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Abstract
In this paper we present speech technology from a signal
processing point of view to enable researchers and practi-
tioners in the areas of shared interest a different perspec-
tive of the available tools, concepts, operation assumptions
and limitations of the technology. First, we introduce sev-
eral of the research activities at the Honda Research Insti-
tute Japan (HRI-JP). We then present a case study of the
complementary impact of multimodal processing for improv-
ing speech-related interactions. Consequently, we present
some challenges in expanding our current speech technol-
ogy advances to mobile and wearable devices. Lastly, we
outline the roadmap of our research collaboration with the
HCI laboratory at the University of Manitoba to effectively
use speech technology for wearable devices.
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Figure 1: Block diagram of a speech processing system using microphone array.

Introduction
Speech communication is a basic form of human expres-
sion. We use speech along with other modalities whenever
we interact with one another. More recently, this form of
communication is being adapted for interacting with other
devices, including robots. Hence, speech modality is be-
coming a key component in human computer interaction.
Over the last couple of decades, speech technology, such
as microphone array processing and speech recognition
have been mostly associated with desktop computers,
smart TVs and robots. This was primarily due to the re-
source constraints imposed by such a modality.

With advances in microchip design, resulting in nano-scale,
powerful and power-efficient microprocessors, small form
factor mobile and wearable devices have become perva-
sive. As these devices gain prominence among the ecosys-
tem of interconnected devices, the conventional modality of
speech interaction needs re-examination to suit the platform
of interconnected wearable devices. Wearable devices have
different design requirements than their larger form factor
counterparts (e.g. robots, smart TVs, etc.) which pose nu-
merous challenges. This leads to novel opportunities for a
new paradigm and novel approaches in speech technology.

At HRI-JP, our research activities have been focused on
speech technology concepts applied to robots, smart house
and smart TVs. Moving onto wearable devices presents

an opportunity to expand our reach. Moreover, we believe
that for speech technology to maintain its impact toward the
future, the challenges posed by wearable devices must be
addressed. To facilitate this effective adoption of speech
technology for wearable devices, HRI-JP and the Univer-
sity of Manitoba HCI Laboratory has embarked in a joint
research collaboration. Areas of interests include speech UI
design, evaluation metrics for speech input on wearable de-
vices and applications of wearable speech-enabled devices.

Research Activity in Acoustic Processing at Honda
Research Institute Japan (HRI-JP)
The block diagram shown in Figure 1 summarizes the ma-
jor components of speech and audio processing (i.e., from
sound source localization to speech recognition and un-
derstanding). A microphone array system suppresses un-
wanted spatial noise sources and recovers the desired
speech source. Let Xφ(ω, f) and S(ω, f) denote the in-
put acoustic signal of the φ-th channel (1 ≤ φ ≤ Φ) and
a sound source signal after Short Time Fourier Transform
(STFT), respectively. ω denotes frequency domain while f
denotes the frame index. The room transfer function (TF),
A(ω, ψ) is a vector of TF for each microphone φ.

Sound-Source Localization
We compute a correlation matrix of X(ω, f) and extract
its eigen values. Let E(ω, f) = [e1(ω, f), . . . , eΦ(ω, f)]
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Figure 2: Word and Character N-gram Models in NPY Process

denote the eigen vectors. The spatial spectrum is given as,

P (ω, ψ, f) =
|A∗(ω, ψ)A(ω, ψ)|∑Φ

φ=Ls+1 |A
∗(ω, ψ)eφ(ω, f)|

, (1)

where ()∗ is a complex conjugate transpose operator, and
Ls is the number of sound sources. The resulting ψ is the
localization angle that maximizes Eq. (1) based on MUltiple
SIgnal Classification (MUSIC)[9] [7].

Sound-Source Separation
We combine both the methods based on blind separation
and beamforming referred to as Geometric High-order
Decorrelation-based Source Separation (GHDSS) [8]. In
this method, only the beamforming part uses TFs to over-
come permutation and scaling problems. Next, we es-
timate a separation matrix, denoted as Ω(ω, f), so that
Ω(ω, f)X(ω, f) converges to S(ω, f). GHDSS iteratively
computes Ω(ω, f) to minimize cost function J(Ω(ω, f)),
which is described as:

J(Ω(ω, f)) = αJ1(Ω(ω, f)) + (1− α)J2(Ω(ω, f)), (2)
where J1(·) and J2(·) denote cost functions for blind sepa-
ration and geometric constraints, respectively. α is a weight-
ing parameter.

