Silent Policy: A silent policy will take effect 24 hours before this assignment is due. This means that no question about this assignment will be answered, whether it is asked on the newsgroup, by email, or in person.

Total Marks: There are 80 marks available in this assignment. This assignment represents 5% of the course grade.

Handing in this Assignment

What to hand in on paper: Please use an unsealed envelope, attaching the cover page provided to the front. Note that without a properly completed and signed cover page, your assignment will not be marked. Put inside:

1. A printout of your solutions for all questions, including the database in question 2.

2. You must describe the testing strategy that you used for predicates reversePath/2 and noAirlines/2. This should include a table listing the test cases that you designed for your predicate, what output your predicate returned, and an explanation of why the test case and output are significant in verifying the correctness of the predicate. Read the following for a discussion of good testing practises:

You must hand in this part of the assignment in tutorial. The A4 Clarification page will contain alternative instructions for those submitting after the November 26, 1pm due date (using grace days).

What to hand in electronically: In addition to your paper submission, you must submit your code electronically. The predicates (including helper predicates) for each question are to be submitted separately, with the filename as stated in the question. To submit these files electronically, use the secure website:

https://endor.utm.utoronto.ca/cgi-bin/submit/init.php

Warning: marks will be deducted for incorrect submission. Note that if the code submitted electronically differs from the code submitted on paper, we will only mark the electronically submitted version (if, in such a case, you put comments, etc. only on paper, we will mark the question as if no comments, etc. were provided).

Since we will test your code electronically, you must:

- make certain that your code runs on UTM linux machines,
- use the exact predicate names and argument(s) (including the order of arguments) specified,
- use the exact file names specified in the questions,
- not load any file in any of your submitted files,
- not display anything but the predicate output (no text messages to the user, fancy formatting, etc. — just what is in the assignment handout).

Marking Questions will be both automarked and inspected manually. Note that we may use a different flight network than the one given here to automark your code. Your solutions are expected to work for any legal flight network configuration.

Other Information You must read the requirements for code and marking information on the following web page:
http://www.cs.toronto.edu/~anya/a4guidelines.html This document constitutes part of the official requirements for this assignment.

Clarification Page and Newsgroup Important corrections (hopefully few or none) and clarifications to the assignment will be posted on the Assignment 4 Clarification page, linked from your section’s CSC324 home page. You are also responsible for monitoring the CSC324 newsgroup.
Assignment #4

Due Date: This assignment is due on Friday November 26, 2004 at 1pm.

Please include this cover sheet, when handing in your paper assignment.

Last Name:

First Name:

Email:

UTM Login:

Student Number:

Grace days used to date:

Grace days used for this assignment:

Date and Time you are handing this in:

I understand that collaboration is not allowed. All answers are my own, written in isolation, without help from others. This submission is in accordance with the University of Toronto Code of Behavior on Academic Matters http://www.artsandscience.utoronto.ca/oifr/calendar/rules.htm#beha

Signature __________________________
The Flight Scheduling System

This assignment is a warm-up to get you used to programming in Prolog and to thinking as a logic programmer. The assignment requires you to write a series of Prolog predicates for a flight scheduling system. You may use helper predicates as needed in defining these predicates. You may not use any of the following:

\(\text{;}\) ("or")
\(\rightarrow\) ("if-then")
\(!\) (cut)

or any other special operators in Prolog (which generally subvert the pure logic programming paradigm). If you are in doubt about what’s allowed, check the Assignment Clarification page or email the newsgroup; if you haven’t seen a certain notation in class or tutorial, it’s probably not a good idea to use it without checking with me or the TAs.

A flight network consists of a set of airport-cities and a set of flights connecting these airports. We shall assume that each airport has an airport tax and a minimum security delay in minutes associated with it. Similarly, each flight is associated with a particular airline and has a price and a duration measured in minutes. We shall make a few, sometimes counter-intuitive, assumptions about our system:

1. We will not model departure/arrival times for the flights and simply assume that it is always possible to take a flight at any point in time.
2. We will assume that flights are always two-way or reversible so that if an airline has a flight from city A to city B, then the same airline also has a flight from city B to city A.
3. We will assume that airport taxes are paid at the origin’s airport and at every airport where there is a change of airline.
4. We shall assume that a flight network gives complete information about all the flights available. This means that if a flight is not described in the network, then it does not exist.\(^1\)

Prolog Notational Conventions: Predicate and Mode Spec

We shall use the following notation when referring to Prolog predicates: Predicates in Prolog are distinguished by their name and their arity. The notation name/arity is therefore used when it is necessary to refer to a predicate unambiguously; e.g. append/3 specifies the predicate named “append” that takes 3 arguments.

