. This limit takes a
particularly manifest form in the case of selecting the
number of topics, but also characterizes any regression.
We will return to limits of extrapolation in a subsection
that follows. On the other hand, both approaches can
allow learning to read manifest meanings, as opposed
to reading between the lines. Nothing in this line from
Austen’s Pride and Prejudice (1813), ‘to be fond of
dancing was a certain step towards falling in love’,
explicitly indicates a potential connection with the
idea of sexuality. Yet dancing may well be perceived
as a symbol of sexuality, at least in some contexts.
In other words, the proper identification and

interpretation of symbols calls for going beyond study-
ing constellations of words and for thinking metaphor-
ically. ‘The primary function of metaphor is to provide
a partial understanding of one kind of experience in
terms of another kind experience’ (Lakoff and
Johnson, 1980: 154), i.e., sexuality in terms of dancing.
This metaphor suggests that movements of the physical
body can become a modality of feeling, thinking, and
by extension, a form of creativity (Sutil, 2017).8 The
metaphor of dancing helps also capture an interactive
nature of sexuality. So the saying, ‘It takes two to
tango.’

Modelling social action

Modelling interaction, as compared with individual
decision-making, represents the other challenge to the
application of neural networks. Weber’s definition of
social action highlights the need for mutual adjustments
and adaptation as a second dimension of social compe-
tence, in addition to the capacity to identify and inter-
pret symbols discussed in the previous subsection.
‘Action is ‘‘social’’ insofar as its subjective meaning
takes account of the behavior of others and is thereby
oriented in its course’ (Weber, 1968: 4).9

Computer scientists and specialists in cognitive sci-
ences acknowledge the need for introducing a ‘social’
dimension into artificial creativity. Creativity involves
the production of ideas that are both novel and valu-
able. Neural networks can be trained to detect and
appreciate novel patterns (Schmidhuber, 2012: 324;
Thaler, 2016b: 23). The determination of whether
novel patterns are also valuable turns out to be more
challenging. ‘Value is not found by science [or arts] but
negotiated by social groups’ (Boden, 1999: 351). It fol-
lows that the acceptance of novel ideas as valuable
requires social, as opposed to individual, action.

At the same time, aspects related to interaction com-
plicate the task of pattern recognition. In the simplest
case of object perception, one needs to identify patterns
that characterize a stand-alone, stable and simple
object. At the next stage, one has to show ‘situation
awareness’ by perceiving multiple objects, some of
which are relevant to a situation-symbol, whereas the
others are not (Perlovsky and Ilin, 2012: 805). For
instance, family pictures placed on an office table or
wall do not fit well the ‘office’ situation. Images, in
general, normally contain a number of elements, both
relevant and irrelevant to the idea that they symbolize.
The recognition of patterns in interactions – social
(behavioural) perception – is still more complicated.
Such patterns do not remain stable: they evolve as the
interaction unfolds. A partial solution would be to
reduce other parties in the interaction to the status of
objects, artificially renouncing the need for taking into
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account their interests and for adjusting to their moves.
They are then considered as ‘frozen’, in the same way as
the values within almost all artificial creativity com-
puter programs are ‘frozen’, i.e. held constant
and extrinsic (Boden, 1999: 353). The notion of instru-
mentally rational action reflects this solution.
Instrumentally rational action is ‘determined by expect-
ations as to the behavior of objects in the environment
and of other human beings; these expectations are used
as ‘‘conditions’’ or ‘‘means’’ for the attainment of the
actor’s own rationally pursued and calculated ends’
(Weber, 1968: 24).

Situations studied by game theory probably repre-
sent an approximation for the second dimension of
social competence. They help to potentially avoid the
reductionism of treating interests and acts of other
people as simple parameters in the individual’s utility-
maximization function. A game theory player cannot
reach her optimum without paying close attention to
what the other player is doing. A combination of game
theory and machine learning looks particularly promis-
ing. Neural networks pave the way for modelling the
opponent’s moves, current and future – in the case of
repeated games (Azaria et al., 2014; Chen et al., 2015;
Gaudesi et al., 2014: 26). These models do not remain
stable. They evolve after information about each sub-
sequent round in the play is ‘fed’ into them.