When multiple spatial acoustic events exist, X(ω, f) con-
tains mixture of the events. We assume that there is a

Figure 3: Power estimation of contaminant signal (noise + late
reflection)

unique sound event in a location, and a sound event con-
tains only one sound source. Let Sd(ω, f) denote the d-th
spatial acoustic event (1 ≤ d ≤ D). To obtain Sd(ω, f),
we compute P (ω, ψ, f) in Eq. (1), localize and detect the
d-th acoustic event by a thresholding and tracking approach
[1]. For each localized event, we conduct sound source
separation using Eq. (2) to estimate Sd(ω, f), denoted by
Ŝd(ω, f).

Sound-Source Identification
We employ a technique inspired by natural language pro-
cessing in which the acoustic speech is defined by words
and grammar. Similar to the natural language technique,
the segmentation of Ŝd(ω, f) is important to improve noise-
robustness. Unlike speech in which segmentation is straight-
forward, acoustic events (non speech sounds) such prior
segmentation does not exist. For a segmentation without
any prior knowledge, we employ Nested Pitman Yor (NPY)
[2], originally proposed for morphological analysis of natural
languages. NPY process essentially maximizes the prob-



Figure 4: Improved unwanted sound rejection and speech recognition performance through multimodal-processing (mic-array + camera).

ability of the following equation for given ĉd with arbitrary
word sequences wd = w1 . . . wNwd−1wNwd

:

w∗
d = argmax

wd

p(wd|ĉd) , (3)

where Nwd is the number of words in ĉd, which are esti-
mated by the NPY process, and ĉd is the extracted features
of Sd(ω, f). To solve Eq. (3), NPY process models lan-
guages as a combination of a word N-gram model and a
character N-gram model. The two N-gram models are es-
timated like that shown in Figure 2. As a result, the signal
Ŝd(ω, f) can be classified as either speech (i.e.,V (ω, f) =
Ŝd(ω, f)) or any other acoustic event (non-speech). We
note that source identification can also be employed using
Gaussian mixture models.

Speech Enhancement
The separated speech source V (ω, f) may contain some
traces of noise and reverberation referred to as contam-
inants. The former is additive in nature while the latter is
treated as channel distortion. Reverberation is a phenomenon
caused by the different time delays of the reflections of the
acoustic signal as observed by the microphone sensor in-
side an enclosed environment. Noise and reverberation
creates mismatch which degrades speech recognition per-
formance. Speech enhancement is conducted to suppress
both noise and reverberation. In our method [4][5], speech

enhancement is conducted in the wavelet domain such that
V (ω, f)⇔ V (υ, τ), where υ and τ are the scaling and
shifting parameters or referred to as wavelet parameters.
Wavelet-based Wiener filtering is employed by weighting
the contaminated separated source with the Weiner gain as

E(υ, τ) = V (υ, τ) . κ, (4)
where E(υ, τ) and κ are the enhanced signal and wiener
gain respectively, where κ is expressed as

κ =
V (υ, τ)2

V (υ, τ)2 +R(υ, τ)
2

+B(υ, τ)
2 ,

where V (υ, τ)2, R(υ, τ)2 and B(υ, τ)2 are the wavelet
power estimates for the speech, reverberation (i.e. late re-
flection), and background noise, respectively. We note that
the enhancement quality is dependent on κ. Hence, sys-
tem performance depend on the power estimation capability
of the system. By using the optimized values for υ and τ
as described in [4], we can compute the respective power
estimates directly from the observed contaminated signal
(separated speech) effectively. Figure 3 shows the effective-
ness of our method’s power estimation scheme.

Automatic Speech Recognition and Understanding
The enhanced speech signal is then recognized by evalu-
ating the likelihood P (E|L;λ) by the ASR. Where L and
λ are the language and acoustic models, respectively. The



resulting hypothesis is further processed in order to extract
the meaning (understanding). Methods such as conditional
random field (CRF), support vector machine (SVM), DNN,
etc. are usually employed for spoken language understand-
ing [3] [6].

