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Abstract. We introduce coded two-bucket (C2B) imaging, a new operating prin-

ciple for computational sensors with applications in active 3D shape estimation

and coded-exposure imaging. A C2B sensor modulates the light arriving at each

pixel by controlling which of the pixel’s two “buckets” should integrate it. C2B

sensors output two images per video frame—one per bucket—and allow rapid,

fully-programmable, per-pixel control of the active bucket. Using these properties

as a starting point, we (1) develop an image formation model for these sensors,

(2) couple them with programmable light sources to acquire illumination mo-

saics, i.e., images of a scene under many different illumination conditions whose

pixels have been multiplexed and acquired in one shot, and (3) show how to pro-

cess illumination mosaics to acquire live disparity or normal maps of dynamic

scenes at the sensor’s native resolution. We present the first experimental demon-

stration of these capabilities, using a fully-functional C2B camera prototype. Key

to this unique prototype is a novel programmable CMOS sensor that we designed

from the ground up, fabricated and turned into a working system.

1 Introduction

New camera designs—and new types of imaging sensors—have been instrumental in

driving the field of computer vision in exciting new directions. In the last decade alone,

time-of-flight cameras [1,2] have been widely adopted for vision [3] and computational

photography tasks [4–7]; event cameras [8] that support asynchronous imaging have

led to new vision techniques for high-speed motion analysis [9] and 3D scanning [10];

high-resolution sensors with dual-pixel [11] and assorted-pixel [12] designs are defining

the state of the art for smartphone cameras; and sensors with pixel-wise coded-exposure

capabilities are starting to appear [13, 14] for compressed sensing applications [15].

Against this backdrop, we introduce a new type of computational video camera to the

vision community—the coded two-bucket (C2B) camera (Fig. 1). The C2B camera is

a pixel-wise coded-exposure camera that never blocks the incident light. Instead, each

pixel in its sensor contains two charge-collection sites—two “buckets”—as well as a

one-bit writeable memory that controls which bucket is active. The camera outputs two

images per video frame—one per bucket—and performs exposure coding by rapidly

controlling the active bucket of each pixel, via a programmable sequence of binary 2D

patterns. Key to this unique functionality is a novel programmable CMOS sensor that
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Fig. 1: The C2B camera. Left: Our prototype’s sensor outputs video at 20 frames per second and

consists of two arrays: a 244×160-pixel array that supports relatively slow bucket control (up to

4 sub-frames per frame) and a 35×48 array with much faster control (up to 120 sub-frames per

frame). Right: Each frame is divided into S sub-frames during which the pixel’s SRAM memory

remains unchanged. A user-specified sequence of 2D binary patterns determines the SRAM’s

value at each pixel and sub-frame. Note that the two buckets of a pixel are never in the same

state (i.e., both active or both inactive) as this would degrade imaging performance—see [32] for

a discussion of this and other related CMOS design issues. The light-generated charges of both

buckets are read, digitized and cleared only once, at the end of each frame.

we designed from the ground up, fabricated in a CMOS image sensor (CIS) process

technology [16] for the first time, and turned into a working camera system.

The light efficiency and electronic per-pixel coding capabilities of C2B cameras open

up a range of applications that go well beyond what is possible today. This potentially

includes compressive acquisition of high-speed video [17] with optimal light efficiency;

simultaneous acquisition of both epipolar-only [18] and non-epipolar video streams;

fully-electronic acquisition of high-dynamic-range AC-flicker videos [19]; conferring

EpiScan3D-like functionality [20] to non-rectified imaging systems; and performing

many other coded-exposure imaging tasks [15,21,22] with a compact camera platform.

Our focus in this first paper, however, is to highlight the novel capabilities of C2B cam-

eras for live dense one-shot 3D reconstruction: we show that from just one grayscale

C2B video frame of a dynamic scene under active illumination, it is possible to recon-

struct the scene’s 3D snapshot (i.e., per-pixel disparity or normals, plus albedo) at a

resolution comparable to the sensor’s pixel array. We argue that C2B cameras allow us

to reduce this very difficult 3D reconstruction problem [23–28] to the potentially much

easier 2D problems of image demosaicing [29, 30] and illumination multiplexing [31].

