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Abstract

We consider the problem of optimizing the performance of
an active imaging system by automatically discovering the
illuminations it should use, and the way to decode them.
Our approach tackles two seemingly incompatible goals:
(1) “tuning” the illuminations and decoding algorithm pre-
cisely to the devices at hand—to their optical transfer func-
tions, non-linearities, spectral responses, image processing
pipelines—and (2) doing so without modeling or calibrat-
ing the system; without modeling the scenes of interest; and
without prior training data. The key idea is to formulate a
stochastic gradient descent (SGD) optimization procedure
that puts the actual system in the loop: projecting patterns,
capturing images, and calculating the gradient of expected
reconstruction error. We apply this idea to structured-light
triangulation to “auto-tune” several devices—from smart-
phones and laser projectors to advanced computational
cameras. Our experiments show that despite being model-
free and automatic, optical SGD can boost system 3D ac-
curacy substantially over state-of-the-art coding schemes.

1. Introduction

Fast and accurate structured-light imaging on your desk—or
in the palm of your hand—has been getting ever closer to re-
ality over the last two decades [1–4]. Already, the high pixel
counts of today’s smartphones and home-theater projectors
theoretically allow 3D accuracies of 100 microns or less.
Similar advances are occurring in the domain of time-of-
flight (ToF) imaging as well, with inexpensive continuous-
wave ToF sensors, programmable lasers, and spatial mod-
ulators becoming increasingly available [5–13]. Unfortu-
nately, despite the wide availability of all these devices,
achieving optimal performance with a given hardware sys-
tem is still an open problem whose theoretical underpin-
nings have only recently attracted attention [14–20].

To address this challenge, we introduce optical SGD, a com-
putational imaging technique that learns on the fly (1) a se-
quence of optimized illuminations for multi-shot depth ac-
quisition with a given system, and (2) an optimized recon-
struction function for depth map estimation.

Optical SGD achieves this by controlling in real-time the
system it is optimizing, and capturing images with it. The
only inputs to the optimization are the number of shots and
a function to penalize depth error at a pixel.
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Figure 1: Top: Optimal structured light with smartphones. We

placed a randomly-colored board in front of an Optoma 4K projec-

tor and a Huawei P9 phone, let them auto-tune for five color-stripe

patterns and the 1-tolerance penalty (Table 1), and used the re-

sulting patterns (middle) to reconstruct a scene (inset). Middle:

Auto-tuning systems for 4 patterns and various penalties. Note

the patterns’ distinct spatial structure and frequency content, es-

pecially for Episcan3D which employs a scanning-laser projector.

Bottom: Auto-tuning the same system for two different penalties

yields markedly different patterns, and disparity maps with very

different distribution of disparity errors (please zoom in). In both

cases, we obtain significant gains over the state of the art [15, 16].

To prepare a system for optical SGD, we adjust its settings
for the desired imaging conditions (e.g., exposure time,
light source brightness, etc.) and place a randomly-textured
“training board” in its field of view (Figure 1). The pro-
cess runs automatically after that, minimizing a rigorously-
derived estimate of the expected reconstruction error for the
system at hand. Optical SGD requires no radiometric or ge-
ometric calibration; no manual initialization; no prior train-
ing data; and most importantly, no precise image formation
model for the system or the scenes of interest.



The key idea behind our approach is to push the hardest
computations in this optimization—i.e., calculating deriva-
tives that depend on an accurate model of the system—to
the optical domain, where they are easy to do (Figure 2).
Intuitively, optical SGD treats the imaging system as a per-
fect “end-to-end model” of itself—with realistic noise and
optical imperfections all included.

Using this idea as a starting point, we develop an optimiza-
tion procedure that runs partly in the numerical and partly
in the optical domain. It begins with a random set of K illu-
minations; uses them to illuminate the training board; cap-
tures real images to estimate the gradient of the expected re-
construction error; and updates its illuminations by stochas-
tic gradient descent [23, 24]. Applying this procedure to
a given system requires (1) a way to repeatedly acquire
higher-accuracy (but still noisy) depth maps of the training
board, and (2) programmable light sources that allow small
adjustments to their illumination.

