ML: recursive data types

- Syntax

```ml
datatype <type-name> =
  <type-constructor> of <type-name*> type-expression
| <type-constructor> of <type-expression> type-name
| ... | <type-constructor> of <type-expression>;
```

- Example:

```ml
datatype tree = leaf of int
  | node of tree * tree;

node(leaf 2, leaf 5);
> val it = node (leaf 2, leaf 5) : tree

node(leaf 3, node(leaf 2, leaf 5));
> val it = node (leaf 3, node (leaf 3, leaf 5)) : tree
```

ML Recursive Types

```
fun sum (node T1,T2) = sum(T1) + sum(T2);
```

```
fun sum (leaf N) = N
```

```
val it = node (leaf 3, node (leaf 3, leaf 5)) : tree
```

```
val it = 10 : int
```
ML: recursive data types – cont’d

- Example:
 - Define a binary tree whose leaves are integer functions & whose internal nodes are labeled by integers.
 - fun square(X) = X * X;
 - fun inc (X) = X + 1;
 - node (5,leaf(inc),node(7,leaf(square),leaf(cube)));
 > val it = node (5,leaf fn,node (7,leaf fn,leaf fn)) : tree
 - datatype tree = leaf of int -> int
 | node of int * tree * tree;
 - Define a function that gathers all the functions at the leaves in a list
 - gather (node (5,leaf(inc),node(7,leaf(square),leaf(cube))));
 > val it = [fn,fn,fn] : (int -> int) list
 - fun gather (leaf F) = [F]
 | gather (node(N,T1,T2)) = (gather(T1) @gather(T2));

ML: structures

- Syntax
 - structure <structure-name> =
 - struct
 (* exceptions, definitions, functions… *)
 - end
- Example:
 - structure Mapping =
 - struct
 fun insert(key,value,[]) = [(key,value)]
 | insert(key,value,(key1,value1) ::rest) =
 if key = key1 then
 (key,value)::rest
 else
 (key1,value1) ::insert(key,value,rest);
 fun lookup(key,(key1,value1) ::rest) =
 if key = key1 then
 value
 else
 lookup(key,rest);
 - end

ML: recursive data types – cont’d

- Example:
 - Define a function that returns the sum of applying all leaves on a number
 - sum (node(5,leaf(inc),node(7,leaf(square),leaf(cube))));
 > val it = 15 : int
 - fun sum (leaf(F), N) = F(N)
 | sum (node(_,T1,T2),N) = sum(T1,N) + sum(T2,N);
 - Define a function that counts the number of leaves
 - count (node (leaf(3.1),node(leaf 4.7,leaf(2.8))));
 > val it = 3 : int
 - fun count (leaf(X)) = 1
 | count (node(T1,T2)) = count(T1) + count(T2);
 > val count = fn : 'a tree -> int

ML: structures – cont’d

- Structure access:
 - Using long identifier
 - E.g. - Mapping.insert(538,"languages",[]);
 > val it = [(538,"languages") : (int * string) list
 - Mapping.lookup(538,[(538,"languages"),540,"courses"));
 > val it = "languages" : string
 - Mapping.lookup(538,[(538,"languages"),540,"courses"));
 > ????
 - Using open function
 - E.g. - open Mapping;
 - lookup(538,[(538,"languages"),540,"courses"));
 > val it = "languages" : string

ML: structures – cont’d

- Properties
 - It is legal to define one structure within another
 - If a structure has been defined within another structure, then its components can be accessed by an extension of the long identifier principle (x.y.x…)
 - A structure may be opened within another to achieve greater modularity. However, this may lead to name redefinition problems (similar to those discussed in last slide)
 - There is no equality defined over structures.
ML: signatures

• Syntax
 signature <signature-name> =
 sig (* definitions *)
 end;

• Example:
 signature OBJ_sig =
 sig
 type OBJECT
 val grow: OBJECT -> OBJECT
 val shrink: OBJECT -> OBJECT
 end;

ML: signatures

• Properties
 – There is no equality defined for signatures.
 – They are top-level objects, and cannot be defined within another object; furthermore (unlike structures) they cannot be nested.
 – The keyword include can be used to save writing long signatures by incorporating the contents of existing signatures within a new definition:
 E.g. signature MMLsig =
 include OBJ_sig
 val isInt: OBJ -> int
 val Real_to_OBJ: real -> OBJECT
 end

ML: signatures

• Signatures & Structures:
 - signature OBJ_sig =
 sig
 type OBJECT
 val grow: OBJECT -> OBJECT
 val shrink: OBJECT -> OBJECT
 end;
 - structure INT_struct : OBJ_sig =
 struct
 type OBJECT = int
 fun grow n = n + 1
 fun shrink n = n - 1
 end;

• Benefits of using signatures:
 – Separation of specification from implementation decisions
 – Ability to provide programmers with different views of source code.

• If a structure implements a signature, then this structure is said to be constrained by this signature.