In particular, we show that C2B cameras can acquire—in one frame—images of a scene

under S≥3 linearly-independent illuminations, multiplexed across the buckets of S−1
neighboring pixels. We call such a frame a two-bucket illumination mosaic. In this set-

ting, reconstruction at full sensor resolution involves four steps (Fig. 2): (1) control

bucket activities and light sources to pack 2(S−1) distinct low-resolution images of the

scene into one C2B frame (i.e., S−1 images per bucket); (2) upsample these images



Coded Two-Bucket Cameras 3

Step 1 (Sec. 2): capture C2B frame

raw intensities (S=4) reshuffled pixels

b
u
ck

et
1

1

2

2

3

b
u
ck

et
0 4

5

5

6

Step 2 (Sec. 5): upsample by demosaicing buckets individually

illumination c
p1
1

L illumination c
p2
2

L illumination c
p3
3

L

1 2 3

illumination c
p1
1

L illumination c
p2
2

L illumination c
p3
3

L

4 5 6

Step 3 (Sec. 4): jointly demultiplex

the 2(S−1) upsampled images

illumination l1 illumination l2

illumination l3 illumination l4

Step 4 (Sec. 3):

reconstruct scene

disparity map

albedo map

one-shot photometric stereo example

C2B frame captured with S=4

raw intensities (bucket 1) normal map

raw intensities (bucket 0) albedo map

Fig. 2: Dense one-shot reconstruction with C2B cameras. The procedure runs in real time and is

illustrated for structured-light triangulation. Please zoom in to the electronic copy to see individ-

ual pixels of the C2B frame and refer to the listed sections for notation and details. Photometric

stereo is performed in an analogous way, by replacing the structured-light projector with a set of

S directional light sources (a reconstruction example is shown in the lower right).

to full resolution by demosaicing; (3) demultiplex all the upsampled images jointly, to

obtain up to S linearly-independent full-resolution images; and (4) use these images to

solve for shape and albedo at each pixel independently. We demonstrate the effective-

ness of this procedure by recovering dense 3D shape and albedo from one shot with two

of the oldest and simplest active 3D reconstruction algorithms available—multi-pattern

cosine phase shifting [33, 34] and photometric stereo [35].

From a hardware perspective, we build on previous attempts to fabricate sensors with

C2B-like functionality [36–38], which did not rely on a CMOS image sensor process

technology. More broadly, our prototype can be thought of as generalizing three fam-

ilies of sensors. Programmable coded-exposure sensors [13] allow individual pixels to

be “masked” for brief periods during the exposure of a video frame (Fig. 3, left). Just

like the C2B sensor, they have a writeable one-bit memory inside each pixel to control

masking, but their pixels lack a second bucket so light falling onto “masked” pixels is

lost. Continuous-wave time-of-flight sensors [1, 2] can be thought of as having comple-

mentary functionality to coded-exposure sensors: their pixels have two buckets whose

activity can be toggled programmatically (so no light is lost), but they have no in-pixel

writeable memory. As such, the active bucket is constrained to be the same for all pix-
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Fig. 3: Comparison of basic sensor abilities. Coded-exposure sensors can rapidly mask individual

pixels but cannot collect all the incident light; continuous-wave ToF sensors always collect all the

incident light but they cannot mask pixels individually; C2B sensors can do both. The column

vectors cfs and cfs denote bucket-1 masks/activities and their binary complement, respectively.

els (Fig. 3, middle). This makes programmable per-pixel coding—and acquisition of

illumination mosaics in particular—impossible without specialized optics (e.g., [17]).

Multi-bucket (a.k.a., “multi-tap”) sensors [39–42] have more than two buckets in each

pixel but they have no writeable memory either, so per-pixel coding is not possible. In

theory, an S-bucket sensor would be uniquely suited for dense one-shot reconstruction

because it can acquire in each frame S full-resolution images corresponding to any set

of S illuminations [43]. In practice, however, C2B sensors have several advantages: they

are scalable because they can pack S linearly-independent images into one frame for

any value of S—without hard-wiring this value into the pixel’s CMOS design; they are

much more light efficient because each extra bucket reduces the pixel’s photo-sensitive

region significantly for a given pixel size; and they have a broader range of applica-

tions because they enable per-pixel coding. To our knowledge, 2D sensors with more

than four buckets have not been fabricated in a standard CMOS image process, and it is

unclear if they could offer acceptable imaging performance.