At a conceptual level, optical SGD is related to three lines
of recent work. First, the end-to-end optimization of com-
putational imaging systems is becoming increasingly pop-
ular [25–30]. These methods train deep neural networks
and require precise models of the system or extensive train-
ing data, whereas our approach needs neither. Second, the
principle of replacing “hard” numerical computations with
“easy” optical ones goes back several decades to the field of
optical computing [31–33]. It has been revived recently for
calculations such as optical correlation [34], hyperspectral
imaging [35] and light transport analysis [36] but we are not
aware of any attempts to implement SGD in the optical do-
main, as we do. Third, optical SGD can also be thought of
as training a small, shallow neural network with a problem-
specific loss; noisy labels [37–39] and noisy gradients [40];
and with training and data-augmentation strategies [41, 42]
that are implemented partly in the optical domain.

We believe our work represents the first attempt to re-
duce illumination coding—a hard problem with a rich his-
tory [18, 19, 43–55]—to an online procedure akin to self-
calibration [56, 57]. In addition to this basic contribution,
we introduce two important new elements to the optimiza-
tion of structured-light triangulation systems: plug-and-
play penalty functions and neighborhood decoding. The
former is a departure from prior work, which has so far con-
flated the definition of optimal illuminations with the way to
find them (e.g., usingL1 [15, 17] and ǫ-tolerance [16] penal-
ties). Crucially, we show that just switching the penalty
function—with everything else fixed—automatically pro-
duces structured-light patterns with completely different
spatial structure, and far better performance for the chosen
penalty (Figure 1, bottom). On the empirical side, we gener-
alize the recently-proposed ZNCC decoder [16] to take into
account a tiny neighborhood at each pixel (3×1 or 5×1).
This seemingly straightforward extension more than dou-
bles per-pixel disparity accuracy in our tests, highlighting
the hitherto unnoticed role the decoder can play in per-pixel
depth estimation.
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Figure 2: Differentiable imaging systems allow us to “probe”

their behavior by differentiating them in the optical domain, i.e.,

by repeatedly adjusting their control vector, taking images, and

computing image differences. Projector-camera systems, as shown

above, are one example of a differentiable system where projection

patterns play the role of control vectors. Many other combinations

of programmable sources and sensors have this property (Table 1).

We first develop our approach in the context of more general
3D imaging systems, and focus specifically on structured-
light triangulation in Section 4.

2. Differentiable Imaging Systems

Many devices available today allow us to control image for-
mation in an extremely fine-grained—almost continuous—
manner: off-the-shelf projectors can adjust a scene’s illumi-
nation at the resolution of individual gray levels of a sin-
gle projector pixel; spatial light modulators can do likewise
for phase [58] or polarization [59]; programmable laser
drivers can smoothly control the temporal waveform of a
laser at sub-microsecond scales [8]; and sensors with coded-
exposure [22, 60, 61] or correlation [9, 17, 62] capabilities
can adjust their spatio-temporal responses at pixel- and mi-
crosecond scales.

Our focus is on the optimization of programmable imaging
systems that rely on such devices for fine-grained control
of illumination and sensing. In particular, we restrict our
attention to systems that approximate the idealized notion of
a differentiable imaging system. Intuitively, differentiable
imaging systems have the property that a small adjustment
to their settings will cause a small, predictable change to the
image they output (Figure 2):

Definition 1 (Differentiable Imaging System) An imaging sys-
tem is differentiable if the following two conditions hold:

• the behavior of its sources, sensors, and/or optics during the
exposure time is governed by a single N -dimensional vector,
called a control vector, that takes continuous values;

• for a stationary scene S , the directional derivatives of the
image with respect to the system’s control vector, i.e.,

Da img(c,S)
def
= lim

h→0

img(c + ha,S)− img(c,S)

h
, (1)



Light source Camera sensor Decoder

†DMD projector [63] †Grayscale †max-ZNCC [16]

†Laser projector [21] †RGB filter †max-ZNCCp (Section 4)

LCoS projector [64] †Coded-exposure [60] †max-ZNCCp-NN (Section 4)

Projector array [65] Correlation ToF [17] deep neural net [66]

MHz laser [8] ToF sensor array [5]

MHz laser + DMD [61] Light field [67]

MHz laser array [68]

† ǫ-tolerance [16] L2 [18] † L1 [15] M-estimator [69]

0 xǫ−ǫ 0 x 0 x 0 x

Table 1: Devices and penalty functions compatible with our

framework. † indicates the choices we validate experimentally.

are well defined for any control vector c and unit-length ad-
justment a, where img(c,S) is the noise-less image.

