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A. Additional Details on Optical SGD

In this section, we provide more details on implementing Optical Stochastic Gradient Descent.

A.1. Illustration of Optical Differentiation Algorithm

To compute the gradients of error vector err(d,g) with respect to the control vector c (Eq. (8)), we must estimate the Jacobian
optically. Eq. (9) of the paper and its following optical-domain procedure provides a method for capturing the Jacobian by
the use of directional derivatives Da img(c,S) along an adjustment vector a. Figure A1 (third column) illustrates one sample
adjustment vector and its corresponding image difference, where the adjustment vector has N/B equally-spaced non-zero
elements (Section 4.1). We empirically set B = 7 and fix the adjustment magnitude h to 0.15. This adjustment magnitude
provides enough change in the image while being small enough to approximate the directional derivatives.
∗Authors contributed equally
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Figure A1: Optical-domain differentiation on an actual projector-camera system. (a) 1D plot of a sample projection pattern c and
its corresponding 2D projection pattern. (b) a photo of the experimental setup and the corresponding camera image of the scene under the
projection pattern depicted in (a). (c) adjustment vector and its corresponding image difference.



A.2. Ground Truth Acquisition

For both optimization and evaluating the experimental results, capturing an accurate ground truth is required. We acquire the
ground truth with the following routine:

1. Project 30 a la carte (0-tolerance) [1] patterns onto the scene, and use the ZNCC decoder to compute a pixel-to-column
correspondence map.

2. Repeat the previous step 10 times to capture 10 maps.

3. Fuse the captured maps into a single map g1 by majority vote.

To verify the captured ground truth, we compare it with another map acquired with a different family of patterns:

1. Project 160 shifted cosine patterns (10 shifts for frequencies in the range of [16-31]) along with 11 shifted cosine
patterns of frequency N

11 , where N is the number of projector columns.

2. Compute a sub-pixel map [2].

3. Round the fractional correspondences to the nearest integer, to obtain an integer pixel-to-column correspondence map
g2.

We say that the pixel-to-column correspondence map g1 captured by the first routine is an ε-tolerance ground truth if no pixel
in g1 and g2 differs by more than ε; i.e. for each image pixel, the column correspondences captured by these two routines are
at most ε columns apart from each other.

In our experiments, we were able to acquire 0-tolerance ground truth for the training board and our test scenes with all the
imaging systems used in this work except the indirect light experiment in Figure 11. For that experiment only 1-tolerance
ground truth was possible.

Capturing ground truth during optical SGD. Although an accurate ground truth is required for evaluation of different
systems and for comparison to prior art, we do not need the most accurate ground truth while auto-tuning a system. This is
because small errors can introduce an additional source of stochasticity, and helps the optimization not to overfit. Therefore,
the optical SGD (outlined in Figure 3) uses just one set of 30 a la carte patterns.

A.3. Frequency Constraint

We always enforce a weak max-frequency constraint to pattern optimization because we found that it leads to a more stable
optimization. When auto-tuning on board, in particular, we band-limit patterns to frequency 2blog2N/4c, which is the closest
power of 2 to half the Nyquist rate. This limit is fixed in all our experiments, with the exception of auto-tuning for indirect
light (see Figure 11 and section F). Enforcing the max frequency constraint is done in the Fourier domain; at the end of each
optical SGD iteration, we set Fourier coefficients higher than the specified max frequency to zero.

A.4. Optical SGD for Low-SNR Scenes

Auto-tuning a system for low-SNR conditions (e.g. low projector brightness, distant scene and/or high ambient light) intro-
duces a major challenge: the image difference i′ − i due to adjustment (Figure A1(c)) may be below the image quantization
level. This will lead to incorrect gradient estimates that can cause optical SGD to fail. To cope with this challenge, we do not
auto-tune systems under these conditions. Instead we always capture images under conditions where the image difference
i′ − i can be computed reliably, and then corrupt these images by (1) down-scaling them and adding zero-mean Gaussian
noise to simulate reduced signal level, and (2) adding Poisson noise to simulate high ambient-light contributions. These
unquantized images are then used to compute the gradients required by optical SGD.