On the conceptual side, our contributions are the following: (1) we put forth a general

model for the C2B camera that opens up new directions for coded-exposure imaging

with active sources; (2) we formulate its control as a novel multiplexing problem [31,

44–49] in the bucket and pixel domains; (3) we draw a connection between two-bucket

imaging and algorithms that operate directly on intensity ratios [50]; and (4) we provide

an algorithm-independent framework for dense one-shot reconstruction that is simpler

than earlier attempts [18] and is compatible with standard image processing pipelines.

Last but not least, we demonstrate all the above experimentally, on the first fully-

operational C2B camera prototype.
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Fig. 4: (a) Structure of the code tensor C. (b) Image formation model for pixel p. We show the

transport vector tp for a structured-light setting, where the contribution of ambient illumination

is tp[L] = b, the corresponding projector pixel is l, and its albedo is tp[l]=a.

2 Coded Two-Bucket Imaging

We begin by introducing an image formation model for C2B cameras. We consider the

most general setting in this section, where a whole sequence of C2B frames may be

acquired instead of just one.

C2B cameras output two images per video frame—one for each bucket (Fig. 2). We

refer to these images as the bucket-1 image and bucket-0 image.

The code tensor. Programming a C2B camera amounts to specifying the time-varying

contents of its pixels’ memories at two different timescales: (1) at the scale of sub-

frames within a video frame, which correspond to the updates of the in-pixel memories

(Fig. 1, right), and (2) at the scale of frames within a video sequence. For a video

sequence with F frames and a camera that has P pixels and supports S sub-frames,

bucket activities can be represented as a three-dimensional binary tensor C of size P ×
F × S. We call C the code tensor (Fig. 4a).

We use two specific 2D “slices” of the code tensor in our analysis below, and have
special notation for them. For a specific pixel p, slice C

p describes the activity of pixel
p’s buckets across all frames and sub-frames. Similarly, for a specific frame f , slice Cf

describes the bucket activity of all pixels across all sub-frames of f :

C
p =




c
p
1

c
p
2

.

..

c
p
F




︸ ︷︷ ︸
F×S

Cf =
[
cf1 cf2 . . . cfS

]
︸ ︷︷ ︸

P×S

, (1)

where c
p
f is an S-dimensional row vector that specifies the active bucket of pixel p in

the sub-frames of frame f ; and cfs is a P -dimensional column vector that specifies the

active bucket of all pixels in sub-frame s of frame f .

The illumination matrix. Although C2B cameras can be used for passive imaging
applications [15], we model the case where illumination is programmable at sub-frame
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timescales too. In particular, we represent the scene’s time-varying illumination condi-
tion as an illumination matrix L that applies to all frames:

L =




l1

l2

...

lS




︸ ︷︷ ︸
S×L

, (2)

where row vector ls denotes the scene’s illumination condition in sub-frame s of every

frame. We consider two types of scene illumination in this work: a set of L directional

light sources whose intensity is given by vector ls; and a projector that projects a pattern

specified by the first L − 1 elements of ls in the presence of ambient light, which we

treat as an L-th source that is “always on” (i.e., element ls[L] = 1 for all s).

Two-bucket image formation model for pixel p. Let ip and î
p be column vectors

holding the intensities of pixel p’s bucket 1 and bucket 0, respectively, in F frames. We
model these intensities as the result of light transport from the L light sources to the
pixel’s two buckets (Fig. 4b):

[
i
p

î
p

]

︸︷︷︸
2F×1

=

[
C

p

C
p

]

︸ ︷︷ ︸
2F×S

L

︸︷︷︸
S×L

t
p

︸︷︷︸
L×1

, (3)

where b denotes the binary complement of matrix or vector b, Cp is the slice of the code

tensor corresponding to p, and t
p is the pixel’s transport vector. Element tp[l] of this

vector describes the transport of light from source l to pixel p in the timespan of one

sub-frame, across all light paths.