Feedback loops in the model represent a dynamic
parameter. This parameter does not relate to limita-
tions of individual rationality studied by psychologists
and experimental economists (Denzau and North,
1994; Kahneman and Tversky, 1982). Instead, it derives
from constraints imposed on individual decision-
making in the context of interaction. It must be noted
that the involvement in interaction can have both nega-
tive (constraining) and positive (enabling) effects on the
individual (Giddens, 1984). By joining efforts with
other people, one attains goals that were otherwise out-
side of one’s reach.

Malsch (2001: 165) differentiates two types of coord-
ination: reactive and proactive or anticipatory. In the
former case, one reacts to an obstacle or opportunity
created by the other individuals. Weber’s notion of
instrumentally rational action applies to this situation.
In the latter case, one anticipates (with the help of
either learning or inferences) possible interference or
opportunities. Anticipatory coordination requires
more complex models of the other people. The other
individuals involved in coordinated action cannot be
reduced to ‘conditions’ or ‘means’, as in the previous
case. For this reason, models that underpin anticipa-
tory coordination are more complex and difficult to
build (Castelfranchi, 1998: 166).

The example of killer robots mentioned previously
serves as an illustration. Progress in their development

is more significant than in other areas of artificial intel-
ligence. It has not escaped the attention of scholars in
science and technology studies. Some prototypes, such
as the SGR-A1 sentry gun not only exist but are actu-
ally used in practice, in the Korean Demilitarized Zone.
Along with some external factors, the rapid develop-
ment of killer robots may be indicative of the lack of
some internal technological constraints. Killer robots
embody force as a technique of power. According to
Weber, power in its various configurations (force, coer-
cion, authority, etc.) represents a particular case of
social action. Relationships mediated by force are
still interactions, but in their least sophisticated, essen-
tially reactive form. The individual subject to force
simply reacts to its application. She is treated as if
‘she were no more than a physical object’ (Wrong,
1980: 24), read a ‘condition’ or ‘means’. ‘To kill some-
body is for sure a social action (although not very soci-
able!) but it neither is nor requires communication’
(Castelfranchi, 1998: 164). The lack of in-built con-
straints calls for endowing robots with a capacity for
explanation and justification as a prerequisite for being
allowed to make the decision of whether to kill or not
(Maher, 2016).

Another violent technique of power – coercion,
requires a bare minimum of communication between
the parties involved and, hence, more sophisticated
models. The coerced individual has a choice, however
unattractive (e.g., your money or your life) it may be.
Coercion refers to ‘social relations in which the threat-
ener engages in communication with the other at the
symbolic level’ (Wrong, 1980: 25). To be effective, coer-
cion necessitates at least some proactivity: after all, the
threatener does not necessary want to kill the coerced,
being satisfied with her purse instead. In other words, a
battle is the least sophisticated configuration of social
action that could be modelled, even using the existing
technologies of artificial intelligence. Anticipatory,
proactive coordination requires more than that, which
explains the relatively slower progress in the develop-
ment of, for instance, driverless cars. To be effective,
they shall be able to anticipate at times ‘unpredictable’,
‘illogical’ or even ‘illegal’ manoeuvres of human
drivers.

The simultaneous accounting of human participants
and material objects involved in interactions adds an
additional layer of complexity to the task of their mod-
elling. Actor-network theory and related approaches
highlight particularities of networks comprised of
both humans and material objects. Callon’s study of
innovations (2002) shows that patterns of interactions
between actors involved depend on whether or not
novel knowledge is embodied in the minds and bodies
of researchers and technicians or in instruments and
machines.
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Prediction

Neural networks are good at discovering existing pat-
terns in data and extrapolating them. Their perform-
ance in prediction of pattern changes in the future is
less impressive. Keeping in mind that ‘prediction seeks
to anticipate, whereas inference seeks to interpret’
(Mackenzie, 2017: 107), one might say that neural net-
works are a powerful tool for making inferences, but
not predictions. Accordingly, neural networks are more
capable of performing classificatory functions directly
related to inference than of making predictions. In con-
trast to pattern recognition performed by neural net-
works (in hand written digits, in multi-object images,
etc.), their predictive power is less frequently problema-
tized and subject to critical scrutiny.

