CSC384: Lecture 5

- Last time
 - search, DFS & BrFS; cycle checking & MPC

- Today
 - arc costs; heuristics; LCFS, BeFS, A*
 - misc: iterative deepening, etc.

- Readings:
 - Today: Ch.4.5, 4.6
 - Next Weds: class notes (no text reading)
Manhattan Bike Courier (Acyclic)
Arc Costs

- **DFS/BrFS** make sense when no arc costs
 - e.g., BrFS ensures shortest path (fewest arcs)

- **If arc costs & aim of finding least-cost path**, BFS in not suitable
 - e.g., goal=ls, start=mo: BrFS finds shortest path [ls,mo] with cost 5; but least-cost path is [ls,eif,al,mo] with cost 4 (even though it has more arcs)

- **Least-cost first search (LCFS)**: least cost path
 - works much like BrFS, except paths are ordered according to cost, rather than “length”
Least-cost First Search

- Implementing LCFS is straightforward
- Let cost of any path \(p \) to node \(n \) be denoted \(g(n) \)
 - note: this notation is misleading but conventional
- Organize frontier as a priority queue
 - with each path on frontier, attach cost \(g(n) \)
 - paths with lower cost are at the head of the frontier
 - new paths (nbrs) are inserted in order of cost
 - so \textit{add_to_f} is just priority queue insertion
- Selecting a path from the head of the frontier
 - thus, you always get least cost path from the frontier
Trace of LCFS (with paths: mo to ls)

Frontier evolution:

1. [mo]:0
2. [ch,mo]:1 [al,mo]:2 [ws,mo]:2 [ls,mo]:5
3. [al,mo]:2 [ws,mo]:2 [fs,ch,mo]:3 [trp,ch,mo]:4 [ac,ch,mo]:5 [ls,mo]:5
4. [ws,mo]:2 [eif,al,mo]:3 [fs,ch,mo]:3 [trp,ch,mo]:4 [ac,ch,mo]:5 [ls,mo]:5
5. [eif,al,mo]:3 [fs,ch,mo]:3 [fs,ws,mo]:4 [myse,ws,mo]:4 [trp,ch,mo]:4 [ac,ch,mo]:5 [ls,mo]:5 [ac,ws,mo]:6 [sec,ws,mo]:9
6. [fs,ch,mo]:3 [ls,eif,al,mo]:4 [fs,ws,mo]:4 [myse,ws,mo]:4 [trp,ch,mo]:4 [ac,ch,mo]:5 [ls,mo]:5 [ac,ws,mo]:6 [sec,ws,mo]:9
7. [ls,eif,al,mo]:4 [fs,ws,mo]:4 [myse,ws,mo]:4 [trp,ch,mo]:4 [ac,ch,mo]:5 [ls,mo]:5 [ac,ws,mo]:6 [sec,ws,mo]:9

Goal found after 7 node expansions; least-cost path to ls
Paths Explored by LCFS in Example

Red paths: expanded
Black paths: added to frontier, but not expanded
Properties of LCFS

- Guaranteed to find least-cost path under certain circumstances
- If all arc costs are greater than 0 (assume a solution exists)
 - exercise: prove it will find least-cost path
 - what can happen if we have negative arc costs?
- Space and time complexity similar to BrFS
 - note: BrFS is a special case of LCFS when all arc costs are “uniform” (e.g., all arc costs are 1)
Uninformed Search Strategies

- For any search strategy so far (DFS, BFS, LCFS) suppose I give you goal g_1 and ask you to trace the paths explored. Then I change the goal to g_2 and ask you to repeat the process.
- Both traces will look the same (up to the point that the goal is found)
- These search strategies are \textit{blind} or \textit{uninformed}
 - search process in uninfluenced by the goal
 - e.g., in LCFS (goal=ls), first step is toward ch
 - e.g., Craig often turns right at red lights no matter what direction he’s heading
Heuristics

- **Heuristics** generally refer to any rules of thumb that provide some help when solving a problem
 - e.g., an estimate/guess as to best way to proceed
 - generally guidance is not perfect
- In graph search, a *heuristic function* $h(n)$ is an estimate of cost to goal g from node n
 - Why an estimate? What if $h(n)$ were perfect?
 - Exercise: prove that if $h(n)$ is true cost to goal for each n, you can find best path without backtracking
 - Note: $h(n)$ will vary with goal g; so we sometimes write $h(n,g_1)$, $h(n,g_2)$, etc. for emphasis
Good Heuristics