To gain some intuition about Eq. (3), consider the buckets’ intensity in frame f :

i
p[f ] =

(
c
p

f L
)

︸ ︷︷ ︸
illumination condition

of pixel p, bucket 1, frame f

t
p

î
p[f ] =

(
c
p

f L
)

︸ ︷︷ ︸
illumination condition

of pixel p, bucket 0, frame f

t
p
. (4)

In effect, the two buckets of pixel p can be thought of as “viewing” the scene under two

potentially different illuminations given by vectors c
p
fL and c

p
fL, respectively. More-

over, if c
p
f varies from frame to frame, these illumination conditions may vary as well.

Bucket ratios as albedo “quasi-invariants.” Since the two buckets of pixel p gener-

ally represent different illumination conditions, the two ratios

r =
i
p[f ]

ip[f ] + îp[f ]
, r̂ =

î
p[f ]

ip[f ] + îp[f ]
, (5)

defined by p’s buckets are illumination ratios [50–52]. Moreover, we show in [32] that

under zero-mean Gaussian image noise, these ratios are well approximated by Gaussian

random variables whose mean is the ideal (noiseless) ratio and whose standard devia-

tion depends weakly on albedo. In effect, C2B cameras provide two “albedo-invariant”

images per frame. We exploit this feature of C2B cameras for both shape recovery and

demosaicing in Secs. 3 and 5, respectively.
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2.1 Acquiring Two-Bucket Illumination Mosaics

A key feature of C2B cameras is that they offer an important alternative to multi-frame

acquisition: instead of capturing F frames in sequence, they can capture a spatially-

multiplexed version of them in a single C2B frame (Fig. 2). We call such a frame a

two-bucket illumination mosaic in analogy to the RGB filter mosaics of color image

sensors [12,53,54]. Unlike filter mosaics, however, which are attached to the sensor and

cannot be changed, acquisition of illumination mosaics is programmable for any F .

The bucket-1 and bucket-0 image sequences. Collecting the two buckets’ intensities
in Eq. (4) across all frames and pixels, we define two matrices that hold all this data:

I =
[
i
1

i
2 . . . i

P
]

︸ ︷︷ ︸
F×P

Î =
[̂
i
1

î
2 . . . î

P
]

︸ ︷︷ ︸
F×P

. (6)

Code tensor for mosaic acquisition. Formally, a two-bucket illumination mosaic is

a spatial sub-sampling of the sequences I and Î in Eq. (6). Acquiring it amounts to

specifying a one-frame code tensor C̃ that spatially multiplexes the corresponding F -
frame tensor C in Fig. 4(a). We do this by (1) defining a regular tiling of the sensor
plane and (2) specifying a correspondence (pi → fi), 1 ≤ i ≤ K , between the K

pixels in a tile and frames. The rows of C̃ are then defined to be

c̃
pi
1

def
= c

pi
fi

. (7)

Mosaic acquisition example. The C2B frames in Fig. 2 were captured using a 2×2-

pixel tile to spatially multiplex a three-frame code tensor. The tensor assigned identi-

cal illumination conditions to all pixels within a frame and different conditions across

frames. Pixels within each tile were assigned to individual frames using the correspon-

dence {(1, 1)→1, (1, 2)→2, (2, 1)→2, (2, 2)→3}.

3 Per-Pixel Estimation of Normals and Depth

Let us now turn to the problem of normal and depth estimation using photometric stereo

and structured-light triangulation, respectively. We consider the most basic formulation

of these tasks, where all computations are done independently at each pixel and the re-

lation between observations and unknowns is expressed as a system of linear equations.

These formulations should be treated merely as examples that showcase the special

characteristics of two-bucket imaging; as with conventional cameras, using advanced

methods to handle more general settings [55, 56] is certainly possible.