As we will see in Section 3, differentiable imaging sys-
tems open the possibility of optical SGD—iteratively ad-
justing their behavior in real time via optical-domain
differentiation—to optimize performance on a given task.

The specific task we consider in this paper is depth imaging.
More formally, we seek a solution to the following general
optimization problem:

Definition 2 (System Optimization for Depth Imaging) Given

• a differentiable imaging system that outputs a noisy intensity
image ik in response to a control vector ck;

• a differentiable decoder that estimates a depth map d from
a sequence of K ≥ 1 images acquired with control vectors
c1, . . . , cK :

d = rec(i1, c1, . . . , iK , cK , θ) (2)

where θ is a vector of additional tunable parameters; and

• a pixel-wise penalty function ρ() that penalizes differences
between the estimated depth map d and the ground-truth
depth map g,

compute the settings that minimize expected reconstruction error:

ĉ1, . . . ĉK , θ̂ = argmin
c1,...,cK ,θ

Escenes, noise

[
M∑

m=1

ρ(d[m]− g[m])
]

(3)

where the index m ranges over image pixels and expectation is
taken over noise and a space of plausible scenes.

Different combinations of light source, sensor, decoder and
penalty function lead to different instances of the system
optimization problem (Table 1). Correlation time-of-flight
(ToF) systems, for example, capture K ≥ 3 images of a
scene, and vectors c1, . . . , cK control their associated laser
modulation and pixel demodulation functions [8, 17]. In ac-
tive triangulation systems that rely on K images to compute
depth, the control vectors are simply the projection patterns
(Figure 2). In both cases, the decoder maps the K observa-
tions at each pixel to a depth (or stereo disparity) value.

In the following we use a vector-valued function err(d,g)
to collect all pixel-wise penalties into a single vector:

err(d,g)[m] = ρ(d[m]− g[m]) . (4)

3. Optical SGD Framework

Suppose for a moment that we have a perfect forward model
for the image formation process, i.e., we have a perfect
model for (1) the system’s light sources, optics, and sen-
sors, (2) the scenes to be imaged, and (3) the light transport
between them.

In that case, the widespread success of optimization tech-
niques such as Stochastic Gradient Descent (SGD) [23, 24,
70] suggest a way to minimize our system-optimization
objective numerically: approximate it by a sum of recon-
struction errors for a large set of fairly-drawn, synthetic
training scenes, and for realistic noise; find a way to effi-
ciently evaluate its gradient with respect to the unknowns
θ, c1, . . . , cK ; and apply SGD to (locally) minimize it.

Model-driven optimization by numerical SGD Approx-
imating the expectation in Eq. (3) with a sum we get:

Escenes, noise

[
M∑

m=1

ρ(d[m]− g[m])
]
≈

1

T

T∑

t=1

‖err(dt
,g

t)‖1 (5)

where ‖.‖1 denotes the L1 norm of a vector and dt,gt are
the reconstructed shape and ground-truth shape for the t-th
training sample, respectively. Each training sample consists
of a scene St and the noise present in the images i1, . . . , iK
acquired for that scene. Figure 3 (left) outlines the basic
steps of the resulting numerical SGD procedure.