- Where do heuristics come from?
 - depends on the problem we’re trying to solve
 - planning? we’ll look at some
 - chess? rules of thumb about board position (vulnerability, number of pieces, etc.)
 - Manhattan bike courier? see handout of “grid”

- Features of a good heuristic function
 - should be somewhat accurate
 - should be easy to compute (e.g., if it requires lots of search, that defeats the purpose!)
 - should underestimate true cost (for reasons we’ll see)
Heuristic for MBC

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>al</td>
<td>mo</td>
<td>ch</td>
<td>ch</td>
</tr>
<tr>
<td>2</td>
<td>eif</td>
<td>ls</td>
<td>ws</td>
<td>fs</td>
</tr>
<tr>
<td>3</td>
<td>slb</td>
<td>sec</td>
<td>nyse</td>
<td>ac</td>
</tr>
<tr>
<td>4</td>
<td>rp</td>
<td>ase</td>
<td>bp</td>
<td></td>
</tr>
</tbody>
</table>
Heuristic for MBC (see handout)

For instance, if our Goal location was slb, we could represent our heuristic function directly as follows:

\[h(\text{mo}, 2). \quad h(\text{slb}, 0). \quad h(\text{trp}, 5). \quad h(\text{sec}, 0). \quad h(\text{fs}, 3). \quad h(\text{ch}, 3). \]
\[h(\text{bb}, 6). \quad h(\text{ws}, 2). \quad h(\text{eif}, 2). \quad h(\text{nyse}, 1). \quad h(\text{ac}, 2). \quad h(\text{rp}, 2). \]
\[h(\text{al}, 3). \quad h(\text{p27}, 4). \quad h(\text{ase}, 1). \quad h(\text{ls}, 1). \quad h(\text{bp}, 3). \]

A generic heuristic for arbitrary goals \(h(n,g) \):

\[
\text{md}(\text{Loc}, G, D) :- \text{coord}(G, X1, Y1), \text{coord}(\text{Loc}, X2, Y2), \text{dist}(X1, Y1, X2, Y2, D).
\]
\[
\text{dist}(X1, Y1, X2, Y2, D) :- \text{dist2}(X1, X2, X), \text{dist2}(Y1, Y2, Y), \text{D is X+Y}.
\]
\[
\text{dist2}(X1, X2, Z) :- X1 \geq X2, \text{Z is X1-X2}.
\]
\[
\text{dist2}(X1, X2, Z) :- X1 < X2, \text{Z is X2-X1}.
\]
\[
\text{coord}(\text{al}, 1, 1). \quad \text{coord}(\text{mo}, 1, 2). \quad \text{coord}(\text{ch}, 1, 3). \quad \text{coord}(\text{trp}, 1, 5). \quad \text{etc}...
\]
Best-first Search (BeFS)

- We can use heuristics to guide search in heuristic DFS (see text), best-first search, A*

- **Best-first search** works just like LCFS except we attach $h(n)$ to each path instead of $g(n)$
 - i.e., priority queue sorts paths based on $h(n)$ value
 - we explore paths whose end points *appear to be closest to the goal* (according to h)
Paths Explored by BeFS: *mo to slb*

Red paths: expanded
Black paths: added to frontier, but not expanded
Search Tree: MBC Acyclic; Start *mo*
Problem with BeFS

- In previous example, BeFS guides us *very* directly to a path to slb (in fact, *no* backtracking)
- Unfortunately, not the least-cost path
- Indeed, BeFS ignores arc costs altogether!
 - chooses path to expand based only on estimated cost-to-go, h(n), and is uninfluenced by cost of path so far g(n)
 - makes sense if you’ve already “gone” to the node, but not if you’re searching for the shortest path
A* Search

- A* search combines aspects of LCFS and BeFS
 - we use both $h(n)$ and $g(n)$ when choosing paths
- Quality of path on frontier is given by the **evaluation function**: $f(n) = g(n) + h(n)$
- Paths are ordered on the frontier according to f-value $f(n)$
 - if expanded path is not a soln, it is extended by its neighbors; which are inserted according to f-values
 - always select path from frontier with minimal f-value
 - Implementation: priority queue sorted on f-value
Paths Explored by A*: mo to slb