Intuitively, this approach leads to images with lower quantization error, so that very small image gradients can still be
estimated. We use this method only for auto-tuning systems for far-field imaging (Figure 10, and section E.3). In all other
cases, auto-tuning is performed without any image corruption.



A.5. Optical SGD for Scenes with Indirect Light

Auto-tuning a system for settings with significant indirect light requires specific considerations as well.

Capturing the ground truth. It is well-known that indirect light can corrupt shape estimates obtained by structured light [2,
3]. In such cases, simply increasing the number of structured light patterns does not guarantee that correct correspondences
will be acquired. To mitigate the influence of indirect light as much as possible, we used the same method as described in
subsection A.2 to obtain ground truth, but captured the images by operating EpiScan3D in epipolar-only imaging mode [4].
Note that this mode was employed only for acquiring the ground truth.

Optimization parameters. Indirect light leads to a less-sparse Jacobian. Consequently, we use larger spacing between non-
zero elements of the adjustment vector. Furthermore, we observed that using a lower max-frequency for patterns yields a
more stable optimization. We empirically set F to 1

8 of Nyquist limit, and chose B = 23 for translucent training scene (refer
to section F).

Hadamard multiplexing for image Jacobian acquisition. Indirect light reduces the SNR of direct surface reflections and
therefore the SNR of optically-computed gradients. To improve the gradient estimation, we acquired the image Jacobian
by Hadamard multiplexing [5] which is known to improve performance in low-SNR conditions. Specifically, instead of
using adjustment vectors that have a single non-zero element, we use those defined by the S-matrix of appropriate size, and
demultiplex the captured images after acquisition. This leads to higher-SNR gradients and improves the performance of
optical SGD considerably (Figure 11 and section F).

A.6. Optical SGD for Color Structured Light Systems

To apply the optical auto-tuning framework to color structured light systems, we followed two approaches:

Approach 1: color structured light with demosaiced RGB images. First, we use demosaiced RGB images as the input to
the algorithm 1. For such a system running on K ′ color patterns, there are K = 3K ′ control vectors, and 3K ′ corresponding
images. With this modification, the same methods as Eq. (12-16), can be applied for both decoding and auto-tuning a system.

Approach 2: color structured light with raw single-channel images. As another option, we simply use raw single-channel
Bayer image as the input. Operating on Bayer mosaic introduces a mismatch between the number of control vectors and the
number of patterns: forK ′ RGB patterns, the number of captured images isK ′ but the number of control vectors isK = 3K ′.
This size mismatch between “image feature vector” and “projector feature vector” (as defined in section 4) prevents direct
application of the ZNCC or ZNCCp decoders (Eq. (12-14)). Here we simply modify ZNCC-NNp for this purpose, by slightly
changing the neural network architecture for image feature vector F(). Specifically, we define F() to be a neural net with
two fully connected layers of dimensions (pK) × (3pK) × (3pK). Moreover, since each pixel in a 2 × 2 Bayer tile has a
different spectral response and a different local neighbourhood, we use a distinct neural network for each pixel in a Bayer
tile. This means the total number of learnable parameters for image features is 4(3p2K2 + 9p2K2). Eq. (16) then can be
utilized to auto-tune the patterns and decoder.

B. Visualizations

Throughout the main paper and supplementary materials, we use several ways to visualize and analyze the results, and to
showcase their differences. Here we provide more details on these visualizations and how to interpret them.

B.1. Disparity Maps

Given a pixel-to-column correspondence map d, we define the disparity of a pixel (i, j) on the image plane to be d[i, j]− j,
where d[i, j] is its corresponding projector column. This definition is independent of intrinsic and extrinsic calibration of the
projector-camera system and thus allows us visualize and evaluate performance in a calibration-invariant manner. Similiarly,
ground-truth disparity of a pixel (i, j) is defined as g[i, j] − j, where g[i, j] is its ground-truth corresponding projector
column. It is straightforward to show disparity error at a pixel, is equal to its column-correspondence error |d[i, j]− g[i, j]|.