From bucket intensities to demultiplexed intensities. As a starting point, we expand
Eq. (3) to get a relation that involves only intensities:

[
i
p

î
p

]

︸ ︷︷ ︸
bucket measurements

(2F×1)

=

[
C

p

C
p

]


l1t

p

...

lSt
p


 def

=

[
C

p

C
p

]

︸ ︷︷ ︸
bucket-multiplexing

matrix W

(2F×S)



i
p
1

...

i
p
S




︸ ︷︷ ︸
pixel intensity under

illuminations l1, . . . , lS
(S×1)

. (8)
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Lambertian photometric stereo Structured-light triangulation w/ cosine patterns

Assumptions Lambertian reflectance, non-uniform albedo; cali-

brated light sources; no ambient or indirect light

reflectance has non-negligible diffuse component; ro-

bustness to indirect light depends on frequency choice

Illumination

vectors ls

each ls corresponds to illumination with only source s

turned on, i.e., element ls[l] is non-zero iff s= l

ls[l]=cos(φs + θl), where φs is phase shift of s-th

pattern, θl is phase of projector pixel l

Vector ds orientation and intensity of source s, expressed as a 3D

row vector

ds =
[

cos(φs) − sin(φs) 1
]

Matrix D matrix whose rows are the vectors d1, . . .dS matrix whose rows are the vectors d1, . . .dS

Transport

vector t

t[s] = adsn where a is the albedo and n is the unit

surface normal

t =
[

am b
]

′
, where a is albedo, b is the contri-

bution of ambient light, and binary row vector m in-

dicates the matching projector pixel, i.e., m[l]=1 iff

that pixel is l (see Fig. 4b)

Vector x x=n x =
[

cos(θ) sin(θ) b
a

]′

if the same cosine fre-

quency is used for all patterns; additional frequencies

contribute two unknowns each; θ is the phase of the

matching projector pixel

Table 1: The two basic multi-image reconstruction techniques considered in this work.

Each scalar ips in the right-hand side of Eq. (8) is the intensity that a conventional cam-
era pixel would record if the scene’s illumination condition was ls. Therefore, Eq. (8)
tells us that as far as a single pixel p is concerned, C2B cameras capture the same
S measurements a conventional camera would capture for 3D reconstruction—except
that those measurements are multiplexed over 2F bucket intensities. To retrieve them,
these intensities must be demultiplexed by inverting Eq. (8):



i
p
1

...

i
p
S


= (W′

W)−1
W

′

[
i
p

î
p

]
, (9)

where ′ denotes matrix transpose. This inversion is only possible if (W′
W)−1

W
′ is

non-singular. Moreover, the signal-to-noise ratio (SNR) of the demultiplexed intensities

depends heavily on W and C
p (Sec. 4). Setting aside this issue for now, we consider

below the task of shape recovery from already-demultiplexed intensities. For notational

simplicity we drop the pixel index p from the equations below.

Per-pixel constraints on 3D shape. The relation between demultiplexed intensities
and the pixel’s unknowns takes exactly the same form in both photometric stereo and
structured-light triangulation with cosine patterns:



i1
..
.

iS


 = aDx+ e , (10)

where D is known; x is a 3D vector that contains the pixel’s shape unknowns; a is

the unknown albedo; and e is observation noise. See Table 1 for a summary of each

problem’s assumptions and for the mapping of problem-specific quantities to Eq. (10).

There are (at least) three ways to turn Eq. (10) into a constraint on normals and depths

under zero-mean Gaussian noise. The resulting constraints are not equivalent when



Coded Two-Bucket Cameras 9

combining measurements from small pixel neighborhoods—as we implicitly do—because

they are not equally invariant to spatial albedo variations:

1. Direct method (DM): treat Eq. (10) as providing S independent constraints on vec-

tor ax and solve for both a and x. The advantage of this approach is that errors are

Gaussian by construction; its disadvantage is that Eq. (10) depends on albedo.
2. Ratio constraint (R): divide individual intensities by their total sum to obtain an

illumination ratio, as in Eq. (5). This yields the following constraint on x:

rl1Dx = dlx , (11)

where rl = il/
∑

k ik and 1 is a row vector of all ones. The advantage here is that

both rl and Eq. (11) are approximately invariant to albedo.
3. Cross-product constraint (CP): instead of computing an explicit ratio from Eq. (10),

eliminate a to obtain

ildkx = ikdlx . (12)

Since Eq. (12) has intensities il, ik as factors, it does implicitly depend on albedo.

