Principles of Programming
Languages VII

Wael Aboelsaadat
wael@cs.toronto.edu
http://www.dgp.toronto.edu/~wael/324.html

Acknowledgement: Some of the material in these lectures are based on material by Diane Horton.

Today

- ML: recursive types, signatures & structures

- Introduction to Logic Programming

ML: recursive data types

- Syntax

datatype <type-name> =
 <type-constructor> of < type-name * type-expression >

datatype <type-name> =
 <type-constructor> of < type-name * type-expression >
 | <type-constructor> of <type-expression * type-name >
 | <type-constructor> of <type-expression * type-constructor>
ML: recursive data types

- **Syntax**

  ```ml
datatype <type-name> =
  | <type-constructor1> of <type-expression1> * <type-name * type-expression1>
  | <type-constructor2> of <type-expression2> * type-name
  | ...
  | <type-constructorn> of <type-expressionn>
  ```

- **Example**

 - **Tree representation**
    ```ml```
    ```
 datatype tree = leaf of int
 | node of tree * tree;
    ```
    ```ml```
    ```
    node(leaf(2),leaf(5));
    ```
    ```ml```
    ```
 val it = node (leaf 2,leaf 5) : tree
    ```
    ```ml```
    ```
    node(leaf(3),node(leaf(2),leaf(5)));
    ```
    ```ml```
    ```
 val it = node (leaf 3,node (leaf 3,leaf 5)) : tree
    ```
  ```ml```
  ```
  ML: recursive data types – cont’d

- **Example**
  
  - Define a function to sum the leafs of the tree
    ```ml```
    ```
    datatype tree = leaf of int
    | node of tree * tree;
    ```
    ```ml```
    ```
 sum (node(leaf(3),node(leaf(2), leaf(5))));
    ```
    ```ml```
    ```
    val it = 10 : int
    ```
    ```ml```
    ```
 fun sum (leaf(F), N) = F(N)
 | sum (node(_,T1,T2),N) = sum(T1,N) + sum(T2,N);
    ```
  ```ml```
  ```
  ML: recursive data types – cont’d

- **Example**
  
  - Define a binary tree whose leaves are integer functions & whose internal nodes are labeled by integers.
    ```ml```
    ```
    datatype tree = leaf of int -> int
    | node of int * tree * tree;
    ```
    ```ml```
    ```
 node (5,leaf(inc),node(7,leaf(square),leaf(cube)));
    ```
    ```ml```
    ```
    val it = node (5,leaf fn,node (7,leaf fn,leaf fn)) : tree
    ```
  ```ml```
  ```
 ML: recursive data types – cont’d

- **Example**

  ```ml```
  ```
 datatype tree = leaf of int
 | node of int * tree * tree;
  ```
  ```ml```
  ```
  fun gather (node (5,leaf(inc),node(7,leaf(square),leaf(cube))));
  ```
  ```ml```
  ```
 val it = [fn,fn,fn] : (int -> int) list
  ```
  ```ml```
  ```
  fun gather (leaf F) = [F]
  | gather (node(N,T1,T2)) = (gather(T1)@gather(T2));
  ```
  ```ml```
  ```
 ML: recursive data types

- **Example**

 - Define a binary tree whose leaves are integer functions & whose internal nodes are labeled by integers.
    ```ml```
    ```
 datatype tree = leaf of int
 | node of int * tree * tree;
    ```
    ```ml```
    ```
    node (5,leaf(inc),node(7,leaf(square),leaf(cube)));
    ```
    ```ml```
    ```
 val it = node (5,leaf fn,node (7,leaf fn,leaf fn)) : tree
    ```
  ```ml```
  ```
ML Structures & Signatures

ML: structures

- **Syntax**
  ```ml
 structure <structure-name> =
 struct
 (* exceptions, definitions, functions ... *)
 end
  ```

- **Example:**
  ```ml
 structure Mapping =
 struct
 fun insert(key, value, []) = [(key, value)]
 | insert(key, value, (key1, value1)::rest) =
 if key = key1 then
 (key, value)::rest
 else
 (key1, value1)::insert(key, value, rest);
 fun lookup(key, (key1, value1)::rest) =
 if key = key1 then
 value1
 else
 lookup(key, rest);
 end
  ```