1We capture raw single-channel images with camera, and use standard OpenCV algorithm for demosaicing.
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Figure B1: Visualizing disparity maps. Different methods of visualizing a sample disparity output. While for disparity maps (a-d), we
use different color mapping depending on the scene, the color map for the disparity error map (e) is always fixed: dark blue corresponds to
zero error and dark red shows error greater or equal than 20 pixels.

We use disparity map representation for all the results in the paper except Figure 1 (top row), where we calibrated the
projector-smartphone pair to show metric depth instead.

To evaluate the results of different structured light systems, we use three distinct ways for visualizing the disparity maps:

Raw disparity maps. This visualization illustrates the disparities (with jet color map) for image pixels which have verified
ground truth (Figure B1(b)) . We simply exclude the pixels for which ground truth cannot be acquired reliably. We set the
color of those pixels to black.2

ε-tolerance disparity maps. The ε-tolerance disparity map excludes all the pixels whose disparity error is larger than ε. For
example, Figure B1(c) shows all the pixels whose disparities were recovered perfectly (i.e. with zero error). This visualization
is particularly useful for assessing results according to the ε-tolerance penalty: ε-tolerance disparity maps that contain more
pixels signify a higher-quality reconstruction (i.e. higher number of pixels with disparity error less or equal than ε).

Disparity error maps. These maps show pixelwise disparity errors with a jet color map (Figure B1(e)). Since they show
how errors are distributed over the whole image, we specifically use them to assess the system’s performance according to
the L1 penalty.

B.2. Empirical Column-Confusion Matrices

To assess how easily the decoder can confuse two projector columns, thereby leading to incorrect correspondences at a
pixel, it is helpful to develop the notion of confusion. Here we consider an empirical measure of confusion that counts how
many times the decoder outputs projector column n as the correspondence, when in fact the ground-truth correspondence was
column n′. Given a particular pattern sequence and decoder, we compute these counts on the training board, once auto-tuning
completes.

To visualize how easily two columns are confused, we visualize these counts as anN×N image, where pixel (n, n′) indicates
the frequency by which ground-truth column n′ was decoded as column n (Figure B2 and supplementary video).

C. List of Devices

Table C1 lists all the devices we used in the paper and in the supplementary materials.

2Please refer to section A.2 for more details on acquiring the ground truth.
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Figure B2: Empirical column-confusion matrices. Visualizing the column-confusion properties of the patterns and decoder in Figure 7
of the paper (top row, second and third column), obtained by auto-tuning the C2B-LightCrafter pair. Note how auto-tuning a system for
L1 penalty forces the easily-confused columns to lie near the diagonal, where disparity errors are low. In contrast, ε-tolerance created a
drastically different confusion matrix that aims to maximize exact reconstruction.

projector projector response
function

projector
columns

pattern spatial
frequency limit camera image exposure

time
camera response

function

LG-PH550 non-linear 1280 256 IDS-UI324x 33msec linear
LightCrafter linear 400 64 C2B [6] 17msec linear
Optoma 4K non-linear 3840 512 Huawei P9 33msec non-linear
LG-PH550 non-linear 1280 256 AVT-1920c 17msec linear
LG-PH550 non-linear 1280 256 AVT-1920 17msec linear

PicoPro non-linear 1280 256 IDS-UI324x 17msec linear

Table C1: List of the experimental imaging systems.



encoding
scheme decoder optimized for

penalty Reference radiometrically
calibrated projector?

auto-tuning
applied?

Hamiltonian ZNCC L1 [7] Yes No
MPS ZNCC none [2] Yes No

A la carte ZNCC 0-tolerance [1] Yes No
Hamiltonian ZNCC5 L1 this paper Yes No

MPS ZNCC5 none this paper Yes No
A la carte ZNCC5 0-tolerance this paper Yes No

Hamiltonian ZNCC-NN5 0-tolerance & L1 this paper Yes decoder only
MPS ZNCC-NN5 0-tolerance & L1 this paper Yes decoder only

A la carte ZNCC-NN5 0-tolerance & L1 this paper Yes decoder only
auto-tuned ZNCC 0-tolerance & L1 this paper No patterns only
auto-tuned ZNCC5 0-tolerance & L1 this paper No patterns only
auto-tuned ZNCC-NN5 0-tolerance & L1 this paper No patterns & decoder

Table D1: List of the coding-decoding methods used for experiments.