This internal limitation of machine learning powered
by neural networks derives from their reliance on
regression analysis. ‘Linear regression is the ‘‘work
horse’’ of statistics and (supervised) machine learning’
(Murphy, 2012: 217; see also Mackenzie, 2017: 40, 169;
Witten et al., 2017: chapter 4). The fact that neural
networks are applied to Big Data as opposed to small
and manageable datasets does not change much. Data
points are still to be fit into some kind of line, even if
‘the line is not fitted [any more] to x–y coordinates but
in a multidimensional space reflecting the large number
of features that the algorithm is trying to combine’
(McQuillan, 2016: 2). McQuillan emphasizes difficulties
with visualizing and, hence, interpreting a best-fit line in
a multidimensional space. Here, the argument will be
focused on the other problem with regression analysis,
namely, its inherent proclivity to equate predictions
with extrapolation of existing patterns.

In regression analysis, predictions are made under
the assumption that existing patterns will not change
in the future. They can be held constant, in other
words. While not speaking specifically about regression
analysis, Keynes highlights this assumption in the
much-quoted passage from his General Theory of
Employment, Interest and Money (1936). ‘In practice
we have tacitly agreed, as a rule, to fall back on what
is, in truth, a convention. The essence of this convention
– though it does not, of course, work out quite so
simply – lies in assuming that the existing state of affairs
will continue indefinitely, except in so far as we have
specific reasons to expect a change. . . We are assuming,
in effect, that the existing market valuation, however
arrived at, is uniquely correct in relation to our existing
knowledge of the facts which will influence the yield of
the investment, and that it will only change in propor-
tion to changes in this knowledge’ (Keynes, 2015: 152).
This observation was made during the Great
Depression, when the assumption that the existing
state of affairs would continue indefinitely did not hold.

The 2008 global financial crisis serves as a more
recent reminder that ‘the extrapolation of past patterns
or relationships cannot provide accurate predictions’
(Makridakis et al., 2009: 794). Sophisticated forecasting
techniques powered by neural networks appeared
no more efficient than ‘naı̈ve’ forecasting strategies
(Perera et al., 2018: 271).

Neural networks in their current architecture can
hardly overcome this inherent limitation of regression
analysis. A direction for searching for a possible solu-
tion was suggested also by Keynes. It involves connect-
ing our assessment of probabilities of future events to
our state of knowledge, as the last sentence in the
quoted passage clearly suggests. A view on probability
as being conditioned by our knowledge is closer to the
Bayesian interpretation than to the frequentist one. In
the first case, ‘probability is used to quantify our uncer-
tainty about something; hence it is fundamentally
related to information rather than repeated trials’,
whereas in the second ‘probabilities represent long
run frequencies of events’ (Murphy, 2012: 27). The dif-
ferences between the Bayesian and frequentist interpret-
ations lie less in the underlying mathematics
(Goodfellow et al., 2016: 53) than in the role played
by knowledge and information. Knowledge and infor-
mation do not affect ‘frequentist’ probabilities that are
assumed to have an ‘objective’ nature. Bayesian prob-
abilities in this sense are more ‘subjective’ and subject
to social influences (Keynes believed that our expect-
ations about the future could and should be manipu-
lated). However it may be, the application of neural
networks in this particular area is still at a very
early stage.