ML: structures – cont’d

- **Structure access:**
  - Using long identifier
    ```ml
 - Mapping.insert(538, "languages", []);
 > val it = [(538, "languages") : (int * string) list
    ```
    ```ml
 - Mapping.lookup(538, [(538, "languages"),(540, "courses")]);
 > val it = "languages" : string
    ```
    ```ml
 - Mapping.lookup(538, [(600, "teachers"),(540, "courses")]);
 > ????
    ```
  - Using open function
    ```ml
 - open Mapping;
 - lookup(538, [(538, "languages"),(540, "courses")]);
 > val it = "languages" : string
    ```

ML: structures – cont’d

- **Properties**
  - It is legal to define one structure within another
  - If a structure has been defined within another structure, then its components can be accessed by an extension of the long identifier principle (x.y.z...)
  - A structure may be opened within another to achieve greater modularity. However, this may lead to name redefinition problems (similar to those discussed in last slide)
  - There is no equality defined over structures.
**ML: signatures**

- **Syntax**
  
  ```ml
 signature <signature-name> =
 sig
 (* definitions *)
 end;
  ```

- **Example:**
  
  ```ml
 - signature OBJ_sig =
 sig
 type OBJECT
 val grow : OBJECT -> OBJECT
 val shrink : OBJECT -> OBJECT
 end;
  ```

- **Signatures & Structures:**
  
  ```ml
 - signature OBJ_sig =
 sig
 type OBJECT
 val grow : OBJECT -> OBJECT
 val shrink : OBJECT -> OBJECT
 end;

 - structure INT_struct : OBJ_sig =
 struct
 type OBJECT = int
 fun grow n = n + 1
 fun shrink n = n - 1
 end;
  ```

- **Benefits of using signature:**
  
  - Separation of specification from implementation decisions
  - Ability to provide programmers with different views of source code

- **If a structure implements a signature, then this structure is said to be constrained by this signature.**

**ML: signatures**

- **Rules of signatures**
  
  - Rule 1: name matching
    - Every type name and val name declared within a signature must have a corresponding definition in the constrained structure, else an error arises
  
  - Rule 2: type matching
    - Any definition that appears within a constrained structure and that has a corresponding declaration in the signature must match the type declared in the latter.
  
  - Rule 3: privacy
    - Any definition within a constrained structure that is not matched within its signature is private.
      - Such definition cannot be referenced by long identifier nor is it made available if the structure is opened
  
  - E.g.
    ```ml
 signature FOO =
 sig
 val talkToMe : unit -> int
 end;
 structure Foo2 : FOO =
 struct
 val bar = 42
 fun talkToMe () = bar
 fun hidden () = (* more code *)
 end;
    ```

- **Properties**
  
  - There is no equality defined for signatures.
  
  - They are top-level objects, and cannot be defined within another object; furthermore (unlike structures) they cannot be nested.
  
  - The keyword `include` can be used to save writing long signatures by incorporating the contents of existing signatures within a new definition:
    ```ml
 signature NUM_sig =
 include OBJ_sig
 val Int_to_OBJ : int -> OBJECT
 val Real_to_OBJ : real -> OBJECT
 end;
    ```
Introduction to Logic Programming

Logic Programming (LP)

- **Evolution:**
  - Problem ➔ Algorithm ➔ Assembly Code ➔ Machine Code
    - ---Assembles----------|
        |-----------------|---|
        |Imperative/functional Compiler/Interpreter|
    - -----------Logic Language Compiler/Interpreter---|

- **E.g.:**
  - Find X and Y such that 3 X + 2 Y = 1 and X - Y = 4
  - Retrieve the telephone number of the person whose name is Tom Smith
  - The value of X equals the value of Y + 3

- **Why LP?**
  - We can understand the meaning without knowing the "state" of the program
  - A lot easier to say what, but not how.
  - Direct manipulation of symbolic structures gives us it's power.