3. Robust Multimodal Speech Processing
Robustness in system performance can be achieved by
combining different modalities. Figure 4 (Left) shows a typ-
ical problem of acoustic ambiguities in which non speech
signals (i.e., speech and echo ) are observed by the mi-
crophone array and processed by the speech recognition
system. This problem is addressed by incorporating both
visual processing to the existing acoustic processing dis-
cussed in the previous section to spatially reject unwanted
non speech sources as depicted in Figure 4 (Right). This
method assumes that only an acoustic signal with a cor-
responding detected face constitutes a valid speech input.
Moreover, mouth activity information further supplements
the notion of a valid speech. By implementing Figure 4, re-
jection of the unwanted signals is improved, resulting in a
more robust speech recognition performance.

Challenges
There are factors affecting the smooth adoption of conven-
tional speech technology (i.e., microphone array system) to
wearable devices. One of these is its small form factor. As
a result, not all of the features of typical microphone arrays
would be readily available to wearable devices. However, it
is not yet clear whether all of the features are needed or not
on such devices. One task would require investigating what
aspects of a speech technology would fit common tasks
and applications on such platforms. Further, the following
are some of the concerns that need to be addressed:

• Sensor Quantity: To effectively resolve the number
of sound-sources, the number of sensors should be

at least equal to the number of sound sources (Φ ≥
D in Figure 1). The limited form factor can severely
impeded the number of potential sensors that can be
deployed. One solution may involve affixing sensors
to one or more wearable devices, to accommodate for
a broad number of sources.

• Sensor spacing: The spacing of microphones affect
the frequency response of the system. Sensors that
are closely spaced result in a poor low frequency res-
olution than sensors that are placed further apart.
The speech signal is concentrated at the low fre-
quency spectrum. This means that low frequency
response for a microphone array on wearable devices
is not as good as those for smart TVs.

• Geometry: The geometry of the microphone array
also affects the ability to spatially discriminate un-
wanted noise sources. There are geometric limita-
tions on wearable devices, and engineering the loca-
tions of the microphones in the array is a significant
task.

• Computation Cost: Most speech processing algo-
rithms (i.e. microphone array processing) are com-
putationally expensive. Cloud processing may be
necessary.

Enhancing Research Through Joint Collaboration
A joint partnership has been identified to leverage the strengths
of two labs: one specializing in speech technologies and
the other on interfaces for mobile and wearable devices and
applications. While the collaboration has only recently being
unfolding, we believe several aspects will lead to a fruit-
ful collaboration. We also seek to engage the community,
through this workshop and others, as to how best to lead
such collaborations to advance emerging areas.



The collaboration includes several facets. First, is the free
exchange of intern students, who are able to cross-pollinate
ideas from both labs to advance their own theses or re-
search plans. This has been on-going and several others
are planned in the near future. A second feature, is the
identification of novel application areas, to immediately
deploy such technologies in the wild. While much design
and experimentation will take place in our respective labs,
discussions are underway to already experiment with such
technologies in specific vertical markets. In nursing homes,
our goal is to devise speech-enabled wearables to monitor
the activity of the elderly and to detect events such as falls,
or dangerous events, such as aggression as is common in
some units (Alzheimer’s unit, for example. In manufacturing
environments, we are interested in isolating noise from the
environment, to robustly capture speech input for interac-
tion with head-worn displays or other devices in the user’s
vicinity. We believe such input is key in such hands-busy
and noisy environments. On general purpose consumer
devices, such as smartwatches, our goal is to devise in-
put techniques that sit at the confluence of direct input (via
touch or swipes) and speech. Such forms of multimodal
interfaces are subject to the many variations in user move-
ment, environment and hardware limitations. While we have
initially targeted these specific areas for initial exploration,
we are not excluding others, including the use of such tech-
nologies for children or the elderly.

Conclusion
This position paper provides a brief overview of some ap-
proaches in speech technologies, as these have demon-
strated success in environments and applications of value
to HRI. Moving forward, we have identified a collaboration
that will open new possibilities for speech input on small,
wearable devices. While we have identified several imme-
diate challenges and areas of applications, we encourage

and welcome a discussion on how to move forward and
make speech modality on wearables as common as it is in
our daily interactions.
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