
Coded Two-Bucket Cameras for Computer Vision:

Supplementary Materials

Mian Wei1, Navid Sarhangnejad2, Zhengfan Xia2, Nikita Gusev2, Nikola Katic2,
Roman Genov2, and Kiriakos N. Kutulakos1

1 Department of Computer Science, University of Toronto, Canada

{mianwei,kyros}@cs.toronto.edu
2 Department of Electrical Engineering, University of Toronto, Canada

{sarhangn,xia,nikita,roman}@ece.toronto.edu, katic.nik@gmail.com

A C2B Pixel Design Considerations

Two- and four-bucket pixel layouts from the literature. The design of our sen-

sor’s pixels builds upon several earlier pixel designs that include more than one bucket.
Fig. A.1 shows four such designs, including an earlier C2B design from our group [3].

These layouts are shown here to provide some basic intuition about the two key design
choices we made in our prototype’s new sensor—and in C2B sensing more generally.

Design choice #1: per-pixel vs. per-bucket coding. As explained in the main paper
and illustrated in Figs. 1 and 3, the two buckets inside a C2B pixel are never in the

same state at the same time (i.e., both active or both inactive). This can be viewed as

a form of coding that assigns a single bit to each pixel, so that bucket activities can be
toggled. A natural question is whether it would be possible and/or desirable to control

these buckets individually, so that they could be activated or de-activated independently

of each other.

Unfortunately, although more flexible, per-bucket coding would cause poor CMOS per-

formance for two fundamental reasons. First, it would require doubling the pixel’s
SRAM block in order to store the required two bits per pixel (i.e., one per bucket).

Such a block would be very large relative to the pixel’s overall dimensions because
even a one-bit memory uses lots of gates (Fig A.1, lower right). A two-bit in-pixel

memory would therefore reduce the photo-sensitive region’s relative size severely—

and thus the pixel’s overall quantum efficiency. Second, even ignoring the size of the
photo-sensitive region, allowing both buckets to be active simultaneously would cause

sluggish/inefficient pixels. This is because pixels operate by inducing a gradient field

in the photo-sensitive region that “pulls” the light-generated charges toward the active
bucket (see dashed lines in top row of Fig. A.1). Activating both buckets would in-

duce competing gradient fields, causing charges to move slowly toward the individual

buckets.

Design choice #2: C2B pixels versus memory-less multi-bucket pixels. We believe

that C2B sensors have several advantages: (1) they are scalable because they can pack S
views into one C2B shot via coding, without hard-wiring S into the pixel’s design. This

is a particularly important feature because both structured-light and photometric-stereo

systems typically use more than four illumination conditions for better accuracy and
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Fig. A.1: CMOS layout of two- and four-bucket pixels from the literature. Colors indicate cir-

cuit blocks of similar functionality across these layouts. Orange blocks denote the pixel’s photo-

sensitive region. White regions are occupied by wires, etc.. Except for the relative size of the

photo-sensitive region, the dimensions of internal blocks were not included in [1]. The number

of gates in each block is listed where known. Dashed curves in the top row indicate the approx-

imate path traced by photo-generated charges when bucket 1 (red) or bucket 0 (blue), is active,

respectively.

robustness. C2B sensors can achieve this—possibly at the expense of some spatial res-

olution compared to the results shown in the main paper—whereas a four-bucket sensor

could not. (2) C2B pixels are much more light-efficient because each extra bucket takes
up lots of space within a pixel. For example, the photo-sensitive region of the four-

bucket pixel in the top for Fig. A.1 is four times smaller than its two-bucket counterpart

(10% vs. 42% of pixel area, respectively). Adding even more buckets to a 2D sensor
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could therefore lead to significant inefficiencies. (3) Moreover, it is unclear if 2D sen-

sors with more than four buckets could offer acceptable imaging performance. This is

because the charge-collection gradient fields of the S buckets must be identical up to
rotation/reflection in order to ensure similar performance (e.g., see charge-collection

paths in Fig. A.1, top row), but the rectilinear CMOS design rules generally prevent

achieving anything beyond four-fold gradient field symmetries. (4) S-bucket sensors
cannot be used for applications that require sensor-plane coding because they lack the

in-pixel memory required for this capability.

B Proofs and Derivations

B.1 Sec. 2: Gaussian approximation of bucket-ratio random variables

Proposition B.1. The random variables r and r̂ can be approximated by Gaussian ran-
dom variable whose means and variances are given by:

mean(r) =
j

j + ĵ
, var(r̂) =

σ2

2(j + ĵ)2
, (B.1)

and

mean(r̂) =
ĵ

j + ĵ
, var(r̂) =

σ2

2(j + ĵ)2
, (B.2)

where j and ĵ are the noiseless bucket images and σ2 is the variance of the noise.

Proof. Consider the bucket ratios r and r̂ at frame F and pixel p, which are defined by

combining bucket-1 and bucket-0 image intensities ip[f ] and î
p[f ] according to Eq. (5)

from Sec. 2. For notational simplicity, we denote i
p[f ] and î

p[f ] with i and î respec-

tively. We model the two-bucket intensities i and î as having zero-mean Gaussian image
noise with variance σ2:

i = j + e , î = ĵ + ê , (B.3)

where j, ĵ are the noiseless bucket-1 and bucket-0 intensities and e, ê are zero-mean
Gaussian random variables with variance σ2. In order to apply Lemma B.1 to r and r̂,

we require
std(i+î)

j+ĵ
< 0.22. This effectively amounts to requiring the SNR to be at least

5 which is an appropriate assumption for most imaging systems. Now we can apply
Lemma B.1 with k = 1 to derive the approximate means and variances for r and r̂. We
first show the approximations for r:

mean(r) = mean

(
i

i+ î

)
=

j

j + ĵ
, var(r) = var

(
i

i+ î

)
=

σ2

2(j + ĵ)2
. (B.4)

We now show the approximations for r̂:

mean(r̂) = mean

(
î

i+ î

)
=

ĵ

j + ĵ
, var(r̂) = var

(
î

i+ î

)
=

σ2

2(j + ĵ)2
. (B.5)

From Eq. (B.4) and Eq. (B.5), we can see that the approximate variance for both r
and r̂ are the same. Furthermore they are proportional to 1