- **Popular LP languages:** Prolog, SQL, Datalog

LP: operators in predicate calculus

- **Connectors:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Bos</th>
<th>Es</th>
<th>At</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>conjunction (AND)</td>
<td>&amp;</td>
<td>∧</td>
<td>&amp;</td>
<td>a &amp; b</td>
</tr>
<tr>
<td>disjunction (OR)</td>
<td>∨</td>
<td>∨</td>
<td>∨</td>
<td>a or b</td>
</tr>
<tr>
<td>equivalence (≡)</td>
<td>≡</td>
<td>≡</td>
<td>≡</td>
<td>a is equivalent to b</td>
</tr>
<tr>
<td>implication (⇒)</td>
<td>⇒</td>
<td>⇒</td>
<td>⇒</td>
<td>a implies b</td>
</tr>
</tbody>
</table>

  - a, b ∈ A
  - a, b ∈ B

- **Quantifiers:**

  - Universal: \(\forall x \in P\)
    - For all X, P is true
  - Existential: \(\exists x \in P\)
    - There exists a value of X
      - such that P is true
      - (often leave out the **)"**

Examples:

- \(\forall x \in P\)
  - teachFaculty(x) ➔ teachMember(x)
- \(\exists x \in P\)
  - teachFaculty(x) ▼ ▼ teachMember(x)

LP: introduction – cont’d

- **LP Characteristics:**
  - Not based on state modifications
  - Not procedural in nature
  - Does not have control flow (as we are used to thinking of it)
    - *So, what does it have?*

- **A program in a logic programming language consists of a set of declarations related together using predicate calculus.**

- **An algorithm in a LP language = logic + control**
  - Logic: programmer provides the “logic” which is what the program does.
  - Control: language run-time system provides the control (1)
**LP: propositions in predicate calculus**

- A proposition is a **logical statement** that may or may not be true.
- Consists of **objects** and their **relationships** to each other.
- Propositions are written in a **mathematical function form**
  - E.g. A is a B written as B(A)
- Propositions have no intrinsic semantics.
  - Do not supply meaning, just ids. We are actually interpreting them.

**LP: atomic vs. compound propositions**

- **Atomic Proposition:**
  - Simplest form of logical statements.
  - Made up of two parts: **functor** and parameters.
  - E.g.:
    - Mary is a woman: woman(mary)
    - Tom and Mary are married: married(tom, mary)
    - Scott teaches CSC341 in Summer: teaches(scott, CSC341, Summer)

- **Compound propositions:**
  - Two or more atomic propositions connected with **logical connectors**.
  - E.g.:
    - Tom is either smart or dumb: smart(tom) V dumb(tom)
    - Tom is not married: ¬married(tom)
    - Tom is married to someone whose name is X: (\exists X) married(tom, X)
    - Tom is married to a human female: (\exists X) married(tom, X) ∧ female(X) ∧ human(X)

**LP: implication in predicate calculus**

- Propositions related with each other by an **if-then** semantics, can be expressed using logical implication (denoted by \( \Rightarrow \))
- Examples:
  - If someone breaks the law, then she/he will be sent to jail or given a fine but not both.
    - P is breaks the law, Q is sent to jail, R is given a fine, v is a variable
    - \( P(v) \Rightarrow (Q(v) V R(v)) \land \neg(Q(v) \land R(v)) \)
  - If December is a cold dark month then January is a cold dark month
    - P is dark, Q is cold, R is a month, d December and j January
    - \( P(d) \land Q(d) \Rightarrow P(j) \land Q(j) \land R(d) \land R(j) \)
  - Literally: if December is cold, and December is dark and December is a month then January is cold, and January is dark and January is a month
  - There exists at least one x, such that x is a country and x is ruled by a Queen.
    - P is a country, Q ruled by a Queen, x is a variable
    - \( (\exists x) (P(x) \land Q(x)) \)
    - Literally: there is an X that is both P and Q

**Examples cont’d:**

- Every person who is smart is also rich:
  - \( (\forall X) (person(X) \land smart(X) \Rightarrow rich(X)) \)

- John has exactly one mother:
  - \( (\exists X) (mother(John, X) \land mother(John, Y) \Rightarrow Y = X) \)

- All artists, except poor ones, are rich:
  - \( (\forall X) (artist(X) \land \neg poor(X) \Rightarrow rich(X)) \)