Solving for the unknowns. Both structured light and photometric stereo require at

least S ≥ 3 independent constraints for a unique solution. In the DM method we use

least-squares to solve for ax; when using the R or CP constraints, we apply singular-

value decomposition to solve for x.

4 Code Matrices for Bucket Multiplexing

The previous section gave ways to solve for 3D shape when we have enough indepen-

dent constraints per pixel. Here we consider the problem of controlling a C2B camera to

actually obtain them for a pixel p. In particular, we show how to choose (1) the number

of frames F , (2) the number of sub-frames per frame S, and (3) the pixel-specific slice

C
p of the code tensor, which defines the multiplexing matrix W in Eq. (8).

Determining these parameters can be thought of as an instance of the optimal multi-

plexing problem [31, 44–49]. This problem has been considered in numerous contexts

before, as a one-to-one mapping from S desired measurements to S actual, noisy ob-

servations. In the case of coded two-bucket imaging, however, the problem is slightly

different because each frame yields two measurements instead of just one.

The results below provide further insight into this particular multiplexing problem

(see [32] for proofs). Observation 1 implies that even though a pixel’s two buckets

provide 2F measurements in total across F frames, at most F + 1 of them can be

independent because the multiplexing matrix W is rank-deficient:

Observation 1 rankW ≤ min(F + 1, S).

Intuitively, a C2B camera should not be thought of as being equivalent to two coded-

exposure cameras that operate completely independently. This is because the activities

of a pixel’s two buckets are binary complements of each other, and thus not independent.



10 M. Wei et al.

# sub-frames S=3 S=4 S=5 S=6 S=7
Eq. (13) bound for σ=1 0.5556 0.4167 0.34 0.2889 0.2517
Optimal MSE for σ=1 0.8333 0.4167 0.3778 0.3467 0.3210

Optimal Cp 1 0 0

0 1 0

1 1 0 0

1 0 1 0

1 0 0 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 1 1 0 0 0

1 1 0 0 1 0

1 0 1 1 1 0

1 0 1 0 1 1

1 0 0 1 0 1

1 1 1 1 1 0 0

1 1 1 0 0 0 1

1 1 0 0 1 1 0

1 0 1 0 1 1 0

1 0 0 1 0 1 0

1 0 0 0 1 0 1

Table 2: Optimal matrices C
p for small S. Note that the lower bound given by Eq. (13) is

attained only for S = 4, i.e., for the smallest Hadamard-based construction of Cp.

Corollary 1. Multiplexing S intensities requires F ≥ S − 1 frames.

Corollary 2. The minimal configuration for fully-constrained reconstruction at a pixel

p is F = 2 frames, S = 3 sub-frames per frame, and S = 3 linearly-independent illu-

mination vectors of dimension L ≥ 3. The next-highest configuration is 3 frames, 4
subframes/illumination vectors.

We now seek the optimal (S − 1) × S matrix C
p, i.e., the matrix that maximizes the

SNR of the demultiplexed intensities in Eq. (9). Lemma 1 extends the lower-bound

analysis of Ratner et al. [45] to obtain a lower bound on the mean-squared error (MSE)

of two-bucket multiplexing [32]:

Lemma 1. For every multiplexing matrix W, the MSE of the best unbiased linear es-
timator satisfies the lower bound

MSE =
σ2

S
trace

[(
W

′
W

)
−1

]
≥ 2σ2 (S − 1)2 + 1

(S − 1)S2
. (13)

Although Lemma 1 does not provide an explicit construction, it does ensure the optimal-

ity of W matrices whose MSE is the lower bound. We used this observation to verify

the optimality of matrices derived from the standard Hadamard construction [31]:

Proposition 1 LetCp = 1
2 (H̃+1)where H̃ is derived from theS×S Hadamard matrix

by removing its row of ones to create an (S − 1)× S matrix. The bucket-multiplexing

matrix W defined by C
p is optimal.

The smallest S for which Proposition 1 applies are S = 4 and S = 8. Since our main

goal is one-shot acquisition, optimal matrices for other small values of S are also of

significant interest. To find them, we conducted a brute-force search over the space of

small (S−1)×S binary matrices to find the ones with the lowest MSE. These matrices

are shown in Table 2. See Fig. 6(a),(b) and [32] for an initial empirical SNR analysis.