Optical computation of the image Jacobian What if we
do not have enough information about the imaging system
and its noise properties to reproduce them exactly, or if the
forward image formation model is too complex or expen-

Numerical SGD:

Input: scene generator, noise generator,

evaluator of img(c, S),J(c,S)
Output: optimal θ, c1, . . . , cK

initialize with random θ, c1, . . . , cK

generate scenes S1, . . . ,ST

while not converged do

choose random mini-batch of scenes

for each scene S in mini-batch do

for each control vector ck do

synthesize image ik by evaluat-

ing img(ck,S) & adding noise

estimate d from i1, . . . , iK
evaluate err(d, g)
evaluate∇θerr(d, g)

for all k, evaluate∇ck
err(d, g)

evaluate total gradient using Eq. (5)

update θ←θ+∆θ, ck←ck+∆ck
apply constraints to θ, c1, . . . ,cK

return θ, c1, . . . , cK

Optical SGD:

Input: <none>

Output: optimal θ, c1, . . . , cK

initialize with random θ, c1,. . . ,cK

position in front of system a sceneS

while not converged do

choose random mini-batch of image rows

compute their ground-truth depth map g

for each control vector ck do

supply control vector ck to system

capture image & store it in ik

estimate d from i1, . . . , iK
evaluate err(d, g) on mini-batch

evaluate∇θerr(d, g) on mini-batch

for all k, compute J(ck,S) optically &

use it to evaluate∇ck
err(d, g)

evaluate total gradient using Eq. (5)

update θ←θ+∆θ, ck←ck+∆ck
apply constraints to θ, c1, . . . ,cK

return θ, c1, . . . , cK

Figure 3: Numerical vs. optical-domain implementation of

SGD, with red boxes highlighting their differences.



sive to simulate? Fortunately, differentiable imaging sys-
tems allow us to overcome these limitations by implement-
ing the difficult gradient calculations directly in the optical
domain.

More specifically, SGD requires evaluation of the gradient
with respect to θ and c1, . . . , cK of vector err(dt,gt):

∇θerr =
∂err

∂rec

∂rec

∂θ
(6)

∇ck
err =

∂err

∂rec

∂rec

∂ck
+

∂err

∂rec

∂rec

∂ik

∂ik

∂ck
(7)

≈
∂err

∂rec

∂rec

∂ck
+

∂err

∂rec

∂rec

∂ik

(
∂img

∂c

)

c=ck

S=St

︸ ︷︷ ︸

image Jacobian J(c,S) for ck and St

(8)

with points of evaluation omitted for brevity. Eq. (8) is ob-
tained by approximating ik with its noise-less counterpart.
Of all the individual terms in Eqs. (6)-(8), only one depends
on a precise model of the system and scene: the image Ja-
cobian J(c,S).

For a system that captures an M -pixel image in response to
an N -element control vector, J(c,S) is an M ×N matrix.
Intuitively, element [m,n] of this matrix tells us how the
intensity of image pixel m will change if element n of the
control vector is adjusted by an infinitesimal amount. As
such, it is related to the system’s directional image deriva-
tives (Eq. (1)) by a matrix-vector product:

Da img(c,S) = J(c,S) a . (9)

It follows that if we have physical access to both a differ-
ential imaging system and a scene S, we can compute in-
dividual columns of this matrix without having any com-
putational model of the system or the scene. All we need
is to implement a discrete version of Eq. (9) in the optical
domain, as illustrated in Figure 2 with a projector-camera
system. This leads to the following “optical subroutine:”

Optical-domain computation of n-th column of J(c,S)

Input: control vector c, adjustment magnitude h
Output: noisy estimate of the column

step 0: position scene S in front of system

step 1: set control vector to c and capture noisy image i

step 2: set control vector to c + ha, where a is the unit vector

along dimension n, and capture new image i
′

step 3: return (i′ − i)/h
step 4: (optional) repeat steps 1 & 2 to get multiple samples of

i and i′ & return the empirical distribution of (i′− i)/h

Optical SGD The above subroutine makes it possible to
turn numerical SGD—which depends on system and scene
models—into an optical algorithm that is model free. To do
this, we replace with image-capture operations all steps in
Figure 3 (left) that require modeling of systems and scenes.1

1Since optical-domain Jacobian estimation relies on noisy images, it

introduces an additional source of stochasticity in the SGD procedure [23,

24, 37, 39, 40, 71].
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Figure 4: Decoder for K-pattern triangulation.