(j+ĵ)2
. This means that the



4 M. Wei et al.

approximate standard deviation for both of them is proportional to 1
j+ĵ

. Since j and j

are linear function of the albedo, the approximate standard deviation for both r and r̂ is
weakly dependance on albedo. ⊓⊔

Lemma B.1. If X and Y are normally distributed with means µX , µY respectively

and variances σ2, kσ2 and
std(X+Y )

mean(X+Y ) < 0.22, then X
X+Y

can be approximated as a

Gaussian random variable with the following mean and variance:

mean

(
X

X + Y

)
=

µX

µX + µY

, var

(
X

X + Y

)
=

kσ2

(k + 1)(µX + µY )2
. (B.6)

Proof. Let X and Y be Gaussian random variances with means µX , µY respectively
and variances σ2, kσ2 respectively where k is the ratio between the variances of X and

Y . Furthermore, let us assume that
std(X+Y )

mean(X+Y ) < 0.22. First, we use the observation

from [4] that kX − Y and X + Y have Pearson correlation coefficient ρ equal to 0:

ρ =
cov(kX − Y,X + Y )

std(kX − Y )std(X + Y )
=

cov(kX,X)− cov(Y, Y )

std(kX − Y )std(X + Y )
=

kvar(X)− var(Y )

std(kX − Y )std(X + Y )
.

(B.7)

Since var(X) = σ2 and var(Y ) = kσ2, the numerator on the right side of Eq. (B.7), and

therefore ρ, is equal to 0. Since we assume
std(X+Y )

mean(X+Y ) < 0.22, Table 1 from [5] tells

us that we can reasonably approximate the ratio of two uncorrelated Gaussian random
variables as a normal random variable with the following parameters:

mean

(
kX − Y

X + Y

)
=

mean(kX − Y )

mean(X + Y )
, var

(
kX − Y

X + Y

)
=

var(kX − Y )

mean(X + Y )2
. (B.8)

Now we expand Eq. (B.8) to simplify it:

mean

(
kX − Y

X + Y

)
=

kµX − µY

µX + µY

, var

(
kX − Y

X + Y

)
=

k2σ2 + kσ2

(µX + µY )2
. (B.9)

We can use Eq. (B.9) to now approximate the noise of X
X+Y

. To do this, we first show

that X
X+Y

is a linear function of kX−Y
X+Y

:

X

X + Y
=

kX +X

(k + 1)(X + Y )
=

kX +X − Y + Y

(k + 1)(X + Y )
=

1

k + 1
+

(
1

k + 1

)
kX − Y

X + Y
. (B.10)

Combining Eq. (B.9) and Eq. (B.10), we can approximate the mean of X
X+Y

:

mean

(
X

X + Y

)
=

1

k + 1
+

(
1

k + 1

)
kµX − µY

µX + µY

=
µX + µY + kµX − µY

(k + 1)(µX + µY )
=

µX

µX + µY

,

(B.11)

which is the noiseless ratio. We can also approximate the variance of X
X+Y

using

Eq. (B.9) and Eq. (B.10):

var

(
X

X + Y

)
=

1

(k + 1)2
var

(
kX − Y

X + Y

)
=

1

(k + 1)2
k2σ2 + kσ2

(µX + µY )2
=

kσ2

(k + 1)(µX + µY )2
.

(B.12)

⊓⊔
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B.2 Sec. 3 derivations

B.2.1 Derivation of Eq. (11).

Consider the two image intensities, il and
∑

k ik. We can model their values as a func-
tion of the unknown x (Eq. (10) from Sec. 3):

il = adlx+ el ,
∑

k

ik = a
∑

k

dkx+ ek . (B.13)

As
∑

k dk is formed by summing the rows dk of D, we can express Eq. (B.13) as:

∑

k

ik = a1Dx+ 1e , (B.14)

where 1 is a 1 by S vector of 1’s and 1e aggregates the image noises. We can derive a
constraint from the ratio of il and

∑
k ik from the noiseless Eq. (B.13) and Eq. (B.14):

il∑
k ik

=
adlx

a1Dx
=

dlx

1Dx
. (B.15)

We denote
il

∑

k
i
k

with rl and multiply both sides with 1Dx. �

B.2.2 Derivation of Eq. (12).

Consider two image intensities, il and ik. We have the following relation (Eq. (10)
from Sec. 3):

il = adlx+ el , ik = adkx+ ek , (B.16)

where el and ek are the noise for il and ik respectively. Solving for x normally involves
using noiseless Eq. (B.16) directly as constraints on x:

il = adlx , ik = adkx (B.17)

However, instead of treating these as separate constraints, we can take their ratio:

il
ik

=
adlx

adkx
=

dlx

dkx
, (B.18)

and cross multiply the terms in Eq. (B.18) to derive Eq. (12). �

B.3 Sec. 4 proofs

B.3.1 Proof of Observation 1.

Since W has S columns, we trivially know that rankW ≤ S. It remains to show

that rankW ≤ F + 1. Since the rank of a matrix is equal to its row rank and the row
rank of a matrix is determined by the dimensions spanned by its rows, we simply need

to show that the rows of W which are c
p
1, . . . c

p
F , c

p
1, . . . , c

p
F lie in a subspace V of

dimension at most F + 1.
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First, consider c
p
1 and c

p
1 which are the first row vector of W and its compliment. Since

they are complimentary, we know their sum, trivially:

c
p
1 + c

p
1 = 1 , (B.19)

where 1 is a 1 by S vector of all 1’s. Now let V be the subspace spanned by the vectors
c
p
1, . . . c

p
F , and c

p
1. Using Eq. (B.19), we can see that for all k, c

p
k must lie in V since it

can be expressed as the linear combination of vectors in V :

c
p

k = 1− c
p

k = c
p
1 + c

p
1 − c

p

k . (B.20)

Therefore given V , we know that c
p
1, . . . c

p
F , and c

p
1 lie in V by construction and also

all c
p
k’s lie in V . Since V is spanned by F + 1 vectors, we know that dim(V ) is at

most F + 1. Therefore the rows of W span a subspace with dimension at most F + 1,

implying that rankW ≤ F + 1. �

B.3.2 Proof of Lemma 1.

We derive the lower bound for the MSE in 4 steps:

Step 1: Verify that the definition of the MSE used in [6] is still equal to

σ2

S
trace

[(
W

′
W

)
−1

]
for two-bucket cameras.