D. Quantitative Comparison with State-of-the-art Methods

Experimental Setup. We used the LG-IDS (Table C1) as our imaging system. The scene was placed approximately 1m
from the system. We chose a scene with both high- and low-albedo surfaces, different geometries, texture, and depth discon-
tinuities. An image of the scene under all-white projection pattern is shown both in Figures D1 and D2.
We used all the methods listed in Table D1 with K = 4 to compare their performance. Figures D1 and D2 show the com-
parisons for patterns auto-tuned with 0-tolerance and L1 penalty, respectively. In Figure D1, we used percentage of pixels
with no error as the evaluation metric, which is equivalent to 0-tolerance penalty. On the other hand, average disparity error
is used for evaluation in Figure D2, which is the corresponding metric to L1 penalty. In both figures, the improvements along
the columns (marked with green) show the impact of our proposed decoding algorithms on existing encoding methods, while
the last row showcases this work’s contributions in both decoding and pattern optimization.

Neighbourhood decoding improves accuracy. Comparing the second columns of Figures D1 and D2 with their first
columns indicates neighbourhood decoding has a drastic impact on the performance of system for all the patterns. For
instance, it improves the percentage of zero-error pixels for MPS, Hamiltonian, and a la carte by 89%, 56%, and 86%,
respectively. Same trend applies to average disparity error. Furthermore, the neural net decoder provides another level of
improvement in the performance for auto-tuned patterns, but has almost no effect on patterns which are not optimized with
auto-tuning. This suggests that the neural network decoder is most useful when it is optimized along with the patterns. It also
justifies our default choice of ZNCCp decoder for state-of-the-art patterns used in Section 5.

The choice of error metric matters. A la carte patterns perform relatively well when evaluated by the percentage of
zero-error pixels. However, their disparity maps result in high average disparity error. Hamiltonian patterns exhibit the
opposite behavior: while they generate very smooth disparity maps with low average disparity error, they perform poorly
when evaluated by the number of zero-error pixels. This suggests that optimality of a pattern, to a great extent, is related to
the metric it will be evaluated by. Unlike other patterns that are blind to the choice of evaluation metric, our framework can
tune the patterns for any desired metric by optimizing the equivalent error function.



% of pixels with no error Ground Truth & Camera Image

ZNCC ZNCC5 ZNCC-NN5

MPS 27.42 51.70 49.53

Hamiltonian 9.46 14.72 15.03

a la carte 33.14 61.78 61.76

auto-tuned 32.29 67.33 72.24

visualization: 0-tolerance disparity maps overlaid with raw disparity
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Figure D1: Comparison of different coding-decoding methods based on percentage of zero-error pixels. The table lists the no-
error reconstruction rates (i.e. the percentage of pixels with zero error) of each pattern, decoded with all the decoding methods. Their
corresponding 0-tolerance disparity maps are shown with the same layout as the table. The raw disparity maps are also shown as insets, for
reference. Table entries and disparity maps marked as blue represent the current state of the art. Entries and disparity maps marked as green
indicate the best-performing decoder for 3 previously-proposed pattern sequences (MPS, Hamiltonian, a la carte). Note that the best results
of these patterns are obtained with decoders introduced in this paper. The best performance, shown in red, is obtained by auto-tuning with
the ZNCC-NN5 decoder.



average disparity error (pixels) Ground Truth & Camera Image

ZNCC ZNCC5 ZNCC-NN5

MPS 137.53 42.80 43.07

Hamiltonian 6.52 4.56 4.66

a la carte 173.67 39.84 41.30

auto-tuned 9.84 4.17 3.65

visualization: disparity error maps overlaid with raw disparity
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Figure D2: Comparison of different coding-decoding methods based on average disparity error. The table lists the average disparity
error of each pattern, decoded with all the decoding methods. Their corresponding disparity error maps are shown with the same layout as
the table. The raw disparity maps are also shown as insets, for reference. Table entries and disparity error maps marked as blue represent
the current state of the art. Entries and disparity maps marked as green indicate the best-performing decoder for 3 previously-proposed
pattern sequences (MPS, Hamiltonian, a la carte). Note that the best results of these patterns are obtained with decoders introduced in this
paper. The best performance, shown in red, is obtained by auto-tuning with the ZNCC-NN5 decoder.