Practical implementations of optical SGD face three chal-
lenges: (1) a closed-form expression must be derived for a
scene’s expected reconstruction error (Eq. (5)) in order to
evaluate its gradient, (2) imaging a large set of real-world
training scenes is impractical, and (3) the image Jacobian
is too large to acquire by brute force. Below we address
these challenges by exploiting the structure of the system-
optimization problem specifically for triangulation-based
systems. The resulting optical SGD procedure is shown in
Figure 3 (right).

4. Auto-Tuning Structured Light

We now turn to the problem of optimizing projector-camera
systems for structured-light triangulation (Figure 2). In this
setting, c1, . . . , cK represent 1D patterns projected sequen-
tially onto a scene and the reconstruction task is to com-
pute, independently for every camera pixel, its stereo cor-
respondence on the projector plane. This task is equivalent
to computing the pixel-to-column correspondence map d,
where d[m] is the projector column that contains the stereo
correspondence of camera pixel m (Figure 4). We thus op-
timize a projector-camera system by minimizing errors in
d.2 Furthermore, we define the disparity of pixel m to be
the difference of d[m] and the pixel’s column on the image
plane.

Image Jacobian of projector-camera systems We treat
projectors and cameras as two non-linear “black-box” func-
tions proj() and cam(), respectively (Figure 5). These ac-
count for device non-linearities as well as internal low-level
processing of patterns and images (e.g., non-linear contrast
enhancement, color processing, demosaicing, etc.).

Between the two, light propagation is linear and can thus
be modeled by a transport matrix T(S). This matrix is un-
known and generally depends on the scene’s shape and ma-
terial properties, as well as the system’s optics [16, 46]. It

2The pixel-to-column correspondence map requires no knowledge of

a system’s epipolar geometry, radial distortion or Euclidean calibration. As

a result, optical SGD can be applied even without this information.
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The projector function proj() maps a control vector of digital num-

bers to a vector of outgoing radiance values. Similarly, the camera

function cam() maps a vector of sensor irradiance values to a vec-

tor holding the processed image.

follows that the image and its Jacobian are given by

i = cam(T(S) proj(c) + ambient)
︸ ︷︷ ︸

img(c,S)

+ noise (10)

J(c,S) =
∂cam

∂irr
︸ ︷︷ ︸

camera
non-linearities
(M×M)

T(S)
︸ ︷︷ ︸

optics, 3D shape,
reflectance, etc.
(M×N)

∂proj

∂c
︸ ︷︷ ︸
projector

non-linearities
(N×N)

(11)

where noise may include a signal-dependent component and
irr denotes the vector of irradiances incident on the camera’s
pixels. Thus, auto-tuning a system without indirect light
forces it to account for its non-linearities and end-to-end
optical transfer function.

Neighborhood decoding For perfectly linear sys-
tems and low signal-independent noise, a very simple
correspondence-finding algorithm was recently shown to
be optimal in a maximum-likelihood sense [16]: (1) treat
the intensities i1[m], . . . , iK [m] observed at pixel m as a
K-dimensional “feature vector,” (2) compare it to the vec-
tor of intensities at each projector column, and (3) choose
the column that is most similar according to the zero-mean

normalized cross-correlation (ZNCC) score3 (Figure 4):

zm[n]
def
= ZNCC(

[
i1[m], . . . , iK [m]

]
,
[
c1[n], . . . , cK [n]

]
) (12)

d[m] = arg max
1≤n≤N

zm[n] . (13)

Here we generalize this decoder in three ways. First, we ex-
pand feature vectors to include their 1×p neighborhood (on
the same image row as pixel m, in the case of images). We
use small, 3- or 5-pixel neighborhoods in our experiments,
making it possible to exploit intensity correlations that may

3For two vectors v1,v2, their ZNCC score is the normalized cross

correlation of v1 −mean(v1) and v2 −mean(v2).

exist in them:

(ZNCCp similarity) zm[n] = ZNCC(fm, f̂n) (14)

where fm, f̂n are vectors collecting these intensities. Sec-
ond, we model the projector’s response curve as an un-
known monotonic, scalar function g() consisting of 32 lin-
ear segments [72]. This introduces a learnable compo-
nent to the decoder, whose 32-dimensional parameter vec-
tor θ is optimized by optical SGD along with c1, . . . , cK .
Third, we add a second learnable component to better ex-
ploit neighborhood correlations, and to account for noise
and system non-linearities that cannot be captured by the
scalar response g() alone. This consists of two ResNet
blocks [42, 73], for the camera and projector, respectively:

(ZNCC-NNp similarity)

zm[n] = ZNCC(fm +F(fm), g(f̂n) + F̂(g(f̂n))) (15)

where F() and F̂() are neural nets with two fully-connected
layers of dimension (pK) × (pK) and a ReLU in be-
tween. Thus the total number of learnable parameters in
the decoder—and thus in vector θ—is 4p2K2 + 32.4

Optimization with plug-and-play penalty functions Op-
timizing the expected reconstruction error of Eq. (5)
requires a differentiable estimate of the total penalty,
‖err(d,g)‖1, incurred on a given scene. A tight closed-
form approximation can be expressed in terms of the scene’s
ground-truth correspondence map g, the ZNCC score vec-
tors of all pixels, and the vector of pixel-wise penal-
ties [74]:

‖err(d,g)‖1 ≈
M∑

m=1

softmax(τzm)·err(index−g[m], 0) (16)

where · denotes dot product; τ is the softmax temperature;
zm is given by Eqs. (12)-(15); 0 is the zero vector; and
index is a vector whose i-th element is equal to its index i.

4.1. Efficient OpticalDomain Implementation

Different rows ⇔ different training scenes Suppose we
place an object in front of the system whose ground-truth
correspondence map, g, is known. In principle, since the
column correspondence of each camera pixel must be esti-
mated independently of all others, each pixel can be thought
of as a separate instance of the depth estimation task. To re-
duce correlations between these instances we use randomly-
textured boards for training (Figure 1). This allows us to
treat each camera row as a different “training scene” that
consists of points with randomly-distributed albedos.

Circular pattern shifts ⇔ different scene depths While
the albedo of scene points in the system’s field of view
may be random, their depth is clearly not: since our
training boards are nearly planar and (mostly) stationary,
the pixel-to-column correspondence map varies smoothly

4Strictly speaking, ZNCC’s optimality does not carry over to ZNCCp,

ZNCC-NNp or general non-linear systems. Nevertheless, we use them for

optical SGD as we found these similarities to be very effective empirically.



across rows and is fixed in time. To break their temporal
continuity we move the patterns instead of the scene: we
apply the same randomly-chosen circular shift to all K pro-
jection patterns prior to projection and image capture, and
alter that shift every few iterations. This changes the pixel-
to-column correspondence map, and results in images that
would have been obtained had the scene moved in depth.5

It also allows optimization of patterns that span all columns
of a projector even when the training scene does not.

Acquisition of ground-truth correspondences Optical
SGD hinges on being able to compute ground truth far more
accurately than the procedure it is optimizing. Since our fo-
cus is on optimizing systems for minimal numbers of pat-
terns, we use the same system for ground-truth estimation
but with many more patterns. We first assess a system’s
maximum attainable accuracy and precision by reconstruct-
ing a training board repeatedly with two independent cod-
ing schemes—160 phase-shifted patterns [43] and 30 pat-
terns optimized for the 0-tolerance penalty [16]—and cross-
validating both across runs and across coding schemes. We
use only the shorter of the two schemes for optical SGD,
and re-apply it every 50 iterations to account for minor dis-
turbances (e.g., slight motions of the board or the camera).

Efficient acquisition of image Jacobians Although the
Jacobian is large, it is usually very sparse for scenes with-
out indirect light transport (e.g., our training boards). This
makes it possible to acquire several columns of the Jaco-
bian at once from just one invocation of the optical-domain
subroutine of Section 3. In particular, an adjustment vec-
tor with N/B equally-spaced non-zero elements will yield
the sum of N/B columns of the Jacobian. If B is large
enough to avoid overlap between the non-zero elements of
these columns, exact recovery is possible.