Prune using MPC (to keep slide simple)

Red paths: expanded; h-value/f-value
Black paths: added to frontier, but not expanded
A* Analysis

- In this example, A* leads pretty directly to the goal \(s_lb \)
 - it expands six “false leads” and “prunes” one more
- A* also found the least-cost path to \(s_lb \)
- Seems to combine the best of LCFS (best path) and BeFS (goes fairly directly to the goal)
- Space and time complexity similar to BrFS
 - note: BrFS and LCFS are special cases of A* (under what conditions?)
Properties of A* (Informally)

- Will A* always find shortest path?
- Not necessarily:
 - suppose $h(al) = 17$ in our example?
 - this very misleading (and pessimistic!) estimate of cost-to-go from al means it won’t get expanded before $[ls, mo]$
 - will find longer path to slb
Admissible Heuristics

- Suppose $h(n)$ never overestimates the true cost-to-goal from n?
 - A^* will find least-cost path (assuming arcs costs > 0)
 - a heuristic s.t. $h(n) \leq \text{mincost}(n,g)$ is admissible
 - our example heuristic turns out to be admissible

- Special case: let $h(n) = 0$ for all n
 - since $f(n) = h(n) + g(n) = g(n)$: reduces to LCFS
 - an admissible, but uninformative heuristic

- In general, the more “informative” $h(n)$ is, the better A^* will perform (more “direct” search)
 - Exercise: Prove that if $h(n) = \text{mincost}(n,g)$ – that is, $h(n)$ is perfect – A^* will find optimal path directly (no backtracking)
Optimality of A* (Intuitions)

Assume admissible heuristic h

- Let p be a nonoptimal path to goal x with cost c(p)
- Let p* be optimal path to goal x with cost c(p*) < c(p)
- Note: every subpath q of p* has f-value ≤ c(p*) < c(p) since h is admissible
- So every such path—including p* -- will be expanded (removed from frontier) before p
- Note: some subpaths of p can be expanded, but not p

\[
\begin{align*}
&\text{s} \rightarrow n_1^* \rightarrow n_2^* \rightarrow n_3^* \ldots \rightarrow x \quad p^* \\
&f(n_j^*) \leq c(p^*) < c(p) \\
&f(x \text{ on path } p) = c(p) \\
&\text{s} \rightarrow n_1 \rightarrow n_2 \rightarrow n_3 \ldots \rightarrow x \quad p
\end{align*}
\]
Multiple Path Checking in A*

- **MPC**: If you find a path to node n that you’ve already expanded, don’t expand it again
 - was OK for BFS and LCFS, since first path expanded to any node n was assured to be shortest/cheapest
 - In A*, you can be misled by heuristic that takes you all the way to node n along an “expensive path” (though it can’t take you all the way to goal if admissible)

$$\begin{align*}
 s &\rightarrow \cdots \rightarrow n' \rightarrow \cdots \rightarrow n \rightarrow \cdots \rightarrow x \\
 c(p^*) &< c(p), \text{ but } f(p^*) > f(p)
\end{align*}$$
Multiple Path Checking in A*

- In example, p expanded before p*, and MPC ignores shorter path p* to node n
 - MPC can destroy optimality of A*
- But this can only happen if:
 - some n’ on p* is on frontier, with \(f_{p'}(n') > f_p(n) \)
- But \(g_{p'}(n') + \text{dist}(n',n) < g_p(n) \)
- So we must have \(h(n') > h(n) + \text{dist}(n,n') \)
 - thus \(h(n') \) makes n’ look worse than n by more than the actual distance it takes to get from n’ to n
 - this can happen even if h is admissible: basically it means heuristic is too optimistic about n relative to n’
The Monotone Restriction

- Can insist \(h \) satisfy the **monotone restriction**:
 \[
 |h(n, \cdot) - h(n)| \leq d(n', n) \quad \text{for all nodes } n, n'
 \]

- This is enough to ensure that MPC can be performed safely with A* (i.e., MPC will preserve optimality)
Iterative Deepening (IDS)

IDS is motivated by the following tension:
- BFS guarantees optimal soln, requires expnt’l space
- DFS requires linear space, can’t guarantee optimality
- How can we get best of both worlds?