Step 2: Derive a lower bound on σ2

S
trace

[(
W

′
W

)
−1

]
as a function of W′

W’s

largest eigenvalue λ1.

Step 3: Bound the value of λ1.

Step 4: Combine Step 2 and Step 3 results to derive the explicit lower bound.

Step 1: verification of MSE definition. Using Eq. (9) from Sec. 3, we know that
the demultiplexed intensities ip1 . . . i

p
S can be computed by applying the inverse of W

to the 2F bucket intensities ip and î
p. As in [6], we define the MSE of W as the mean

variance of the demultiplexed images:

MSE =
1

S

S∑

k=1

var(ipk) . (B.21)

Let us denote (W′
W)−1

W
′ with A. Let Ai denote the ith row of A and Ai[j] denote

the element of A at row i and column j. Then we can express var(ipk) as:

var(ipk) = var

(
Ak

[
i
p

î
p

])
(B.22)

= var

( F∑

j=1

Ak[j]i
p
j +Ak[j + F ]̂ipj

)
(B.23)

=
F∑

j=1

Ak[j]
2
var(ipj ) +Ak[j + F ]2var(̂ipj ) . (B.24)
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We will assume that ip and î
p have zero-mean Gaussian noise with variance σ2. We can

now simplify Eq. (B.24):

var(ipk) =
F∑

j=1

Ak[j]
2
σ
2 +Ak[j + F ]2σ2 = σ

2
2F∑

j=1

Ak[j]
2
, (B.25)

and use Eq. (B.25) in Eq. (B.21):

MSE =
1

S

S∑

k=1

σ
2

2F∑

j=1

Ak[j]
2

(B.26)

=
σ2

S

S∑

k=1

2F∑

j=1

Ak[j]
2
. (B.27)

Since the sum of squares of elements of A is equal to the trace ofA′
A, we can substitute

this back into Eq. (B.27):

MSE =
σ2

S
trace(A′

A) (B.28)

=
σ2

S
trace

[
W

(
W

′
W

)−1(
W

′
W

)−1
W

′

]
(B.29)

=
σ2

S
trace

[(
W

′
W

)−1(
W

′
W

)−1
W

′
W

]
(B.30)

=
σ2

S
trace

[(
W

′
W

)−1

]
(B.31)

Step 2: bounding the MSE in terms of λ1: Let λ1 ≥ λ2 ≥ · · · ≥ λS ≥ 0 be

the eigenvalues of W′
W. Then we can express trace

[(
W

′
W

)
−1

]
as the sum of its

eigenvalues:

σ2

S
trace

[(
W

′
W

)−1
]
=

σ2

S

S∑

i=1

1

λi

(B.32)

=
σ2

Sλ1
+

σ2

S

S∑

i=2

1

λi

(B.33)

=
σ2

Sλ1
+ (

σ2(S − 1)

S
)(

1

S − 1
)

S∑

i=2

1

λi

. (B.34)

The right term in the addition in Eq. (B.34) is the arithmetic mean of 1
λi

’s. Since the

arithmetic mean is always greater or equal than the harmonic mean, we have the fol-
lowing inequality:

(
1

S − 1
)

S∑

i=2

1

λi

≥

(∑S

i=2(
1
λi
)−1

S − 1

)−1

=
S − 1

∑S

i=2 λi

. (B.35)
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Since trace(W′
W) sums over all the eigenvalues of W′

W, we know that:

S∑

i=2

λi = trace(W′
W) − λ1 . (B.36)

We can now combine Eq. (B.35) and Eq. (B.36) to turn Eq. (B.34) into an inequality:

σ2

S
trace

[(
W

′
W

)−1

]
≥

σ2

Sλ1
+ σ

2(
S − 1

S
)

S − 1
∑S

i=2 λi

(B.37)

=
σ2

Sλ1
+ σ

2(
S − 1

S
)

S − 1

trace(W′W) − λ1
. (B.38)

We compute trace(W′
W) before proceeding. Let J be the F by S matrix of 1’s. Then

we have the following:

trace(W′
W) = trace[(Cp)′Cp + (C

p
)
′
C

p
] (B.39)

= trace[(Cp)′Cp + (J−C
p)′(J−C

p)] (B.40)

= trace[(Cp)′Cp + J
′
J− J

′
C

p − (Cp)′J+ (Cp)′Cp] (B.41)

= 2trace[(Cp)′Cp] + trace(J′
J)− trace(J′

C
p)− trace[(Cp)′J] (B.42)

= 2
F∑

k=1

S∑

j=1

C
p

k[j]
2 +

F∑

k=1

S∑

j=1

1−
F∑

k=1

S∑

j=1

C
p

k[j] −
F∑

k=1

S∑

j=1

C
p

k[j] . (B.43)

Since Cp is a binary matrix, we know that C
p
k[j]

2 = C
p
k[j]:

trace(W′
W) = 2

F∑

k=1

S∑

j=1

C
p

k[j] + FS −

F∑

k=1

S∑

j=1

C
p

k[j]−

F∑

k=1

S∑

j=1

C
p

k[j] (B.44)

= SF . (B.45)

We can now substitute Eq. (B.45) into Eq. (B.38) yielding the following:

σ2

S
trace

[(
W

′
W

)−1
]
≥

σ2

Sλ1
+ σ

2(
S − 1

S
)

S − 1

trace(W′W)− λ1
(B.46)

=
σ2

Sλ1
+ σ

2(
S − 1

S
)

S − 1

SF − λ1
(B.47)

=
σ2

S
(
1

λ1
+

(S − 1)2

SF − λ1
) (B.48)

=
σ2

S

SF − λ1 + λ1(S − 1)2

(SF − λ1)λ1
) (B.49)

=
σ2

S

SF + λ1S
2 − 2S)

(SF − λ1)λ1
) (B.50)

= σ
2F + λ1(S − 2)

(SF − λ1)λ1
. (B.51)
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Step 3: bounding the value of λ1: We know that the squared spectral norm of W is
equal to λ1:

λ1 = ‖W‖22 = sup
x 6=0

‖Wx‖22
‖x‖22

= sup
x 6=0

x′(W′
W)x

x′x
. (B.52)

We can use x = 1 where 1 is a S by 1 vector of all 1’s on the right side of Eq. (B.52) as
a lower bound of λ1:

λ1 ≥
1
′(W′

W)1

1′1
=

∑2F
k=1(

∑S

j=1 Wk[j])
2

S
. (B.53)

Since W is defined as the concatenation of Cp and C
p
, we know that for k ≥ F and j:

Wk[j] = 1−Wk−F [j] . (B.54)

We can now substitute Eq. (B.54) back into Eq. (B.53):

λ1 ≥
1

S

F∑

k=1

(
S∑

j=1

Wk[j])
2 +

1

S

2F∑

k=F+1

(
S∑

j=1

1−Wk−F [j])
2

(B.55)

=
1

S

F∑

k=1

(
S∑

j=1

Wk[j])
2 + (

S∑

j=1

1−Wk[j])
2

(B.56)

=
1

S

F∑

k=1

(
S∑

j=1

Wk[j])
2 + (S −

S∑

j=1

Wk[j])
2

(B.57)

=
1

2S

F∑

k=1

2(
S∑

j=1

Wk[j])
2 + 2(S −

S∑

j=1

Wk[j])
2
. (B.58)

The inequality of arithmetic mean and geometric mean which states a2+b2 ≥ 2ab. This
implies that 2a2 + 2b2 ≥ a2 + b2 + 2ab ≥ (a+ b)2. We can use this on the summand
of Eq. (B.58):

λ1 ≥
1

2S

F∑

k=1

(
S∑

j=1

Wk[j] + S −
S∑

j=1

Wk[j])
2

(B.59)

=
1

2S

F∑

k=1

S
2

(B.60)

=
SF

2
. (B.61)

Additionally, we will prove an upper bound on λ1. Let v be an eigenvector with eigen-
value λ1 and at least one positive element and let v[k] be the maximum element in v.
Since W

′
W only has non-negative values, we can bound λ1 in the following way:

λ1v[k] =
S∑

j=1

(W′
W)k[j]v[j] ≤

S∑

j=1

(W′
W)k[j]v[k] . (B.62)
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As we chose v to have at least one positive element, we know that v[k] > 0 so we can
divide both sides of Eq. (B.62) with v[k] and preserve the inequality:

λ1 ≤
S∑

j=1

(W′
W)k[j] . (B.63)

Now, we simply bound the kth row sum for W′
W to bound λ1:

S∑

j=1

(W′
W)k[j] =

S∑

j=1

2F∑

i=1

Wi[k]Wi[j] ≤

S∑

j=1

2F∑

i=1

Wi[j] . (B.64)

Since W is defined as the concatenation of Cp and C
p
, it has exactly SF non-zero

elements all equal to 1. The right side of Eq. (B.64) sums over all the elements of W
so we can replace it with SF :

S∑

j=1

(W′
W)k[j] ≤

S∑

j=1

2F∑

i=1

Wi[j] = SF . (B.65)

So the kth row sum of W′
W is bounded above by SF . Combining Eq. (B.61) and

Eq. (B.65) gives us the interval in which λ1 must lie:

λ1 ∈ [
SF

2
, SF ] . (B.66)

Step 4: compute the explicit bound. Eq. (B.66) tells us that λ1 has to be between
SF
2 and SF . Eq. (B.51) expresses the lower bound of the MSE as the ratio between two

functions of λ1. The denominator, (SF − λ1)λ1, is a simple quadratic function of λ1

which is maximized at λ1 = SF
2 in the range [SF

2 , SF ]. The numerator, F + λ1(S −

2), is a simple linear function of λ1 that is minimized also at λ1 = SF
2 in the range

[SF
2 , SF ]. Combining this information in Eq. (B.51) yields:

σ2

S
trace

[(
W

′
W

)−1

]
≥ σ

2F + λ1(S − 2)

(SF − λ1)λ1
(B.67)

≥ σ
2F + SF

2
(S − 2)

(SF − SF
2
)SF

2

(B.68)

= 2σ2 2F + SF (S − 2)

(SF )2
(B.69)

= 2σ2 1 + (S − 1)2

S2F
. (B.70)

In the minimal configuration, F = S − 1. We can substitute this into Eq. (B.70):

σ2

S
trace

[(
W

′
W

)−1
]
≥ 2σ2 (S − 1)2 + 1

(S − 1)S2
. (B.71)

�
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B.3.3 Proof of Proposition 1.

The proof proceeds in 3 steps:

Step 1: We derive a simple expression of W′
W.

Step 2: We compute an explicit formula for (W′
W)−1.

Step 3: We compute the MSE of (W′
W)−1 using the explicit formula and show

that it is equal to the lower bound in Eq. (B.70).

First, we clarify some notation. Let 1 be a S by 1 vector of 1’s, J be the S − 1 by S
matrix of 1’s, H be the S by S Hadamard matrix, and IS be the S by S identity matrix.

By construction,
[
1 H̃

′

]
= H

′.

Step 1: simple expression for W′
W. We begin by expanding W

′
W:

W
′
W =

[
(Cp)′ (C

p
)
′
] [

C
p

C
p

]
(B.72)

= (Cp)′Cp + (C
p
)
′
C

p
(B.73)

= (Cp)′Cp + (J−C
p)′(J−C

p) (B.74)

=
1

4
(H̃+ 1)

′
(H̃+ 1) + (J−

1

2
(H̃+ 1))

′

(J−
1

2
(H̃+ 1)) (B.75)

=
1

4
(H̃+ J)

′
(H̃+ J) +

1

4
(J− H̃)

′
(J− H̃) (B.76)

=
1

4
(H̃′

H̃+ J
′
J+ H̃

′
J+ J

′
H̃) +

1

4
(H̃′

H̃+ J
′
J− H̃

′
J− J

′
H̃) (B.77)

=
1

2
(H̃′

H̃+ J
′
J) . (B.78)

Since J is a S − 1 by S matrix of 1’s, J′
J is a S by S matrix of S − 1’s which can be

expressed as (S − 1)11′:

W
′
W =

1

2
(H̃′

H̃+ (S − 1)11′) (B.79)

=
1

2
(H̃′

H̃+ 11
′ + (S − 2)11′) (B.80)

=
1

2
(
[
1 H̃

′
] [1′

H̃

]
+ (S − 2)11′) (B.81)

=
1

2
(H′

H+ (S − 2)11′) . (B.82)

H
′
H is easy to compute as it is orthogonal. In particular, H satisfies the condition:

H
′
H = SIS . (B.83)