ML: signatures

• Rules of signatures
 – Rule 1: name matching
 • Every type name and val name declared within a signature must have a corresponding definition in the constrained structure, else an error arises.
 – Rule 2: type matching
 • Any definition that appears within a constrained structure and that has a corresponding declaration in the signature must match the type declared in the latter.
 – Rule 3: privacy
 • Any definition within a constrained structure that is not matched within its signature is private.
 - Such definition cannot be referenced by long identifier nor is it made available if the structure is opened.
 E.g. signature FOO =
 sig
 val talkToMe : unit -> int
 end;
 structure Foo2 : FOO =
 struct
 val bar = 42
 fun talkToMe () = bar
 fun hidden() = (* more code *)
 end;

ML: signatures

• Properties
 – There is no equality defined for signatures.
 – They are top-level objects, and cannot be defined within another object; furthermore (unlike structures) they cannot be nested.
 – The keyword include can be used to save writing long signatures by incorporating the contents of existing signatures within a new definition:
 E.g. signature MMLsig =
 include OBJ_sig
 val isInt: OBJ -> int
 val Real_to_OBJ: real -> OBJECT
 end

Introduction to Logic Programming

Logic Programming (LP)

• Evolution:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Assembly Code</th>
<th>Machine Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Logic Language Compiler</td>
<td>Interpreter</td>
<td>Logic Language Compiler</td>
<td>Interpreter</td>
</tr>
</tbody>
</table>

• E.g.:
 – Find X and Y such that 3 X + 2 Y = 1 and X - Y = 4
 – Retrieve the telephone number of the person whose name is Tom Smith
 – The value of X equals the value of Y + 1

• Why LP?
 – We can understand the meaning without knowing the “state” of the program.
 - A lot easier to say what, but not how.
 – Direct manipulation of symbolic structures gives us its power.

• Popular LP languages: Prolog, SQL, Datalog
LP: introduction – cont’d

• LP Characteristics:
 – Not based on state modifications
 – Not procedural in nature
 – Does not have control flow (as we are used to thinking of it)

So, what does it have?

• A program in a logic programming language consists of a set of declarations related together using predicate calculus.

• An algorithm in a LP language = logic + control
 – Logic: programmer provides the “logic” which is what the program does.
 – Control: language run-time system provides the control (!)

LP: operators in predicate calculus

• Connectors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Ky</th>
<th>Ig</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>not a</td>
</tr>
<tr>
<td>conjunction</td>
<td>a ∨ b</td>
<td>a ∧ b</td>
<td>a and b</td>
<td></td>
</tr>
<tr>
<td>disjunction</td>
<td>a ⊕ b</td>
<td>a xor b</td>
<td>a or b</td>
<td></td>
</tr>
<tr>
<td>equivalence</td>
<td>a ≡ b</td>
<td>a is equivalent to b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>implication</td>
<td>a ⊃ b</td>
<td>if a then b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Quantifiers:

Universal: ∀ x, P is true for all X, P is true

Existential: ∃ x, P is true for some X, P is true

(never leave out the “∃”)

Examples:
∀ x (¬friend(x, x) ∧ normal(x))
∀ x (¬friend(x, x) ∧ normal(x))

LP: propositions in predicate calculus

• A proposition is a logical statement that may or may not be true.

• Consists of objects and their relationships to each other

• Propositions are written in a mathematical function form
 – E.g. A is a B written as B(A)

• Propositions have no intrinsic semantics.
 – Do not supply meaning; just ids. We are actually interpreting them.

LP: atomic vs. compound propositions

• Atomic Proposition:
 – Simplest form of logical statements
 – Made up of two parts: function and parameters
 – E.g.
 – Mary is a woman
 – Tom and Mary are married
 – Scott teaches CSC341 in Summer

• Compound propositions:
 – Two or more atomic propositions connected with logical connectors
 – E.g.
 – Tom is either smart or dumb
 – Tom is not dumb
 – Tom is married to someone
 – Tom loves everything
 – Tom is married to a human female

LP: implication in predicate calculus

• Propositions related with each other by an if-then semantics, can be expressed using logical implication (denoted by ⇒)

• Examples:
 – If someone breaks the law, then she/he will be sent to jail or given a fine but not both.
 • P is breaks the law, Q is sent to jail, R is given a fine, v is a variable
 • P(v) ⇒ (Q(v) V R(v)) \(¬(Q(v) \land R(v)) \)
 – If December is a cold dark month then January is a cold dark month
 • P is dark, Q is cold, R is a month, d December and j January
 • \([P(d) \land Q(d) \land R(d)] (j \Rightarrow P(j) \land Q(j) \land R(j)) \)
 • Literally: if December is cold, and December is dark and December is a month then January is cold, and January is dark and January is a month
 – There exists at least one x, such that x is a country and x is ruled by a Queen.
 • P is a country, Q ruled by a Queen, x is a variable
 • \((\exists x) (P(x) \Rightarrow Q(x)) \)
 • Literally: there is an X that is both P and Q

LP: implication in predicate calculus

• Examples cont’d:
 – Every person who is smart is also rich:
 • \((\forall x) (\text{person}(x) \land \text{smart}(x)) \Rightarrow \text{rich}(x) \)
 – John has exactly one mother:
 • \((\exists x) (\text{mother}(x, \text{John}) \land \text{mother}(x, y) \Rightarrow y = x) \)
 – All artists, except poor ones, are rich:
 • \((\forall x) (\text{artist}(x) \land \neg \text{poor}(x)) \Rightarrow \text{rich}(x) \)