Principles of Programming Languages VII

Wael Aboelsaadat
wael@cs.toronto.edu
http://www.dgp.toronto.edu/~wael/324.html
Acknowledgement: Some of the material in these lectures are based on material by Diane Horton

Today

- ML: recursive types, signatures & structures
- Introduction to Logic Programming
ML Recursive Types

ML: recursive data types

• Syntax

```ml
datatype <type-name> =
  <type-constructor> of <type-name * type-expression>

datatype <type-name> =
  <type-constructor₁> of <type-name * type-expression₁>
  ...
  <type-constructorₙ> of <type-expressionₙ>
```

- `val it = leaf 2 : tree`
- `val it = node (leaf 2, leaf 5) : tree`
- `val it = node (leaf 3, node (leaf 2, leaf 5)) : tree`
ML: recursive data types

• Syntax

```ml
datatype <type-name> =
  <type-constructor1> of <type-name * type-expression1> |
  <type-constructor2> of <type-expression2 * type-name> |
  ...........
  <type-constructorn> of <type-expressionn>
```

• Example:
 – Tree representation
    ```ml```
    ```ml
datatype tree = leaf of int |
 node of tree * tree;
```
    ```ml```
    ```ml
    node(leaf(2),leaf(5));
    > val it = node (leaf 2,leaf 5) : tree
```
    ```ml```
    ```ml
 node(leaf(3),node(leaf(2),leaf(5)));
 > val it = node (leaf 3,node (leaf 3,leaf 5)) : tree
```

ML: recursive data types

• Example – cont’d:
  – Define a function to sum the leafs of the tree
    ```ml```
    ```ml
datatype tree = leaf of int |
  node of tree * tree;
```
    ```ml```
    ```ml
 node(leaf(3),node(leaf(2),leaf(5)));
 > val it = 10 : int
```
    ```ml```
    ```ml
    fun sum (leaf N) = N |
  sum (node(T1,T2)) = sum(T1) + sum(T2);
```

```ml```
```ml
sum(leaf 3) + sum(node (leaf 2, leaf 5))
3 + sum(leaf 2) + sum (leaf 5)
3 + 2 + sum (leaf 5)
3 + 2 + 5
```
Example:

Define a binary tree whose leaves are integer functions & whose internal nodes are labeled by integers.

- `fun square(X) = X * X;
- fun cube (X) = X * X * X;
- fun inc (X) = X + 1;
- node (5,leaf(inc),node(7,leaf(square),leaf(cube)));`

> val it = node (5,leaf fn,node (7,leaf fn,leaf fn)) : tree
  
  `datatype tree = leaf of int -> int
  | node of int * tree * tree;`

Define a function that gathers all the functions at the leaves in a list

- `fun gather (node (5,leaf(inc),node(7,leaf(square),leaf(cube))));`

  > val it = [fn,fn,fn] : (int -> int) list

- `fun gather (leaf F) = [F]
  | gather (node(N,T1,T2)) = (gather(T1)@gather(T2));`

Example:

Define a function that returns the sum of applying all leaves on a number

- `fun sum (node(5,leaf(inc),node(7,leaf(square),leaf(cube))),2);`

  > val it = 15 : int

- `fun sum (leaf(F), N) = F(N)
  | sum (node(_,T1,T2),N) = sum(T1,N) + sum(T2,N);`

Define a function that counts the number of leafs

- `fun count (node (leaf(3.1),node(leaf 4.7,leaf 2.8)));`

  > val it = 3 : int

- `fun count (leaf (X)) = 1
  | count (node (T1,T2)) = count(T1) + count(T2);
  > val count = fn : `'a tree -> int`
ML Structures & Signatures

ML: structures

- Syntax

```ml
structure <structure-name> =
struct
 (* exceptions, definitions, functions… *)
end
```

- Example:

```ml
structure Mapping =
struct
 fun insert(key, value, []) = [(key, value)]
 | insert(key, value, (key1, value1)::rest) =
 if key = key1 then
 (key, value)::rest
 else
 (key1, value1)::insert(key, value, rest);
 fun lookup(key, (key1, value1)::rest) =
 if key = key1 then
 value1
 else
 lookup(key, rest);
end;
```
ML: structures – cont’d

• Structure access:
  – Using long identifier
    • E.g. - Mapping.insert(538,"languages",[]);
          > val it = [(538,"languages")] : (int * string) list
           - Mapping.lookup(538,[(538,"languages"),(540,"courses")]);
           > val it = "languages" : string
           - Mapping.lookup(538,[(600,"teachers"),(540,"courses")]);
           > ????

  – Using open function
    • E.g. - open Mapping;
      - lookup(538,[(538,"languages"),(540,"courses")]);
      > val it = "languages" : string

ML: structures – cont’d

• Properties
  – It is legal to define one structure within another
  – If a structure has been defined within another structure, then its components
    can be accessed by an extension of the long identifier principle (x.y.z…)
  – A structure may be opened within another to achieve greater modularity.
    However, this may lead to name redefinition problems (similar to those discussed in last slide)
  – There is no equality defined over structures.
ML: signatures

• Syntax

```
signature <signature-name> =
sig
 (* definitions *)
end;
```

• Example:

```
- signature OBJ_sig =
sig
 type OBJECT
 val grow : OBJECT -> OBJECT
 val shrink : OBJECT -> OBJECT
end;
```

• Signatures & Structures:

```
- signature OBJ_sig =
sig
 type OBJECT
 val grow : OBJECT -> OBJECT
 val shrink : OBJECT -> OBJECT
end;