Sometimes, we may be interested in specifying how specific predicates are meant to be used. To that end, we shall present a predicate’s usage with a mode spec which has the form: name(arg1, ..., argn) where each argi denotes how that argument should be instantiated when a goal to name/n is called. argi has one of the following forms:

+ArgName This argument should be instantiated to a non-variable term.

-ArPresent This argument should be uninstantiated.

?ArgName This argument may or may not be instantiated.

For example delete(+List,?Elem,?NewList) states that, when using delete/3, the first argument should be instantiated whereas the second and third arguments may or may not be instantiated.

Note that these Prolog notational conventions provide a convenient way to specify Prolog predicates and their usage. They do not represent in any way the form of your actual code. E.g., when defining predicate wellFormedPath/1 in Question 4, do not use ‘‘(++Path)’’ as the argument in your code.

\(^1\)This assumption is usually referred to as the “closed-world assumption”.
Question 1. (2 marks) Fill out the cover sheet correctly.

Question 2. (10 marks) The Database. Submit your database in a file called `a4-flightdb.pl`

A database can be naturally represented in Prolog as a set of facts. In this exercise, you are to create a Prolog database representing a particular flight network. The network in question is depicted by the following graph:

![Flight Network Diagram](image)

Each node denotes an airport-city with its corresponding tax and minimum security delay. Each link denotes a flight and is labelled with its corresponding airline name, price, and duration. You should change any names to lower-case letters (e.g., `madrid`) and remove spaces in names (e.g., `aircanada`).

We will assume that a flight database is stored in Prolog using a predicate `flight/5`, and possibly a helper predicate to avoid writing redundant information. The tax and security delay at each airport can be stored in Prolog using a predicate `airport/3`.

Required interface for the flight database:

a) the query

```
?- flight(From, Airline, To, Price, Duration).
```

must produce all the possible flights *in both directions* with the price in dollars and the duration in minutes. Note that your database should only list each flight link once.

b) the query

```
?- airport(City, AirportTax, MinSecurityDelay).
```

must produce all the cities with the airport tax in dollars and the minimum security delay in minutes.
Question 3. (14 marks) Queries and Rules. You should submit your answers to this question on paper.

Write Prolog clauses (facts, rules or queries) to express the following sentences:

(a) Is there a flight from Toronto to Madrid?
(b) A flight from city A to city B with airline C is cheap if its price is less than 400.
(c) Is it possible to go from Toronto to Paris in two flights?
(d) A flight from city A to city B with airline C is preferred if it’s cheap (see (b)) or it’s with Air Canada.
(e) If there is a flight from city A to city B with United, then there is a flight from city A to city B with Air Canada.
(f) Is there no flight from Toulouse to Barcelona?

Question 4. (15 marks) List Manipulation. Submit your code in a file called `a4-listman.pl`

In this question you are to write a predicate that tests whether a flight path is well-formed and another predicate to reverse a flight path. We first define what a flight leg and a flight path are.

Flight Leg
A flight leg is described by a triple list of the form `[City1,Airline,City2]` where City1 is the city where the leg commences, the origin; Airline is the airline used for the leg; and City2 is the city where the leg ends, the destination of the leg.

Flight Path
A flight path is a possibly empty list of (consecutive) legs. For example, the following list represent a path that starts in Toronto and finishes in Valencia:

```
[[[toronto,aircanada,madrid], [madrid,iberia,barcelona], [barcelona,iberia,valencia]]] (1)
```

Well-formed Flight Path
A flight path is well-formed or legal if the destination city of each leg in the path matches the origin city of the subsequent leg in the path. The above path is well-formed but the following one is not:

```
[[[toronto,aircanada,madrid], [valencia,iberia,barcelona], [barcelona,iberia,valencia]]
```

Note that the empty list `[]` is considered to be a well-formed path.

a. (5 marks) Write a Prolog predicate `wellFormedPath(+Path)` that holds if Path is a well-formed flight path, where Path is always instantiated to a flight path.

For example,

```
?- wellFormedPath([[toronto,aircanada,madrid]]).
YES
```

```
?- wellFormedPath([[toronto,aircanada,madrid],[valencia,iberia,barcelona]]).
NO
```
b. (10 marks) Write a Prolog predicate `reversePath(+Path1, ?Path2)` that holds if Path2 is the reverse flight path of Path1. That is, Path2’s origin is Path1’s destination, Path2’s destination is Path1’s origin, and Path2 uses the same airlines and intermediate cities in each leg as Path1 does. For example,

```prolog
?- reversePath([[toronto, aircanada, madrid], [madrid, iberia, barcelona]], X).
X = [[barcelona, iberia, madrid], [madrid, aircanada, toronto]].
NO
?- reversePath([[toronto, aircanada, windsor]], [[windsor, aircanada, toronto]]).
YES
?- reversePath([[toronto, aircanada, windsor]], [[windsor, united, toronto]]).
NO
```

Question 5. (35 marks) Tools for the flight system. Submit your code in a file called `a4-ftools.pl`

Recall our well-formed flight path from the previous page:

```
[[toronto, aircanada, madrid], [madrid, iberia, barcelona], [barcelona, iberia, valencia]] (1)
```

We can associate a total price and a total duration to every possible flight path. We may also be interested in the number of different airlines that are used by a flight path.