We substitute Eq. (B.83) into Eq. (B.82):

W
′
W =

S

2
IS +

S − 2

2
11

′
. (B.84)

Step 2: explicit formula for (W′
W)−1. The form W

′
W takes in Eq. (B.82) is very

convenient as we can compute its inverse using the Sherman-Morrison formula which



12 M. Wei et al.

states:

(A+ uv
′)−1 = A

−1 −
A−1uv′A−1

1 + v′A−1u
, (B.85)

where A is a matrix and u, v are vectors. Since we will be using a special case of the

formula where A is the identity matrix and u, v are both equal to

√
S−2
S

1, the formula

becomes even simpler:

(A+ uv
′)−1 = (IS +

S − 2

S
11

′)−1
(B.86)

= IS −
S−2
S

11
′

1 + S−2
S

1′1
(B.87)

= IS −
S−2
S

11
′

1 + S − 2
(B.88)

= IS −
S − 2

(S − 1)S
11

′
. (B.89)

We can use Eq. (B.89) to compute (W′
W)−1:

(W′
W)−1 = (

S

2
IS +

S − 2

2
11

′)−1
(B.90)

=
2

S
(IS +

S − 2

S
11

′)−1
(B.91)

=
2

S
(IS −

S − 2

(S − 1)S
11

′) . (B.92)

Step 3: compute MSE for W. Using Eq. (B.92), we have:

σ2

S
trace

[(
W

′
W

)−1

]
=

σ2

S
trace

[
2

S

(
IS −

S − 2

(S − 1)S
11

′
)]

(B.93)

=
2σ2

S2

[
trace(IS)− trace

(
S − 2

(S − 1)S
11

′

)]
(B.94)

=
2σ2

S2

[
S −

S − 2

(S − 1)S
S

]
(B.95)

=
2σ2

S2

S2 − 2S + 2

S − 1
(B.96)

= 2σ2 (S − 1)2 + 1

(S − 1)S2
. (B.97)

�

B.4 Generalization of Eq. (9) and Lemma 1 to bucket ratios

The results of Eq. (9) and Lemma 1 in the paper apply to raw intensities captured by
C2B frames. Since the BRD method relies on demosaicing and then demultiplexing

ratio mosaics, it is not obvious that we can use the same W to demultiplexing the ratio

mosaics. Furthermore, W might not even be optimal for demultiplexing ratio mosaics.
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This is because the MSE is intensity-based and defined using the noise model of the

bucket images which differs from the noise model of the bucket ratios.

Proposition B.2 below generalizes Eq. (9) from Sec. 2 and shows that we can use the
same W to demultiplex the bucket ratios to recover the illumination ratios, defined in

Eq. (11) from Sec. 3. Additionally, Proposition B.3 generalizes Lemma 1 and shows

that we can define an approximate MSE using the normal approximation of the demul-
tiplexed illumination ratios which can be used to find optimal multiplexing matrices

W. We exhaustively search for matrices that minimized the approximate MSE and ver-
ified that W’s, constructed from optimal Cp’s in Table 2 from Sec. 4, that minimize the

intensity-based MSE also minimize the approximate MSE.

Proposition B.2. If i1, . . . , iS are demultiplexed image intensities obtained from bucket

images i and î and multiplexing matrix W, then r1, . . . , rS are demultiplexed illumi-
nation ratios obtained from bucket ratios r and r̂ and multiplexing matrix W:



r1
...

rS


 = (W′

W)−1
W

′

[
r

r̂

]
. (B.98)

Proof. Given F frames, we have 2F images, i, the bucket-1 images, and î, the bucket-0

images. From i and î, we can compute ratios r and r̂ using Eq. (5) from Sec. 2:

r =




i[1]

i[1]+î[1]

...
i[F ]

i[F ]+î[F ]


 , r̂ =




î[1]

i[1]+î[1]

...
î[F ]

i[F ]+î[F ]


 . (B.99)

For a given frame f , i[f ] + î[f ] is equal to
∑

k ik (Eq. (8) from Sec. 3):

i[f ] + î[f ] = cf



i1
...

iS


+ cf



i1
...

iS


 = 1



i1
...

iS


 =

∑

k

ik , (B.100)

where 1 is a 1 by S vector of 1’s. Equation (B.100) tells us r and r̂ are equal to i and î

scaled by 1/
∑

k ik. Therefore, demultiplexing the bucket ratios will allow us to recover

S demultiplexed intensities i1, . . . , iS also scaled by 1/
∑

k ik:




i
1

∑

k i
k

.

..
iS

∑

k i
k


 =

1∑
k ik



i1
...

iS


 =

1∑
k ik

(W′
W)−1

W
′

[
i

î

]
= (W′

W)−1
W

′

[
r

r̂

]
. (B.101)

Since we define the illumination ratio rl as il/
∑

k ik, the left side of Eq. (B.101) is
exactly the vector of the S illumination ratios. ⊓⊔
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Proposition B.3. The approximate MSE of W for demultiplexing bucket ratios can be
defined as:

MSE =
λ2

S
trace

[
(W′

W)−1
W

′

[
IF −IF

−IF IF

]
W(W′

W)−1

]
, (B.102)

where λ2 is the approximate variance of the bucket ratios.

Proof. Similarly to what we did in the proof of Lemma 1, we define the MSE as the
mean variance of the demultiplexed illumination ratios:

MSE =
1

S

S∑

k=1

var(rk) . (B.103)

Let us denote (W′
W)−1

W
′ with A. Let Ai denote the ith row of A and Ai[j] denote

the element of A at row i and column j. Let r[j] and r̂[j] denote the j th element in r

and r̂, respectively. Using Proposition B.2, we can express var(rk) as:

var(rk) = var

(
Ak

[
r

r̂

])
= var

( F∑

j=1

Ak[j]r[j] +Ak[j + F ]̂r[j]

)
. (B.104)

Notice that r[j] and r̂[j] sum up to 1:

r̂[j] =
î[j]

i[j] + î[j]
=

î[j] + i[j]− i[j]

i[j] + î[j]
= 1−

i[j]

i[j] + î[j]
= 1− r[j] . (B.105)

Now we can substitute Eq. (B.105) into Eq. (B.104):

var(rk) = var

( F∑

j=1

Ak[j]r[j] +Ak[j + F ](1− r[j])

)
(B.106)