5 One-Shot Shape from Two-Bucket Illumination Mosaics

We use three different ways of estimating shape from a two-bucket illumination mosaic:
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bucket-1 ratio mosaic bucket-0 ratio mosaic after demosaicing (1 of 6) after demultiplexing (1 of 4)

Fig. 5: Processing ratio mosaics. Left to right: Intermediate results of the BRD reconstruction

procedure of Sec. 5, starting from the raw C2B frame shown in Fig. 2, Step 1. In contrast to the

result of Steps 2 and 3 in Fig. 2, the images above are largely unaffected by albedo variations.

1. Intensity demosaicing (ID): treat the intensities in a mosaic tile as separate “imag-

ing dimensions” for the purpose of demosaicing; upsample these intensities by ap-

plying either an RGB demosaicing algorithm to three of these dimensions at a time,

or by using a more general assorted-pixel procedure [12, 54] that takes all of them

into account; demultiplex the 2F upsampled images using Eq. (9); and apply any

of the estimation methods in Sec. 3 to the result. Fig. 2 illustrates this approach.

2. Bucket-ratio demosaicing (BRD): apply Eq. (5) to each pixel in the mosaic to obtain

two albedo-invariant “ratio mosaics”; demosaic and demultiplex them; and com-

pute 3D shape using the ratio constraint of Sec. 3. See Fig. 5 for an example.

3. No demosaicing (ND): instead of upsampling, treat each mosaic tile as a “super-

pixel” whose unknowns (i.e., normal, disparity, etc.) do not vary within the tile;

compute one shape estimate per tile using any of the methods of Sec. 3.

Performance evaluation of one-shot photometric stereo on synthetic data. Figs. 6(c)

and (d) analyze the effective resolution and albedo invariance of normal maps computed

by several combinations of methods from Secs. 3 and 5, plus two more—Baseline,

which applies basic photometric stereo to three full-resolution images; and Color, the

one-shot color photometric stereo technique in [23]. To generate synthetic data, we (1)

generated scenes with random spatially-varying normal maps and RGB albedo maps,

(2) applied a spatial low-pass filter to albedo maps and the spherical coordinates of nor-

mal maps, (3) rendered them to create three sets of images—a grayscale C2B frame;

three full-resolution grayscale images; and a Bayer color mosaic—and (4) added zero-

mean Gaussian noise to each pixel, corresponding to a peak SNR of 30dB. Since all

calculations except demosaicing are done per pixel, any frequency-dependent variations

in performance must be due to this upsampling step. Our simulation results do match

the intuition that performance should degrade for very high normal map frequencies

regardless of the type of neighborhood processing. For spatial frequencies up to 0.3
the Nyquist limit, however, one-shot C2B imaging confers a substantial performance

advantage. A similar evaluation for structured-light triangulation can be found in [32].

6 Live 3D Imaging with a C2B Camera

Experimental conditions. Both C2B frame acquisition and scene reconstruction run

at 20Hz for all experiments, using F = 3, S = 4, the corresponding optimal Cp from
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Fig. 6: (a) Optimal versus sub-optimal multiplexing. We applied bucket multiplexing to the scene

shown in (b) and empirically measured the average SNR of demultiplexed images when (1) Cp

is given by Table 2 and (2) Cp = [1(S−1)×(S−1) 0], which is a non-degenerate and sub-optimal

matrix according to Proposition 1 (1(S−1)×(S−1) is the identity matrix). The ratio of these SNRs

is shown in blue, suggesting that SNR gains are possible. (b) One out of S demultiplexed images

obtained with each C
p. The optimal Cp yielded visibly less noisy images (please zoom in to the

electronic copy). (c) Angular root-mean-squared error (RMSE) of normal estimates as a function

of the normal map’s highest spatial frequency. Frequency 1.0 corresponds to the Nyquist limit.

The highest spatial frequency of albedos was set to 0.3 the Nyquist limit. (d) Angular error as a

function of the spatial frequency of the albedo map, with the maximum spatial frequency of the

normal map set to 0.3 the Nyquist limit. Line colors are as indicated in (c).