- structure INT_struct : OBJ_sig =
 struct
 type OBJECT = int
 fun grow n = n + 1
 fun shrink n = n - 1
 end;
```

• Benefits of using signature:
  – Separation of specification from implementation decisions
  – Ability to provide programmers with different views of source code

• If a structure implements a signature, then this structure is said to be constrained by this signature.
**ML: signatures**

- **Rules of signatures**
  - Rule 1: name matching
    - Every type name and val name declared within a signature must have a corresponding definition in the constrained structure, else an error arises
  - Rule 2: type matching
    - Any definition that appears within a constrained structure and that has a corresponding declaration in the signature must match the type declared in the latter.
  - Rule 3: privacy
    - Any definition within a constrained structure that is not matched within its signature is private.
      - Such definition cannot be referenced by long identifier nor is it made available if the structure is opened
    - E.g.
      ```ml
 signature FOO =
 sig
 val talkToMe : unit -> int
 end;
 structure Foo2 : FOO =
 struct
 val bar = 42
 fun talkToMe () = bar
 fun hidden() = (* more code *)
 end;
      ```

- **Properties**
  - There is no equality defined for signatures.
  - They are top-level objects, and cannot be defined within another object; furthermore (unlike structures) they cannot be nested.
  - The keyword **include** can be used to save writing long signatures by incorporating the contents of existing signatures within a new definition:
    - E.g.
      ```ml
 signature NUM_sig =
 sig
 include OBJ_sig
 val Int_to_OBJ : int -> OBJECT
 val Real_to_OBJ: real -> OBJECT
 end
      ```
Introduction to Logic Programming

Logic Programming (LP)

• Evolution:
  Problem \rightarrow Algorithm \rightarrow Assembly Code \rightarrow Machine Code
  ┌──────Assembler──────┐
  │                  │
  │Imperative/functional Compiler/Interpreter--
  │------------------
  │Logic Language Compiler/Interpreter-------

• E.g.:
  – Find X and Y such that \( 3X + 2Y = 1 \) and \( X - Y = 4 \)
  – Retrieve the telephone number of the person whose name is Tom Smith
  – The value of X equals the value of Y + 3

• Why LP?
  – We can understand the meaning without knowing the “state” of the program
  – A lot easier to say what, but not how.
  – Direct manipulation of symbolic structures gives us it’s power.

• Popular LP languages: Prolog, SQL, Datalog
LP: introduction – cont’d

- LP Characteristics:
  - Not based on state modifications
  - Not procedural in nature
  - Does not have control flow (as we are used to thinking of it)

So, what does it have?

- A program in a logic programming language consists of a set of declarations related together using predicate calculus.

- An algorithm in a LP language = logic + control
  - Logic: programmer provides the “logic” which is what the program does.
  - Control: language run-time system provides the control (!)

LP: operators in predicate calculus

- Connectors:

<table>
<thead>
<tr>
<th>Name</th>
<th>Book</th>
<th>Ex</th>
<th>Alt</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>negation</td>
<td>¬</td>
<td>¬a</td>
<td>!</td>
<td>not a</td>
</tr>
<tr>
<td>conjunction</td>
<td>∧</td>
<td>a ∧ b</td>
<td>&amp;</td>
<td>a and b</td>
</tr>
<tr>
<td>disjunction</td>
<td>∨</td>
<td>a ∨ b</td>
<td>∨</td>
<td>a or b</td>
</tr>
<tr>
<td>equivalence</td>
<td>≡</td>
<td>a ≡ b</td>
<td>=</td>
<td>a equiv to b</td>
</tr>
<tr>
<td>implication</td>
<td>⇒</td>
<td>a ⇒ b</td>
<td>⇒</td>
<td>a implies b</td>
</tr>
</tbody>
</table>

Precedence: ¬ then ∧ ∨ ≡ then ⇒

Examples:
- a ∧ b ∧ c
- a ∨ (b ∧ c) ⇒ d
- a ∧ b ⇒ c
- a ∨ (b ∧ c) ⇒ d

- Quantifiers:

Universal ∀X, P  For all X, P is true
Existential ∃X, P  There exists a value of X such that P is true
(often leave out the “.”)

Examples:
- ∀X.(teachingFaculty(X) ⇒ facultyMember(X))
- ∃X.(teachingFaculty(X) ⇒ ∃Y.teaches(X,Y))
LP: propositions in predicate calculus

• A proposition is a **logical statement** that may or may not be true.

• **Consists of objects and their relationships** to each other

• **Propositions are written in a mathematical function form**
  – E.g. A is a B written as B(A)

• **Propositions have no intrinsic semantics.**
  – Do not supply meaning, just ids. We are actually interpreting them.

LP: atomic vs. compound propositions

• **Atomic Proposition:**
  – Simplest form of logical statements
  – Made up of two parts: **functor** and **parameters**
  – E.g.
    - Mary is a woman \( \text{woman(mary)} \)
    - Tom and Mary are married \( \text{married(tom, mary)} \)
    - Scott teaches CSC341 in Summer \( \text{teaches(scott, CSC341, Summer)} \)

• **Compound propositions:**
  – Two or more atomic propositions connected with **logical connectors**
  – E.g.
    - Tom is either smart or dumb \( \text{smart(tom)} \lor \text{dumb(tom)} \)
    - Tom is not dumb \( \lnot \text{dumb(tom)} \)
    - Tom is married to someone \( \exists X \ [ \text{married(tom, X)} ] \)
    - Tom loves everything \( \forall X \ [ \text{loves(tom, X)} ] \)
    - Tom is married to a human female
      \( \exists X \ [ \text{married(tom, X)} \land \text{female(X)} \land \text{human(X)} ] \)
LP: implication in predicate calculus

• Propositions related with each other by an *if-then* semantics, can be expressed using logical implication (denoted by \( \rightarrow \))

• Examples:
  – If someone breaks the law, then she/he will be sent to jail or given a fine but not both.
    - P is breaks the law , Q is sent to jail , R is given a fine, v is a variable
    - \( P(v) \rightarrow [(Q(v) \lor R(v)) \land \neg(Q(v) \land R(v))] \)
  – If December is a cold dark month then January is a cold dark month
    - P is dark , Q is cold , R is a month, d December and j January
    - \( [P(d) \land Q(d) \land R(d)] \rightarrow [P(j) \land Q(j) \land R(j)] \)
    - Literally: *if December is cold, and December is dark and December is a month then January is cold, and January is dark and January is a month*
  – There exists at least one x, such that x is a country and x is ruled by a Queen.
    - P is a country , Q ruled by a Queen , x is a variable
    - \( \exists x) (P(x) \land Q(x)) \)
    - Literally: *there is an X that is both P and Q*

LP: implication in predicate calculus

• Examples cont’d:
  – Every person who is smart is also rich:
    - \( \forall X) (\text{person}(X) \land \text{smart}(X) \rightarrow \text{rich}(X)) \)
  – John has exactly one mother:
    - \( \exists X) (\text{mother}(John, X) \land \text{mother}(John, Y) \rightarrow Y = X \)
  – All artists, except poor ones, are rich:
    - \( \forall X) (\text{artist}(X) \land \neg \text{poor}(X) \rightarrow \text{rich}(X) \)