= var

( F∑

j=1

(Ak[j] −Ak[j + F ])r[j]

)
(B.107)

=
F∑

j=1

(Ak[j] −Ak[j + F ])2var(r[j]) . (B.108)

From Eq. (B.108), we see that the definition of the MSE depends on var(r[j]). Using

Lemma B.2, we can denote the approximate variance of r[j] as λ2:

MSE =
1

S

S∑

k=1

F∑

j=1

(Ak[j]−Ak[j + F ])2λ2
(B.109)

=
λ2

S

S∑

k=1

F∑

j=1

(Ak[j] −Ak[j + F ])2 . (B.110)

To simplify Eq. (B.110), we first define a matrix whose elements are equal to Ak[j] −
Ak[j + F ]. Since we are always subtracting elements exactly F columns apart and in
the same row. We know that this matrix is difference between the submatrix formed by
taking the first F columns of A and the submatrix formed by taking the last F columns
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of A. We will denote these submatrices with A
L and A

R respectively. We can compute
them as follows:

A
L = A

[
IF

0

]
A

R = A

[
0

−IF

]
, (B.111)

where IF is the F by F identity matrix. Taking their difference gives us the following
expression:

A
L −A

R = A

[
IF

0

]
−A

[
0

−IF

]
= A

[
IF

−IF

]
, (B.112)

where IF is the F by F identity matrix. Now summing all the squared elements of

A
L −A

R equates to computing the trace of (AL −A
R)

′

(AL −A
R). Using this fact

and substituting Eq. (B.112) into Eq. (B.110) allows us to simplify the MSE:

MSE =
λ2

S

S∑

k=1

F∑

j=1

(Ak[j]−Ak[j + F ])2 (B.113)

=
λ2

S
trace[(AL −A

R)(AL −A
R)

′
] (B.114)

=
λ2

S
trace(A

[
IF

−IF

] [
IF −IF

]
A

′) (B.115)

=
λ2

S
trace(A

[
IF −IF

−IF IF

]
A

′) . (B.116)

We can now substitute A = (W′
W)−1

W
′ into Eq. (B.116) to derive Eq. (B.102). ⊓⊔

Lemma B.2. If the 2F bucket images i[1], . . . , i[F ] and î[1], . . . î[F ] all have zero-
mean Gaussian noise with variance σ2, then for any frame f , the bucket ratios r and r̂

for i[f ] and î[f ] both have approximate variance λ2 which is independent of f .

Proof. From Proposition B.1, we know the approximate variances for r and r̂ are equal:

var(r) = var(r̂) =
σ2

2(j + ĵ)2
, (B.117)

where j and ĵ are the means of i[f ] and î[f ], respectively. From Eq. (B.100), we already

know that i[f ] + î[f ] is equal to the sum of the S noiseless demultiplexed image inten-
sities,

∑
k ik. Therefore there are no terms on the right side of Eq. (B.117) that depends

on f and we set λ2 = σ2

2(
∑

k i
k
)2 . ⊓⊔

C Details of Empirical SNR Analysis Shown in Fig.6(a),(b)

We considered the cases where S = {4, 5, 6, 7} and F = S−1. The case S = 3 was not

evaluated because all non-degenerate 2 × 3 matrices Cp have the same expected SNR.
We present the sub-optimal matrices we used as shown in Table C.1. We evaluated the

SNR gain for both image intensities and illumination ratios which is defined in Eq. (11)

from Sec. 3.
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# Frames S=4 S=5 S=6 S=7
MSEsub 0.9167 1 1.0667 1.1190
SNR Gain, Eq. (C.118) 1.4833 1.6269 1.7541 1.8553

Sup-optimal Cp 1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

Table C.1: Sup-optimal Cp used for comparison. MSE and SNR gain for image intensities are

computed for σ = 1 in the minimal configurations (F = S − 1).

Fig. C.2: Objects used for performance evaluation. (a) Color view of the objects, view not from

C2B camera. (b) The binary foreground mask (red is foreground). The mask excludes pixels not

belonging to the objects as well as shadows.

Empirical SNR gain for image intensities. To measure average SNR of a given C
p,

we (1) sequentially capture F C2B frames of a static scene using S = F + 1 sub-
frames per frame, S structured-light patterns l1, . . . , lS , and the same matrix C

p for all

pixels—see Eq. (8) from Sec. 3; (2) demultiplex the 2F intensities collected in each

pixel’s buckets by multiplying with the S×2F pseudoinverse of
[

C
p

C
p

]

to get intensi-

ties ip1, . . . , i
p
S for l1, . . . , lS , respectively; (3) repeat steps 1&2 300 times; (4) compute

mean
standard deviation

at each pixel across trials; and (5) average this ratio over all valid pixels in
the S demultiplexed images using a binary foreground mask (Fig. C.2(b)).

Empirical SNR gain for illumination ratios. We compute the empirical SNR gain for

illumination ratios. We use the same steps as those used to compute the empirical SNR
gain for image intensities. The only difference here is that instead of demultiplexing

bucket intensities, we demultiplex the bucket ratios.

Theoretical SNR gain. We define the theoretical SNR gain [7] as:

SNR Gain =

√
MSEtriv

MSEopt
, (C.118)

where MSEtriv and MSEopt are computed using Eq. (13) from Sec. 4 for the sub-

optimal matrix and optimal matrix, respectively. We list the theoretical SNR gains in

Table C.1.



Coded Two-Bucket Cameras: Supp. Material 17

1.1

1.3

1.5

1.7

1.9 Theoretical Gain

Measured Gain

4 5 6 7

(a) (b)

Optimal Cp

Sub-optimal Cp

# sub-frames (S) demultiplexed ratio (S= 6)

S
N

R
g
ai

n

Fig. C.3: SNR gains of illumination ratios. (a) Plot of empirical SNR gains (in blue) and theo-

retical SNR gains (in red) for illumination ratios. (b) One out of S illumination ratios obtained

with each C
p. The optimal Cp yielded visibly less noisy images (please zoom in to the electronic

copy).