- The total price of a flight path, measured in dollars, is the sum of each leg’s price, the tax at the initial airport, and the taxes at each airport where there is a change of airline. For example, the total price of path (1) is calculated by adding the price of each of the three legs and the airport taxes at Toronto and Madrid (notice there is no tax charge at Barcelona since there is no change of airline).

- The total duration of a path, measured in minutes, is the sum of the duration of each leg plus the security delay at each airport visited (including the initial origin airport and excluding the final destination airport). For example, for the path (1) above, the duration is calculated by adding the duration of the three corresponding legs plus the security delays at Toronto, Madrid, and Barcelona.

- The number of (different) airlines is the number of distinct airlines used by the path in question. For example, the above path (1) uses 2 different airlines, namely, Air Canada and Iberia. Observe that the following path also uses only 2 different airlines:

```
[[toronto, iberia, madrid], [madrid, aircanada, barcelona], [barcelona, iberia, london], [london, aircanada, toronto]]
```

Note that in order to calculate the total price and duration of a path, one needs to query the flight database using both predicates `flight/5` and `airport/3`. On the other hand, the total number of different airlines can be simply obtained by inspecting the flight path in question without using the underlying database.

We now define a complex structure referred to as a flight route.
Flight Route
A (detailed) flight route is a list of the following form:

\[[\text{Cost}, \text{Duration}, \text{NoAirlines}, \text{Path}] \]

where Path is a non-empty and well-formed flight path, and Cost, Duration and NoAirlines stand for the total price, total duration, and number of different airlines of the flight path in question, respectively. For example, the following list term represents a flight route that has a total price of $1200, a total duration of 720 minutes (i.e., 2 hours), uses 2 different airlines, and whose actual path is the above path (1):

\[[1200, 720, 2, [[\text{toronto, aircanada, madrid}], [\text{madrid, iberia, barcelona}], [\text{barcelona, iberia, valencia}]]] \]

a. (15 marks) Write a Prolog predicate noAirlines(+Path, ?N) that holds if \(N \) is the number of different airlines used in well-formed flight path \(\text{Path} \). For example,

?- noAirlines([[toronto, aircanada, madrid], [madrid, iberia, barcelona], [barcelona, iberia, valencia]], N).
\(N = 2 \);
NO

?- noAirlines([[toronto, iberia, madrid], [madrid, iberia, barcelona], [barcelona, iberia, valencia]], 1).
YES

?- noAirlines([[toronto, united, madrid], [madrid, iberia, barcelona], [barcelona, iberia, valencia]], 3).
NO

b. (20 marks) Write a Prolog predicate addLeg(+Route, +To, +Airline, -NewRoute) that adds a new leg to the end of the path of an existing flight route. addLeg/4 takes as input a flight route Route, a destination city To and an airline Airline. It produces a forth argument NewRoute, which is the route obtained by inserting a new leg to the end of the path in Route. The new leg’s origin is the final destination of the existing path in Route, the new leg’s airline is Airline and the destination of the new leg is To. You may assume that the new leg that you are constructing is one that exists.

As an example of how addLeg/4 should work, assume we start with the following route from Toronto to Madrid:

\[[950, 540, 1, [[\text{toronto, aircanada, madrid}]]] \]

Suppose we want to add to this route a flight to Barcelona using Air Canada. From the above flight network, we know that the leg \([\text{madrid, aircanada, barcelona}] \) has a cost of $100 and a duration of 30 min. Also, we know that the security delay at Madrid is 45 min. Then, we can have the following Prolog query:

?- addLeg([950, 540, 1, [[toronto, aircanada, madrid]]], barcelona, aircanada, X).
\(X = [1050, 645, 1, [[\text{toronto, aircanada, madrid}], [\text{madrid, aircanada, barcelona}]]] \);
NO

Suppose further that we want to add to the resulting new route a flight to Valencia using Iberia. Again, from the above flight network, we know that the leg \([\text{barcelona, iberia, valencia}] \) has a cost of $110 and a duration of 75 min. Also, we know that the airport tax at Barcelona is $40 and the security delay is 30 min.

?- addLeg([1050, 645, 1, [[toronto, aircanada, madrid], [madrid, aircanada, barcelona]]], valencia, iberia, X).
\(X = [1200, 750, 2, [[\text{toronto, aircanada, madrid}], [\text{madrid, aircanada, barcelona}], [\text{barcelona, iberia, valencia}]]] \);
NO