E. Operating Range of an Auto-Tuned System

Experimental Setup. We used the LG-IDS system in Figure E1 to reconstruct the training board in geometrical arrangements
that are different from those used for auto-tuning. We compare the performance of K = 4 sequences of MPS, Hamiltonian,
a la carte patterns decoded with ZNCC5 (which gives the best performance for the patterns), and patterns auto-tuned for
0-tolerance and L1 penalties with ZNCC-NN5 decoder (refer to Table D1 for details).

E.1. Varying Stereo Baseline

First, we analyze the performance of patterns on the same system but with different baselines. For this case, we fix the
camera’s and the training board’s position and orientation, and move the projector to change the stereo baseline. The camera-
to-board distance was approximately 80cm and we tested five baselines (12cm, 24cm, 36cm, and 48cm). We compare the
performance of MPS, Hamiltonian, and a la carte with the performance of a system auto-tuned to one of two different
baselines (12cm and 48cm). Figure E1 (left) shows the experimental setup, and patterns’ performance according to the
evaluation metrics corresponding to 0-tolerance and L1 penalties.

Discussion. Three observations can be made about the results: First, by increasing the baseline the performance of all
the patterns drops. Second, training on a particular baseline provides the best performance on that baseline (regardless of
penalty function). Third, although optimizing on a particular baseline gives the best performance, auto-tuning a system on
one baseline continues to perform well in other baselines as well, outperforming existing methods.

E.2. Varying Surface Orientation

Second, we analyze the effect of surface orientation on reconstruction performance. Here, we fix the baseline (24cm), and
the training board’s distance with respect to the system (0.8m); and rotate the board (0, 15, 30, and 45 degree). We auto-tune
the system at one of two board orientations, and compare their performance with other existing patterns. Figure E1 (right)
shows the experimental setup, and the patterns’ performance at different orientations.

Discussion. The results show similar behavior to the case of varying baseline. First, almost all the methods’ performance
drops when the surface tilts away from the baseline; the only exception is the case of auto-tuning at 45 degree which performs
better as tilt increases. Second, systems auto-tuned on a specific orientation perform best at that orientation. Third, a system
tuned for zero tilt, generalizes well to other tilts, outperforming other existing methods at different angles. This does not
always hold for a system tuned for 45 degree tilt. This suggests systems tuned with a board parallel to the baseline perform
well for a larger range of orientations.

E.3. Varying Distance

Finally, we evaluate the influence of object-to-system distance on the performance of patterns. For this experiment, we used
a room corner as the test scene (Figure 10 of the paper, top right). While keeping the baseline (20cm) and scene fixed, we
translated the camera-projector pair backward from the corner (0.8m, 1.8m, 2.8m, 3.8m, 4.8m, and 5.8m) and auto-tune the
system for 3 distances using the L1 penalty: one for a training board at 0.8m, one for a training board at 5.8m, and one for
the range of 0.8 to 5.8 meters (by drawing random distance samples). We used the approach in section A.4 to auto-tune for
distances beyond 0.8m because the projection patterns are too dim at distances beyond 2m to compute gradients reliably.
Figure 10 in the main paper shows an overview of the experimental setup, and the average disparity error as a function of
depth.
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Figure E1: Comparison of auto-tuned patterns optimized on different geometrical arrangements with existing patterns.



F. Indirect Light Experiment — Additional Information

Ground truth for auto-tuning was acquired as described in sections A.2 and A.5. After running optical SGD for 2500 iterations
with softmax temperature τ = 200, we refine the patterns and the ZNCC-NN5 decoder by executing an additional 1000
iterations with a much higher temperature, τ = 1000. This provides an even tighter continuous approximation to the total
penalty, ‖err(d,g)‖1, at the expense of a harder optimization landscape.