Empirical evaluation of SNR gain for illumination ratios. We visualize the SNR

gain for the illumination ratios in Fig. C.3(a). The same multiplexing matrices as those
used for evaluating the SNR gain of image intensities are used here. We also show ex-

amples of demultiplexed illumination ratios with optimal and sub-optimal multiplexing

matrices in Fig. C.3(b). The gap between the theoretical SNR gain and the empirical
SNR gain could be explained by the noise model used. In particular, the theoretical

SNR gain does not take into account Poisson noise which might cause the SNR gain to

decrease in practise. We can see that similar trends appear for both the empirical SNR
gains in illumination ratios and the empirical SNR gains in image intensities (Fig. 6(a)

from Sec. 5). However, the theoretical and empirical performance gains suggest that

while bucket ratios do provide albedo-invariant images, demultiplexing image intensi-
ties provides a greater SNR gain than demultiplexing bucket ratios.

D Details of Sec. 5 Simulations

Scene details. We set the image resolution to 300 x 300. We use orthographic projec-

tion for the camera and set the camera centre as the origin. We use a Lambertian model

(Eq. (10) and Table 1 from Sec. 3) to render the scene so there are no interreflections
and no occlusions in the scene. Each pixel is assumed to be in the line of sight of the

light source. We set the mean reflectance intensity to be 80 and the variance to be 400.

We use OpenCV’s demosaicing function with BayerBG2RGB EA as the flag. We sam-
ple the RGB color space with Gaussians centred at [0.5,0.5,0.5] and variance 0.1. color

images have uniform color. Each frequency uses 20 samples to compute the RMSE.

We run two set of experiments. One experiment keeps the the reflectance frequency
fixed to 0.3 of the Nyquist limit and varies the geometric frequency (normal for photo-

metric stereo and depth for structured light). The other experiment keeps the geometric

frequency fixed to 0.3 of the Nyquist limit while varying the reflectance frequency.
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Fig. D.4: Performance comparisons for structured light triangulation on synthetic scenes. (a)

Disparity root-mean-squared error (RMSE) as a function of the depth map’s highest spatial fre-

quency. Reflectance spatial frequency is set to 0.3 of Nyquist. (b) Disparity root-mean-squared

error of disparity estimation as a function of the reflectance map’s highest spatial frequency.

Depth spatial frequency is set to 0.3 of Nyquist.

Structured light triangulation. We multiplex 4 phase-shifted sinusoidal patterns with
spatial frequency of 8 using the 3 by 4 optimal Cp (Table 2 from Sec. 4). We set the

centre of the projector to (20,0,0) and rotate it 10◦ in the XZ plane towards the camera.

The camera image plane is a rectangle of length 50 and width 50 centred at the origin.
For the depth map, we generate a 300 x 300 image of uniformly-sampled depths. We set

the maximum depth frequency by band-pass filtering this depth map. We then rescale

and translate the image to a depth map with a mean depth 100 (unitless in MATLAB)
and a depth variance of 8.333. Phase unwrapping was done by finding the maximum

and minimum disparity with depth bounds of 92.5 and 107.

Photometric stereo, additional details. We multiplex the 4 light sources into 3 pixels
using the 3 by 4 optimal Cp (Table 2 from Sec. 4) for the C2B frame and Bayer color

mosaic. We uniformly sample 4 light source directions until their condition number is

below 3.

Discussion. We show the results of our simulations for structured light triangulation
in Fig. D.4 with 95% confidence intervals on BRD-R. The experiments obtained by

fixing the reflectance frequency show that when the reflectance frequency is low, ID-

DM outperforms other techniques. The experiments fixing the depth frequency show
that BRD-R outperforms ID-DM when there is high frequency reflectance variation.

In general, these experiments show that the choice of shape estimation method has
trade-offs. Reflectance-invariant methods like BRD-R are robust to arbitrary reflectance

frequencies, but may not always help improve performance.

E Details of Sec. 6 Experiments

E.1 Experimental conditions: additional details

Configuration for photometric stereo. Light source calibration consisted of two steps.

First, we computed the direction of incidence of each source onto the scene using a
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chrome sphere. Second, to account for the non-uniform illumination spot produced by

the LED lenses, we placed a fronto-parallel, uniformly-white and diffuse poster board in

front of the camera and computed the light source intensity at each pixel. This intensity
was subsequently used for all shape computations at that pixel.

Configuration for structured-light triangulation. Our projector can store up to 96
binary patterns in its memory, and projects gray-scale patterns by dithering those bi-

nary patterns at rates up to 96 patterns per 20ms video frame. This limited projection

rate, along with limitations of our camera’s triggering firmware, made it impossible to
project more than 24 binary patterns onto the scene within each sub-frame. As a result,

our structured-light projection patterns were quantized significantly, taking on integer
values in the range [0, 23]. Phase unwrapping was done by using depth bounds.

E.2 Quantitative experiments: one-shot versus multi-frame acquisition

Definition of “ground truth.” The goal of our quantitative experiments was to eval-
uate how one-shot 3D estimates from a C2B camera differ from those computed by

applying the identical shape estimation algorithm to full-resolution images acquired se-

quentially. Any differences between these estimates would necessarily be due to the de-
mosaicing process or the coded two-bucket imaging procedure itself—not the accuracy

of the underlying algorithms employed. We therefore treat the 3D estimates computed

by multi-frame acquisition to be our reference, “ground-truth” shape. Because several
pixels in the field of view do not produce valid “ground-truth” 3D data (due to shadows,

isolated regions with specular reflectance, etc.) we define a foreground mask to exclude

them (see Figs. E.5(c) and E.5(e)).

Evaluation procedure. For structured light we use one metric: (1) the percentage of
bad-matching pixels [8]. We define bad-matching pixels to be pixels whose disparity

is more than one pixel away from the ground-truth disparity. For photometric stereo,

we use root-mean-squared angular error and median angular error, both measured in
degrees. We compare the impact of thee different RGB demosaicing procedures: MAT-

LAB’s built-in function; OPENCV’s function with edge-aware demosaicing; and the

deep demosaicing system of Gharbi et al. [9] which represents the current state of
the art on the problem. We used the same test objects for both photometric stereo and

structured-light triangulation. The objects, shown in Fig E.5(a), consist of a book and a
colorful hat whose high-frequency albedo variations make its reconstruction challeng-

ing to algorithms—such as color photometric stereo—as it breaks the constant-albedo

assumption.