Limits of artificial creativity powered
by neural networks

All three sets of internal limits of neural networks take
manifest forms when they are used to achieve artificial
creativity. In the context of the present discussion, cre-
ativity involves (i) one’s capacity to produce symbols
and to transfer them from one context to the other;
(ii) one’s social intelligence, since innovations are
often embedded in social connections and relationships,
and; (iii) one’s capacity to go beyond simple extrapola-
tion of current trends in predictions. The progress
towards artificial creativity can be used to assess how
hard or soft these three sets of internal limits of neural
networks are.

When discussing artificial creativity, one’s capacity
to transfer symbols from one context to another
becomes highly relevant. Thinking metaphorically
constitutes a dimension of creativity. It involves
establishing links between symbols in various situ-
ations (domains) on the basis of their similarity
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(Lotman, 1990: 39). In the humanities and social sci-
ences, the importance of metaphors is acknowledged.
For example, they are used as indicators for changes in
culture (Pasanek and Sculley, 2008: 345). In the natural
sciences and engineering, metaphorical thinking plays
an equally important role. This fact is rarely openly
admitted though. Ideas and solutions in one context
offer valuable insights when dealing with problems in
another – this principle applies to creativity regardless
of the area of human activity.

The history of neural networks is a case in point. The
idea of neural networks was originally inspired by a
metaphor of the brain.10 Taken separately, neurons
perform very simple, trivial tasks. When they are con-
nected and form networks, their power substantially
increases. Tasks that cannot be tackled by a single
neuron are easily performed when being distributed
among many of them. The parallel between the brain
and neural networks is far from being direct: the
brain architecture is rather a source of insights than
an exact model for neural networks (Goodfellow
et al., 2016: 165).

The other parallel, this time between Freud’s theory
(as strange as it may sound in this context) and links
constituting a neural network, inspired the idea of
backpropagation. Werbos (2012: 91), its author,11

explains: ‘chronologically, I translated Freud into a
way to calculate derivatives across a network of
simple neurons (which Harvard simply did not believe),
and then proved the more general chain rule for
ordered derivatives to prove it and make it more power-
ful (and to graduate)’. The principle of backpropaga-
tion underpins feedback loops connecting elements
(such as specific regressions) of a neural network.

The list of metaphors that have influenced the evo-
lution of neural networks does not stop here. Studies
in neuroscience suggest that creativity requires the
co-activation and communication between regions of
the brain that ordinarily are not strongly connected
(Cariani, 2012: 406; Heilman et al., 2003: 369;
Kowatari et al., 2009). It means that neural networks
created in various, not strongly connected, situations
(e.g., driving and reading) can be a potentially powerful
tool for discovering and exploiting relationships
based on similarity (Heilman et al., 2003: 375;
Malsch, 2001: 159).

The metaphor of the brain has its limits, neverthe-
less. It prompts further developments in neural net-
works in one direction and overshadows promising
inquiries if they deviate from the neuropsychological
path, for instance, science and technology studies
(Munster, 2011). Scholars in science and technology
studies consider the capacity to trace linkages between
heterogeneous and previously unconnected elements as
a distinctive human social activity, ‘which is to say

these linkages are associations’ (Gehl and Bell, 2012).
It means that the apparatus of neuroscience does not
suffice to establish connections between a priori hetero-
geneous elements and to make sense of these associ-
ations. The capacity to do so has a social dimension,
as Gehl and Bell’s case study of the rather unsuccessful
implementation of the otherwise very promising oper-
ational system, Microsoft Vista, suggests.

When speaking of relationships based on similarity,
it is necessary to distinguish valid similarity relations
from apparent similarity. Mining of Big Data with
the help of neural networks creates unprecedented
opportunities for discovering unexpected patterns (see
Sala-I-Martin, 1997 for an early example in eco-
nomics). How to make sure that similarity between
some of these patterns goes beyond appearances?
McQuillan (2016: 6) observes in this regard that ‘what
most people would see as coincidence a paranoid
person may believe was intentional, while the whole
of machine learning is based on finding meaning in pat-
terns of coincidence. Paranoia and machine learning
weave around each other like the serpents around
Hermes’ staff’ (2016: 6).