Table 2, and the 2× 2 mosaic tile defined in Sec. 2.1. C2B frames are always processed

by the same sequence of steps—demosaicing, demultiplexing and per-pixel reconstruc-

tion. For structured light, we fit an 8mm Schneider Cinegon f/1.4 lens to our camera

with its aperture set to f/2, and use a TI LightCrafter for projecting 684×608-pixel,

24-gray-level patterns at a rate of S×20Hz in sync with sub-frames. The stereo baseline

was approximately 20cm, the scene was 1.1 ∼ 1.5m away, and the cosine frequency

was 5 for all patterns and experiments. For photometric stereo we switch to a 23mm

Schneider APO-Xenoplan f/1.4 lens to approximate orthographic imaging conditions,

and illuminate a scene 2∼ 3m away with four sub-frame synchronized Luxdrive 7040

Endor Star LEDs, fitted with 26.5mm Carclo Technical Plastics lenses.

Quantitative experiments. Our goal was to compare the 3D accuracy of one-shot

C2B imaging against that of full-resolution sequential imaging—using the exact same

system and algorithms. Fig. 7 shows the static scenes used for these experiments, along

with example reconstructions for photometric stereo and structured light, respectively.

The “ground truth,” which served as our reference, was computed by averaging 1000
sequentially-captured, bucket-1 images per illumination condition and applying the

same reconstruction algorithm to the lower-noise, averaged images. To further distin-

guish the impact of demosaicing from that of sensor-specific non-idealities, we also

compute shape from a simulated C2B frame; to create it we spatially multiplex the S
averaged images computationally in a way that simulates the operation of our C2B sen-

sor. Row 3 of Fig. 7 shows some of these comparisons for structured light. The BRD-R

method, coupled with OpenCV’s demosaicing algorithm, yields the best performance

in this case, corresponding to a disparity error of 4%. See [32] for more details and

additional results. Reconstructing dynamic scenes. Fig. 8 shows several examples.
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full-resolution image ground-truth normals C2B normals (ID-DM) error map (degrees)
30°

0°

full-resolution image ground-truth disparities C2B disparities (BRD-R) error map (pixels)
10

0

demosaicing algorithm input images ID-DM (RMSE) BRD-R (RMSE)

MATLAB demosaic() one C2B frame 6.442 5.223

simulated C2B 5.688 4.588

OPENCV demosaicing (BayerBG2RGB EA) one C2B frame 5.778 4.855

simulated C2B 4.910 4.462

Demosaic Net [29] one C2B frame 5.319 4.874

simulated C2B 4.719 4.434

Fig. 7: Quantitative experiments for photometric stereo (Row 1) and structured light (Rows 2, 3).

Per-pixel unit normals n are visualized by assigning them the RGB color vector 0.5n + 0.5.

7 Concluding Remarks

Our experiments relied on some of the very first images from a C2B sensor. Issues such

as fixed-pattern noise; slight variations in gain across buckets and across pixels; and

other minor non-idealities do still exist. Nevertheless, we believe that our preliminary

results support the claim that 3D data are acquired at near-sensor resolution.

We intentionally used raw, unprocessed intensities and the simplest possible approaches

for demosaicing and reconstruction. There is no doubt that denoised images and more

advanced reconstruction algorithms could improve reconstruction performance consid-

erably. Our use of generic RGB demosaicing software is also clearly sub-optimal, as

their algorithms do not take into account the actual correlations that exist across C2B

pixels. A prudent approach would be to train an assorted-pixel algorithm on precisely

such data.

Last but certainly not least, we are particularly excited about C2B cameras sparking

new vision techniques that take full advantage of their advanced imaging capabilities.
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Fig. 8: Live 3D acquisition experiments for photometric stereo (top) and structured light (bottom).

Scenes were chosen to exhibit significant albedo, color, normal and/or depth variations, as well

as discontinuities. For reference, color photos of these scenes are shown as insets in Column 1.

Qualitatively, reconstructions appear to be consistent with the scenes’ actual 3D geometry except

in regions of low albedo (e.g., hair) or cast shadows.
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