Photometric stereo results. Table E.2 compares the RMSE obtained by the various

methods, for both one-shot and simulated one-shot images. These results suggest that
the ID-DM method has the best performance when coupled with the deep-learning-

based demosaicing algorithm [9]. As shown in Table E.3, which considers median error,

the BRD-R method performs the best with Matlab’s demosaic function. While there is a
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(a)

(b) (c)

(d) (e)

Fig. E.5: Objects used for ground-truth evaluation. (a) Color view of the objects. (b) C2B view

of the scene for photometric stereo. (c) The binary foreground mask (red is foreground). The

mask excludes pixels in shadow or pixels that exhibit glossy reflection. (d) C2B view of the

scene for structured-light triangulation. (e) Binary foreground mask used for structured-light error

calculations (red is foreground), non-object pixels are masked.

demosaicing algorithm input images ID-DM (degrees) BRD-R (degrees)

MATLAB demosaic() one-shot 12.079 11.883

simulated one-shot 10.539 10.140

OPENCV demosaicing (BayerBG2RGB EA) one-shot 12.224 12.322

simulated one-shot 10.057 9.703

Demosaic Net [9] one-shot 11.675 11.936

simulated one-shot 10.215 9.758

Table E.2: Angular RMSE for photometric stereo.

discrepancy in the best reconstruction method, we note that the errors are close between

ID-DM and BRD-R, which is consistent with our simulations (Fig. 6(c) and 6(d) from

Sec. 5). This suggests that even ID-DM is able to handle the albedo variations present
in the scene. One thing to note is that the demosaicing algorithms are designed for

image intensities and not illlumination ratios so it is possible for a demosaicing algo-

rithm more optimized for illlumination ratios to improve the performance of the BRD-R
method. In terms of overall magnitude, the differences between one-shot and multi-shot

are within the range of previously-reported ground-truth evaluations of previous one-
shot photometric stereo algorithms [10,11]. Comparing to the results obtained from

simulated one-shot images it is clear that most of the reconstruction error is indeed due

to demosaicing rather than our sensor’s performance under C2B imaging conditions.

Structured-light triangulation results. Tables E.4 compares the percentage of bad-

matching pixels for structured-light triangulation. Here the BRD-R method yields the
best performance with OpenCV’s demosaic function giving the lowest bad-pixel per-

centage. There is a 10-20% gap between the bad-pixel percentage of simulated one-shot

and actual one-shot mosaics. This discrepancy is likely due to the fact that disparity er-
rors in the actual one-shot results generally decrease for the simulated one-shot results.

Since all disparity errors greater than 1 are treated equally in the bad-pixel percentage

metric, this gap can be explained by disparity errors close to, but greater than 1 becom-



Coded Two-Bucket Cameras: Supp. Material 21

demosaicing algorithm input images ID-DM (degrees) BRD-R (degrees)

MATLAB demosaic() one-shot 5.917 4.901

simulated one-shot 4.520 4.096

OPENCV demosaicing (BayerBG2RGB EA) one-shot 5.453 4.980

simulated one-shot 3.947 3.745

Demosaic Net [9] one-shot 5.357 5.375

simulated one-shot 3.993 3.990

Table E.3: Median angular error for photometric stereo.

demosaicing algorithm input images ID-DM (bad%) BRD-R (bad%)

MATLAB demosaic() one-shot 61.30 48.23

simulated one-shot 50.65 30.27

OPENCV demosaicing (BayerBG2RGB EA) one-shot 56.62 45.29

simulated one-shot 48.34 30.84

Demosaic Net [9] one-shot 55.6 47.16

simulated one-shot 46.51 33.94

Table E.4: Disparity bad-pixel percentage for structured-light triangulation.

ing lower for simulated one-shots. Since BRD-R methods has lower RMSE (Fig. 7 from
Sec. 6) than ID-DM methods, this also explains the gap there.

F Live 3D Acquisition Experiments

F.1 Photometric stereo experiments

Person-PS. Errors in the hair result from the appearance of hair violating the Lamber-
tian image formation model. Sectioned colors in the background result from shadows.

Since we are using 4 subframes and 3 pixels, we are not robust to shadows and occlu-

sions in the scene. The different expressions made by the subject show the ability of the
system to capture surface normals at different orientations. Notice that the estimated

normals in areas in the line of sight of all LEDs are not severely affected by neighbour-

ing shadowed pixels. This is because our technique does not rely on the integrability
of the surface in order to estimate normals. Our normal estimates are stable over time

and do not exhibit any clear temporal noise. We try a variety of hand gestures to test the

robustness of our system.

Hat-PS. Since we use ID-DM, the normal estimates should not be robust to high re-

flectance frequencies. We observe this in the form of temporal jitter in the video, where

we can see various artefacts that appear on the hat as it is being rotated and moved.
However, even though there are artefacts, the estimated normals overall look reason-

able. We also place a hand in the scene for comparison. Since the hand is textureless,

there are little, if any, artefacts in the estimated normals of the hand. The hand crushes
the hat and shows that our system is able to handle non-rigid deformations of objects in

the scene. It is important to point out that colorful and textured objects are not apt for

traditional one-shot methods so this is a hard object from which to estimate normals.
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Dress-PS. The black edges in the normal map are caused by black edges in the original

image and these are not artefacts from our algorithm. We see that the normal estimates

are consistent during each period of the swing.

F.2 Structured-light triangulation experiments

Person-SL. There are pixels with poor performance, and they appear as temporal noise
in the disparity map. These erroneous disparity is strictly due to sensor imperfections

and not the algorithms proposed. Because we are using a single projector, we are not
able to estimate the disparity of the pixels in the areas that are shadowed by the hand.

We show the subject making different hand gestures. These hand gestures introduce

discontinuities in the disparity map between the face and the hand as well as between
different fingers. Even under these different deformations and discontinuities, the dis-

parity map is quite stable.

Handkerchief-SL. We can see that while the object has texture, the resulting disparity

map are largely invariant to the albedo. Due to motion in the scene however, they are
not completely invariant and this is apparent as the edges of the textures can be traced

out in the scene. We also place the handkerchief under different deformations, showing

that albedo-invariance holds in many cases.

Toy Cloud-SL. Since the cloud is colorful, this is an object that is traditionally difficult

for color-based one shot techniques. We can see that the disparity in our case is still

smooth and the quality of the disparity map is not affected by the different colors in
the toy cloud. We do note that right side of the cloud has a color that is very dark so

the disparity map is naturally more noisy for that region; this is not a problem with our

algorithm.
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