Sociological thinking offers one approach for discri-
minating against simple appearances; building classifi-
cations refers to the other. The Thomas theorem is
among few ‘theorems’ known to sociologists. It states
that ‘if men define situations as real, they are real in
their consequences’ (Merton, 1995: 380). If only one
individual sees a relationship, then it may be indicative
of paranoid behaviour. However, if a relationship
makes sense to many people, then chances that a
valid – and valuable – similarity relation exists tend
to be higher.

In the words of Lakoff and Johnson (1980: 157),
‘the acceptance of the metaphor, which forces us
to focus only on those aspects of our experience that
it highlights, leads us to view the entailments of the
metaphor as being true’. Vee (2012) shows how meta-
phors create a reality using three classificatory meta-
phors for computer code in US jurisprudence as an
example. Continuing this line of reasoning, one can
assume that neural networks assist in generating a
‘long list’ of potential metaphors, whereas concerted
human efforts will still be needed for ‘short-listing’
valid and valuable metaphors. The short-listing has a
negotiated and, hence, social character, which preludes
the discussion of a second dimension of creativity
below.

The search for relationships based on similarity is
also facilitated by building classifications, provided
that classes are built on relationships among class mem-
bers. ‘The members of classes may be highly similar to
one another, but their similarities result from their
membership in the same class (i.e., conforming
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to class properties), and not the other way around (i.e.,
similarity alone cannot define class inclusion)’ (Berman,
2013: 141). In this case, classes include members with
similar functional properties even if at first sight they
look dissimilar. The word2vec models developed by
Google illustrate this point. Embedded words are ana-
lysed and classified in function of semantic roles that
they perform. This approach allows answering ques-
tions of the type: Madrid is to Spain as France is to
___? (Paris). Madrid and Paris have similar
functional properties with respect to Spain and
France, respectively (Evans and Aceves, 2016: 33).
Identification of valid metaphors (‘Constantinople is
the second Rome, Moscow is the third Rome’12) in
this way requires minimal human input.

To conclude the discussion of metaphorical thinking
as a dimension of creativity, it is necessary to differen-
tiate between understanding of metaphors and their
generation. Some progress towards training neural net-
works to understand metaphors has been made, for
instance, in linguistics. At the same time, ‘much less
research has been devoted to generating metaphor’
(Gargett and Barnden, 2015: 104). Artificial creativity,
first of all, is about generating metaphor since this pro-
cess requires new ways of thinking and new techniques,
or at least fresh ways of using already established
techniques.

A second dimension of creativity refers to inter-
action. Instead of attributing creativity exclusively to
a solitary individual, Sawyer (2006) highlights the
importance of group and societal forms of creativity.
The sociology of science shows that creativity and
innovation tend to be embedded in social interactions
and networks. ‘Intellectual creativity is concentrated in
chains of personal contacts, passing emotional energy
and cultural capital from generation to generation’
(Collins, 1998: 379). Three examples of chains of
personal contacts as a source of innovation serve to
illustrate this point.

A network of corresponding scholars that emerged
in the late XVI-early XVII centuries became known
under the name of the Republic of Letters. In contrast
to the current situation, research was not exclusively
concentrated in the universities that only started to
come into existence at that time. Scholars and free
thinkers were scattered across vast areas of Europe,
the Middle East and North Africa. Nevertheless, they
stayed connected and exchanged ideas and the results
of their inquiries by way of letters and publications in
scholarly journals. ‘It is these societies, [these] acade-
mies, and these journals which give a concrete form to
the relationship between[. . .] expertise and reading in
the free and universal form of the circulation of written
discourse’ (Foucault, 2011: 8). Without free circulation
of written discourse, most innovations and discoveries

of the XVII–XVIII centuries would have been simply
impossible.