Figure F1 shows the performance improvements caused by individual modifications to our basic optical SGD procedure.

test scene & ground-truth disparity map auto-tuning with board at 80cm MPS16 & ZNCC5

46% 79%

auto-tuning with wax training scene at 80cm auto-tuning with wax training scene at 40cm auto-tuning with wax training scene at 40cm
& Hadamard multiplexing Hadamard multiplexing & refinement

76% 84% 87%

Figure F1: Auto-tuning for indirect light. To better visualize reconstruction accuracy, only pixels with error ≤ 2 are shown in the
disparity maps above. The total percentage of such pixels is indicated in yellow in the upper left, with the correspondence error map shown
as an inset (darkest blue for error=0, darkest red for error ≥ 20).

G. Auto-tuning Structured Light for Different Imaging Systems

This section explores the applicability of optical auto-tuning framework to a broad range of structured light imaging systems.

G.1. Auto-Tuning for One-Shot Depth Estimation.

Experimental Setup. We applied auto-tuning framework to LightCrafter-C2B pair (Table C1) to optimize patterns for single-
shot depth estimation (Figures 1 and 7). We set the baseline to 40cm, and place them approximately 80cm away from the
scene being imaged (i.e. training board and test scenes). The camera field of view is much smaller than the projector’s in
this system, with only the central 400 projector columns in the camera’s field of view. We auto-tune the system for K = 4
patterns, the ZNCC-NN5 decoder, and the 1-tolerance and L1 penalties.

Figure 7 compares auto-tuned systems with a la carte and Hamiltonian patterns, both decoded by ZNCC5. It can be seen that
patterns auto-tuned for both error penalties, perform better than other existing pattens (according to each penalty’s equivalent
evaluation metric) on this one-shot depth imaging system. We also included a video in supplementary materials, which shows
raw disparity maps at around 5 Hz for several patterns.
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Figure G1: Comparison of auto-tuned color patterns with gray patterns. Top: Auto-tuning gray patterns for LG-AVT. (a) scene
image captured by the monochrome camera. (b) 0-tolerance ground-truth. (c-d) 0-tolerance disparity map (overlaid with raw disparity
map) for K = 4 and K = 3 with their percentages of zero-error pixels. Bottom: Auto-tuning color patterns for LG-AVT. (a) scene image
captured by the color camera. (b) 0-tolerance ground-truth. (c) 0-tolerance disparity map (overlaid with raw disparity map) for K = 3
color pattern, auto-tuned on demosaiced images with its percentage of zero-error pixels. (d) 0-tolerance disparity map (overlaid with raw
disparity map) for K = 3 color pattern, auto-tuned on raw images with its percentage of zero-error pixels.

G.2. Auto-Tuning Color Projector-Camera Systems

We used the methods described in section A.6 to auto-tune two different projector-camera systems for color structured light.

Color structured light with cellphone. The results are shown in Figure 1 (top row). In this experiment, we auto-tuned the
system for K = 5 patterns, the ZNCC-NN5 decoder, and 1-tolerance penalty function.

Color vs. monochrome structured light experiment. To do so, we used the same projector (LG) and base camera system
(Prosilica AVT with Schneider lens), with the only difference being that the color version of the system had a Bayer filter
fitted onto the sensor (models Prosilica 1920c and Prosilica 1920, respectively). Thus, the color camera provided color
information at the expense of lower quantum efficiency for its pixels. For both systems, we auto-tune for the 0-tolerance
penalty and the ZNCC-NN5 decoder.
Figure G1 compares disparity maps obtained with color patterns and gray patterns, using the approach in Section A.6 to
handle color. Two observations can be made about the results. First, despite their lower quantum efficiency and lower
number of patterns, 3 color patterns perform comparably to 4 gray patterns. Second, auto-tuning on demosaiced images
works better than using the raw images. Intuitively, auto-tuning on demosaiced images benefits from the inference taking
place in the demosaicing procedure.