Numerical considerations We adopt RMSprop [24] and
Tensorflow [75] for the numerical loop of Optical SGD.
The learning rate is set to 0.001, and allowed to decay by
50% every 350 iterations. We use a softmax temperature
of τ = 200, a step size of B = 7 for Jacobian acquisi-
tion, and initialize patterns with uniform noise in the range
[0.45, 0.55]. Mini-batches are created by randomly choos-
ing 15% of image rows in each SGD iteration. We estimate
ground-truth correspondences and the image Jacobian ev-
ery 50 and 15 iterations, respectively. To ensure a stable
optimization, we band-limit the patterns’ frequency to 1/2
Nyquist for the projector being used. Optimization typi-
cally converges in 1000 iterations and takes approximately
one hour. The main bottleneck is image acquisition, which
runs at 15Hz for our unsynchronized HDMI-driven devices.

Figure 6 illustrates how the patterns (and decoder) evolve
in a sample auto-tuning run—with marked improvements
in reconstruction performance over time. Crucially, perfor-
mance on a much darker scene with lots of depth disconti-
nuities shows a similar trend, suggesting lack of over-fitting.

5Note that this “simulation” does not account for signal-to-noise ratio

reductions caused by the squared-distance falloff of irradiance.
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Figure 6: Optical SGD in action for the LG-IDS pair and the

training board in Figure 1. Top: The red graph shows the progress

of the optimization objective (Eq. 5) across iterations when auto-

tuning on the training board for four patterns, the zero-tolerance

penalty, and the ZNCC-NN3 decoder. The green graph shows

‖err(d,g)‖1 as a function of iteration for the previously-unseen

(and much more challenging) test scene below. Middle: Visual-

izing the evolution of pattern c1 as a grayscale image whose i-th

column is the pattern at iteration i. Bottom: Three snapshots of

the optimization, each showing the patterns at iteration i; the dis-

parity map of the training board (inset) reconstructed from those

patterns; and the disparity map of the test scene reconstructed from

the same patterns. See [74] for a video visualization.

5. Experimental Results

For all experiments below, pixel-to-column correspondence
errors are measured in units of one projector column. Addi-
tional results and experimental details can be found in [74].

Auto-tuning computational imaging systems Since op-
tical SGD is agnostic about the imaging system, it can opti-
mize computational ones as well. Figure 7 shows one such
example. The system takes four structured-light patterns
as input; projects them rapidly onto a scene; captures one
coded 2-bucket (C2B) frame of resolution 244×160 pixels;
and processes it internally to produce four full-resolution
images taken under the four projection patterns.

Simulations with Mitsuba CLT [76, 77] and Model-
Net [78] To assess how well an auto-tuned system can
perform on other scenes, we treated the Mitsuba CLT ren-
derer as a black-box projector-camera system and auto-
tuned it using a virtual training board similar to those in



raw C2B frame

ground truth

auto-tuned for 1-tolerance

a la carte [16] & ZNCC5

pixels with error ≤1: 89%

pixels with error ≤1: 81%

auto-tuned for L1

Hamiltonian [15] & ZNCC5

avg error: 1.83

avg error: 3.71

Figure 7: Auto-tuning a one-shot 3D imaging system. We re-

placed the projection patterns and depth estimation algorithm of

Wei et al. [22] with the patterns and ZNCC-NN5 decoder com-

puted automatically by optical SGD for the LightCrafter-C2B pair

in Figure 1. Our disparity maps (top row) outperform the state-of-

the-art patterns for each penalty even when our ZNCC5 decoder is

used to boost their performance (bottom row). Auto-tuning is also

less affected by the prototype’s many “bad pixels.” In each case,

we also show correspondence errors as an inset (please zoom in).

Figure 1(middle). We then used the optimized patterns and
optimized ZNCC-NN3 decoder to reconstruct a set of 30
randomly-selected models from the ModelNet dataset [78].
The results in Figure 8 show no evidence of over-fitting to
the virtual training board, and mirror those of Figure 6.