Two other examples refer to smaller scale social net-
works as a source of creativity. Mikhail Bakhtin made
an important contribution to semiotics. His case is
interesting since it highlights difficulties with differen-
tiating an individual contribution and a group contri-
bution. Major breakthroughs were achieved in group
discussions with his participation: he took part in the
operation of three circles that existed in the 1920s in
Nevel, Pskov and Leningrad. ‘Ideas as [Bakhtin] under-
stood their nature emerge and disappear in the process
of dialogue’ (Etkind, 1993: 392). For this reason, the
authorship of some works and ideas deriving from the
Nevel, Pskov and Leningrad circles remain disputed up
to now.

Granovetter (1994) considers the case of techno-
logical innovations, showing the social embeddedness
of their production and diffusion. He discusses Edison
and networks that allowed him to promote his innov-
ations in the area of industrial electricity and power
generation. These three examples show that creativity
involves interactions, being, from this point of view, a
particular case of social action. As indicated before,
neural networks still underperform in social action
compared with humans, especially as far as anticipa-
tory coordination is concerned. The architecture
required for artificial intelligence can be compared
with a ‘federation’ of neural networks, or a network
of networks.

Artificial intelligence also requires going beyond
extrapolation as a basis for forecasts. Under the current
arrangements, neural networks are composed of neu-
rons. Each neuron implements a simple model, often a
regression model (Mackenzie, 2017: 192). A neuron
computes a weighted sum of the sample inputs applied
(for instance, the frequencies of particular words in a
text) and then perform an activation function to this
sum to calculate its output. The sigmoid transfer func-
tion, f xð Þ ¼ 1

1þe�x, is a popular activation function
(Russell et al., 2010; Sharma and Dey, 2010: 69).
Adding more neurons, layers or even neural networks
to this scheme does not lessen its dependence on the
mechanics of regression analysis.

Regression analysis equates prediction with extrapo-
lation whereas creativity is simply impossible without
the emergence of new patterns. The principle of induc-
tion underpins regression analysis. Induction represents
a necessary, but insufficient precondition for creativity.
‘While induction by itself is insufficient for creativity,
generalizing from data could be a tool of creative think-
ing’ (Schank and Foster, 1995: 133). The conventional
structure of scholarly publications reflects the role
played by induction in creativity. A literature review
section is a necessary component of any scientific
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contribution, but only review essays summarizing the
state of knowledge contain nothing else.

By paying attention to various forms of creativity,
one better understands the relationship between predic-
tion and creativity. Two pairs of concepts, adaptive
versus generative (Bown, 2012: 364) and combinatorial
versus emergent, or exploratory-transformational
(Boden, 1999: 352; Cariani, 2012: 394), help identify
forms of creativity that do not require prediction. In
contrast to adaptive creativity, generative creativity
does not satisfy a specific function and, thus, cannot
be derived from characteristics of a system within
which it takes place. In a similar vein, emergent creativ-
ity cannot be accounted for in terms of existing struc-
tures, functions and behaviours, whereas combinatorial
creativity can. Prediction does not suffice for achieving
generative or emergent creativity, i.e., its particularly
valuable forms.

Adding more data points to training data – a usual
method for increasing the accuracy of predictions –
does not really help. Neural networks perform reason-
ably well only as long as the assumption that param-
eters estimated with training data also hold in
validation and test data, i.e. in the entire population
of relevant events (Burscher et al., 2015: 128;
DiMaggio, 2015: 1; Goodfellow et al., 2016: 224;
Hopkins and King, 2010: 236; Pavelec et al., 2008:
414; Scharkow, 2013: 763).

Furthermore, the Great Depression of the 1930s and
the 2008 global financial crisis remind us that no
extrapolation suffices for predicting a ‘black swan’, an
event that either occurs very rarely or has not yet
occurred, but may occur in the future. Neither the fre-
quentist approach to probability nor the Bayesian one
helps solve the ‘black swan’ problem. In the former,
rare events are treated as ‘outliers’ (Bail, 2015: 2). In
the latter, the conditional probability is only defined
when P (x¼ x)> 0. ‘We cannot compute the condi-
tional probability conditioned on an event that never
happens’ (Goodfellow et al., 2016: 57). Both the Great
Depression and the 2008 global financial crisis were
unique events with no direct precedents. Sophisticated
forecasting models (they were particularly numerous
around the time of the most recent crisis) failed to pre-
dict the crisis coming. Some humans managed to do so
nevertheless using creative and innovative thinking, as
shown in The Big Short movie (2015), for instance.