G.3. Transferring Auto-Tuning Results from One System onto Another

Lastly, we investigate how an auto-tuned pattern optimized on a particular imaging system behaves on other systems.

Experimental Setup. We conduct experiments with 3 different camera-projector pairs, where two of them are real devices
(LG-AVT gray, and PicoPro-IDS), and the third one is a computational light transport renderer (MitsubaCLT [8]). To have
a fair assessment, for MitsubaCLT renderer, we used the same number of projector columns (1280) as other projectors used
in this experiments, and also used linear camera-projector model. We auto-tune K = 4 patterns for each system with the 0-
tolerance penalty and the ZNCC-NN3 decoder. For real devices, we train on the regular training board placed approximately
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Figure G2: Performance of system-specific auto-tuned patterns on other imaging systems. Given a scene (dark fruit jumble) and
system (LG-AVT), we compare the patterns and decoders that result from auto-tuning different systems. (a) Scene image as captured by
camera is shown in top left (overlaid with its linear scaled version for reference). 0-tolerance disparity maps (overlaid with raw disparity
maps) are shown for patterns auto-tuned on different imaging systems when used for reconstructing the scene with LG-AVT system. For
each reconstruction, the percentage of zero-error pixels are also included. (b) Top Right: for each testing system, we used the patterns
auto-tuned on different imaging systems to reconstruct the same object. We used the fruit jumble for the physical systems (PICO-IDS and
LG-AVT). However, since recreating the same object in the rendering environment was infeasible, we used bunny model. Note that the
same object was still used for evaluating the patterns on each system. Bottom Right: the mean-magnitude of FFT (Fast Fourier Transform)
coefficients for each set of auto-tuned patterns.

80cm from the baseline; for MitsubaCLT we used a flat surface at the same distance as other systems, with the same albedo
map as our physical training board (Figure 1, middle row).

We cross-evaluate the auto-tuned patterns and decoders on other systems and show the quantitative and qualitative results
in Figure G2; the table provides the percentage of pixels with zero disparity error for all the cases. We observe that for
each system we tested, auto-tuned patterns optimized on that particular system perform best. As further example, we used
these auto-tuned patterns to reconstruct a scene with the LG-AVT system. Figure G2(a) shows the corresponding 0-tolerance
disparity maps along with their percentage of zero-error pixels. This reiterates the fact that auto-tuned patterns are specifically
optimized for the system they are trained on. Comparing the frequency content of the auto-tuned patterns (Figure G2(b))
makes clear that these patterns exhibit very distinct spatial structure, in response to the specific characteristics of imaging
system for which they are optimized.



H. Proof of Eq. (16)

The total penalty of a correspondence map d with ground truth map g is defined as:

‖err(d,g)‖1 =

M∑
m=1

ρ(d[m]− g[m]) (H1)

Using ZNCC-based decoders (Eq.(12-15)) for acquiring correspondence map d, we have:

err(d,g)[m] = ρ(arg max
1≤n≤N

zm[n]− g[m]) (H2)

Now, we define a max-indicator vector im as follows:

im[j] =

{
1 if j = argmax1≤n≤N zm[n]

0 otherwise

Using im, we can rewrite Eq. (H2):

err(d,g)[m] = ρ((im · index)− g[m](im · 1)) (H3)

where index is a vector whose i-th element is equal to its index i; 1 represents an all-one vector; and · denotes the dot
product.

We can now further simplify Eq. (H3) by factoring im:

err(d,g)[m] = im · [ρ(index[0]− g[m]), . . . , ρ(index[n]− g[m])] . (H4)

On the other hand, it is straightforward to show:

lim
τ→∞

softmax(τzm) = im (H5)

By combining Eq. (H4) and Eq. (H5), we get:

err(d,g)[m] = lim
τ→∞

softmax(τzm) · [ρ(index[0]− g[m]), . . . , ρ(index[n]− g[m])]︸ ︷︷ ︸
err(index−g[m],0)

, (H6)

Therefore, for sufficiently large τ , we can conclude:

‖err(d,g)‖1 ≈
M∑
m=1

softmax(τzm) · err(index−g[m],0) (H7)

QED. �
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