Comparisons to the state of the art The tables in Fig-
ures 1 and 9 evaluate the performance of the LG-IDS pair
for many combinations of encoding schemes and decoders,
and two penalty functions. Three observations can be
made about these results. First, despite being automatic
and calibration free, optical SGD yields state-of-the-art per-
formance for both 0-tolerance and L1 penalties. Second,
adopting a neighborhood decoder has a big impact on a
system’s overall performance, almost doubling it in some
cases. This suggests that even further performance im-
provements may be possible with more sophisticated de-
coders. Third, while encoding schemes tailored for the L1

penalty may produce fairly smooth disparity maps, few of
their correspondences are exact (e.g., well below 20% in
the case of Hamiltonian coding for real scenes we tested).
In contrast, auto-tuning for the 0-tolerance penalty yielded
disparity maps with a substantial fraction of pixels recon-
structed perfectly (e.g., well over 60% of the scenes in Fig-
ures 1 and 9). This raises interesting questions about how
raw 3D data from tolerance-optimized systems could be
processed downstream.

Operating range of an auto-tuned system We auto-tuned
the LG-IDS pair for several configurations with the L1

penalty and ZNCC-NN5 decoder, varying the pair’s base-
line and the training board’s distance and orientation. Fig-
ure 10 shows results from one of these sessions in which
the system is moved away from a test scene considerably,
thereby reducing image signal-to-noise ratio (SNR). In that
setting, auto-tuning separately for near- and far-field imag-
ing leads to improved performance over the state of the art.
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% pixels with no error

Figure 8: Auto-tuning Mitsuba CLT for four patterns and the 0-

tolerance penalty. Left: Performance of optimized patterns and

ZNCC-NN3 decoder across iterations of optical SGD. We mea-

sure performance by reconstructing the virtual training board (red

plot) as well as ModelNet objects (green plot, averaged over 30

models). Optical SGD performs considerably better on ModelNet

than state-of-the-art patterns combined with our ZNCC3 decoder

(dashed lines). Right: Disparity maps for a sample model.

Auto-tuning for indirect light As a final experiment,
we explore the possibility of auto-tuning a system in or-
der to make it robust to indirect light. We used EpiS-
can3D [21] (operated as a conventional projector-camera
system) to reconstruct a scene made of beeswax and other
translucent materials, approximately 80cm away. As a
baseline, we auto-tuned with the training board for the 2-
tolerance penalty and ZNCC-NN5 decoder, and used it to
reconstruct the scene. This produced a result considerably
worse than the MPS16-ZNCC5 decoder combination. (Fig-
ure 11). Auto-tuning with a beeswax training scene at a
similar distance improved performance significantly (75%
of pixels with error ≤2) but did not outperform MPS16.
We then made three small changes to the auto-tuning pro-
cedure: (1) bringing the training scene closer (40cm); (2)
using Hadamard multiplexing [55] for Jacobian acquisition
during optical SGD; and (3) refining the auto-tuned patterns
and decoder by running additional Optical SGD iterations
with a higher softmax temperature (τ = 1000). Upon con-
vergence, this yielded patterns and a decoder that performed
well above MPS16 on the test scene 80cm away.

6. Concluding Remarks

Our optical-domain implementation of SGD offers an al-
ternative way to solve optimal coding problems in imag-
ing, that emphasizes real-time control—and learning by
imaging—over modeling. Although we have shown that
very competitive coding schemes for structured light can
emerge on the fly with this approach, the question of how
a system can be tuned even further—for specific materials,
for specific families of 3D shapes, for complex light trans-
port, etc.—remains wide open.
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Figure 9: Top row: Performance evaluations for an example scene whose ground-truth disparity map is shown as an inset. Framed

numbers compare the current state of the art to auto-tuning with the ZNCC-NN5 decoder. We used a base frequency of 16 for MPS since

we found that it gives the best overall performance in our experiments. Note that while neighborhood decoding boosts the performance

of previously-proposed encoding schemes, none of them matches that of optical SGD. Moreover, jointly optimizing the patterns and the

decoder is more effective than optimizing only the decoder and using fixed patterns. Middle & bottom rows: Comparing the results from

the auto-tuned LG-IDS pair to those obtained by pairing previously-proposed patterns with their best-performing decoder. The two leftmost

columns show the disparity of all perfectly-reconstructed pixels (i.e., denser maps indicate higher accuracy). The complete disparity maps

are shown as insets. Rightmost columns compare the error maps of each method (darkest blue for 0 error, darkest red for error ≥ 20).
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