As a matter of fact, attempts to increase the accuracy
of predictions without changing the underlying
assumption that prediction equates to extrapolation
could well be counter-productive. They may lead to
‘overfitting’, i.e. to a regression model that fit training
data too closely. ‘Imagine a very wiggly line connecting
a set of more-or-less linear dots – while the line fits the
observed dots exactly it will clearly be a poor predictor

of future observations’ (McQuillan, 2016: 4; see also
Mackenzie, 2017: 121). A metaphor seems appropriate.
Neural networks could be trained on Picasso’s artwork
and produce their exact replicas. Some artists are
involved in the business of art forgery or imitation
too: after a Picasso many Picassos arise (DeFelipe,
2011: 6). However, pieces of imitation are never
valued as much as the originals. Imitating and replicat-
ing Picasso’s artwork is one thing, creating something
original based on his achievements is quite the other.

The social sciences help identify conditions under
which prediction can indeed be equated with extrapo-
lation and, thus, the internal limitation of regression
analysis does not constitute an obstacle in the future
progress of neural networks. A well (even over-)
ordered society is needed. Data on social action in a
well-ordered society has a highly structured character.
Everyone sticks to the rules and regulations, which
makes patterns in interactions relatively easily discern-
able. Speaking metaphorically, social data is free of
‘clutter’ and ‘noise’.

Such a society also represents an environment in
which the assumption that the existing state of affairs
will continue indefinitely holds. McQuillan (2016: 5)
describes this eventuality in the following words. ‘The
risk is that the statistical regression at the heart of
machine learning will become an engine of forms that
are socially regressive. . . What forms of governance and
government resonate with algorithmic seeing, and what
social distortions may result? Big data seeks to bring
about a new form of ordered legibility of society
according to its own logic of patterns’.

The idea that the statistical regression can generate
socially regressive forms resonates with Foucault’s
thoughts on État policé and société policée. In French,
être policé means to be civilized, to reach the conditions
of modernity. Foucault (2007: 321) writes that
‘police. . . is administrative modernity par excellence’
and that ‘police makes statistics necessary, but police
also makes statistics possible’ (2007: 315). In other
words, neural networks, on the one hand, require
socially regressive forms in order to be effective and,
on the other hand, contribute to their production and
prevalence.

The image of a well-ordered, policé society may be
appropriate in some cases but not in many others. For
instance, there is probably nothing wrong if road traffic
becomes well ordered. An ideal form of driving, driving
by the rules, makes manoeuvres perfectly predictable
and easy to model, especially with the help of neural
networks. The number of road accidents, as well as the
time spent (wasted) on commuting, would be signifi-
cantly reduced as a result. This ideal situation could
probably be achieved by removing humans from the
roads as their least predictable element. Humans may
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well find other areas that require their continuous
attention. The same logic cannot be applied to society
as a whole. The ideal of a well-ordered society as a
means to increase predictability in human interactions
is questionable to say the least. In addition to clear
parallels with an Orwellian society, such an arrange-
ment will simply leave no place for creativity. The
reason is simple: creativity undermines predictability
interpreted as mere extrapolation.

Conclusions

Using the metaphor of human neurons in the design of
neural networks is both enabling and constraining. On
the one hand, by connecting neurons and building
neural networks, one can tackle complex tasks that
no neuron taken separately can perform. The following
analogy13 highlights this beneficial effect of connectiv-
ity. Arendt (1969: 44) observed that ‘power corresponds
to the human ability not just to act but to act in con-
cert’. Paraphrasing her definition, one can say that
computational power of neural networks is due not
just to the computational capacity of neurons but to
their capacity to be connected and to perform tasks in
concert.

On the other hand, the reliance on statistical regres-
sion in each node of a neural network imposes limits on
what can be achieved with their help. Namely, neural
networks underperform compared with human beings
in identifying and interpreting symbols, in acting
socially, which requires mutual coordination and
adjustments, and in predictions. Underperformance of
neural networks in these three areas that were specific-
ally considered in this article leaves the question of
whether artificial creativity can catch up to human cre-
ativity wide open. Creativity is hardly possible without
one’s capacity to think metaphorically, to coordinate
proactively and to make predictions that go beyond
simple extrapolation. Compared with routine tasks,
everything novel and unusual calls for creativity.

If brain neurons worked in the same way as neural
networks, then how could humans be creative? Studies
in neuroscience suggest that in order to enable creativ-
ity, neurons have to be connected not only with neigh-
bouring neurons but also with neurons in the other
regions of the brain. At the present stage, most progress
has been achieved in building domain (or area) specific
neural networks. Thus, in order to overcome some
internal limitations of neural networks, one would
need to learn how to build mega-neural networks con-
necting more specialized neural networks. Otherwise,
artificial imagination is hardly possible: ‘imagination. . .
involves seeing one kind of thing in terms of another
kind of thing – what we have called metaphorical
thought’ (Lakoff and Johnson, 1980: 193). Can the

establishment of associations be achieved keeping the
reliance on statistical regression as the ‘work horse’ of
neural networks? This issue remains unaddressed in a
satisfactory manner. The metaphor of the brain also
forecloses a promising program of studying the link-
ages between heterogeneous and previously uncon-
nected elements as the outcomes of a social activity.

It follows that artificial creativity powered by neural
networks continues to underperform, at least at this
stage. They could greatly assist in preparing a literature
review, i.e. in learning and summarizing the existing
body of knowledge. But they are a long way from learn-
ing how to produce novel and innovative results, let
alone major breakthroughs.
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Notes

1. The discussion of specific designs of neural networks,

multilayer perceptrons versus radial-basis function net-

works, feedforward versus recurrent, etc. remains outside

of the scope of this article.
2. Socionics is the other reference point. ‘Socionics seeks to

address the question of how to exploit models from the

social world for the development of intelligent computer

technologies’ (Malsch, 2001: 155).

3. Words in clutter are notoriously difficult for the machine

to recognize, which explains the popularity of captcha tests

as a barrier against internet bots.
4. The list of a word’s derivatives is populated by using the

operation of lemmatization (Jurafsky and Martin, 2018:

chapter 1).
5. The assumption that the probability of a word depends

only on the previous word is called a Markov assumption.

It is further exploited in Markov chains of variable length.

6. https://books.google.com/ngrams.
7. For instance, the words ‘sex’ and ‘pleasure’ are assumed to

be independent despite the fact that they often co-occur in

texts on sexuality.
8. This is one of the key premises of movement computing,

an emergent field of science and technology studies.
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9. It comes as no surprise that socionics came into existence

in response to the need to model interactions. ‘One of the

pioneers of distributed artificial intelligence (DAI), Carl

Hewitt, in his ground-breaking work on ‘‘patterns of pas-

sing messages’’ drew on the social psychology of G.H.

Mead to propose. . . defining the meaning of a message

by the reaction it occasioned in the addressee’ (Malsch,

2001: 159). Mead’s predecessor, the sociologist Cooley, is

known for his conception of the looking glass self: the

individual is a product of her interactions with other

people, of her reactions to their perception of her

personality.
10. Advocates of socionics point out to the other potential

metaphor at the origin of distributed artificial intelli-

gence: that of a society composed of well-connected and

collaborating individuals (Malsch, 2001: 158).
11. Backpropagation, however, may well have been dis-

covered independently by several scholars, as it often

happens in modern science (Merton, 1973). Mackenzie

(2017: 174) cites at least two other formulations of the

same idea made by other scholars in the 1980s.

12. The addition that ‘and there will be no fourth’ requires

going beyond extrapolation, which preludes a third

dimension of creativity below.

13. This analogy has roots in socionics.
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