Trick: add a depth bound d to DFS
- normal DFS, but never expand path with length $> d$

How do I ensure I find solution if one exists?
- if failure at depth bound d, increase bound and repeat

How do I ensure shortest path is found first?
- use the depth bounds: $d=1$, $d=2$, $d=3$, $d=4$, etc.
Iterative Deepening Graphically

Full search tree

DFS(1)

If no soln found using DFS(1):
run DFS(2)

If no soln found using DFS(2):
run DFS(3)

etc.
Properties of IDS

- Guaranteed to find shortest solution
- Will only use linear space:
 - $O(db)$ space with depth bound d, branching factor b
 - Important: do *not* “save” results from previous iteration
- How do we get this benefit?
 - we’re repeating computation!
 - At depth bound d, we repeat all computation done at all earlier depth bounds. The only “new” steps are the expansion of leafs from previous iteration
- Why redo? Why not store previous tree?
 - requires exponential space
What Price do We Pay?

- IDS seems silly: a lot of wasted effort it seems!
 - but how bad is it compared to BFS?
 - Assume shortest soln has length d

- BFS generates:
 \[b^d + b^{d-1} + b^{d-2} + \ldots + b^0 = O(b^d) \] nodes

- IDS generates:
 \[b^d + 2b^{d-1} + 3b^{d-2} + \ldots + d\,b^0 \] nodes
 which is roughly \[b^d \left(1 - 1/b\right)^{-2} = O(b^d) \] nodes
Benefit of IDS

- We pay a constant time overhead (compared to BFS) for exponential space savings!
- Note: constant factor \((1-1/b)^{-2}\) is pretty small
 - if \(b = 2\), overhead factor is 4 (4 times as long as BFS)
 - if \(b = 4\), overhead factor is 1.8
 - overhead factor decreases with \(b\)!

Iterative Deepening can be used with A*: IDA*
 - basically, do DFS, but let “depth bound” be maximum f-value you consider, and increase f-value-bound gradually
Implicit Search Graphs

- Most search problems are not specified with explicit search graphs; nbr predicate “creates” neighboring states on the fly
 - chess, SLD-derivations, planning robot activity, etc.

- Example: 8-puzzle
 - Each board position a state
 - \(9! = 362880\) states
 - each state has 2, 3, or 4 nprs
 - nprs correspond to possible moves
 - nbr predicate: returns list of states reachable

- State Representation? Neighbor implementation? Possible Heuristics? see assignment 2!
Other Issues

- Suppose list of neighbors is too large:
 - to add to frontier? to calculate all heuristic values?
 - What might one do? How could you use heuristic info to limit your attention?
 - One possibility: generate neighbors in heuristic order (only a subset of nbrs ever put on frontier)
 - can destroy optimality unless more nbrs added when backtracking

- Other things we can do to increase efficiency?
 - control the direction of search
Backward Search

- **Backward** branching factor is the (avg) set of moves that can be made to a specific node
 - if I have the inverse nbr relation available, I can search in the graph backwards from the goal to the start state

- Advantage: if backward BF \(b^- \) less than forward BF \(b^+ \), then search algth’m (any type) benefits
 - examples: planning (as we’ll see later)
 - lower time and space complexity since optimal path length still the same
 - heuristic methods need a *backwards* heuristic, though
Bidirectional Search

- Search simultaneously in both directions
 - if two frontiers intersect, you can “join” forward and backward paths to node in intersection to get a sol’n
 - contrast # expansions for b-d BrFS vs. normal BrFS
Bidirectional Search

- Suppose we do BrFS
 - length of sol’n (shortest path) is k
 - branching factor (frwd/bkwd) is b
- Each component of the bidirectional search expands $O(b^{k/2})$ nodes
- Normal BrFS expands $O(b^k)$ nodes
- Bidirectional is exponential, but offers exponential savings
- Issues: need bkwd dynamics, need to test intersection, must choose search alg. carefully
Island Search

- Suppose you know that any (good) path to goal must pass through *island states* i_1, i_2, \ldots, i_k
 - e.g., must pass through specific tunnels to deliver pkg

- Complexity can be cut significantly by searching for path from s to i_1, i_1 to i_2, ..., i_{k-1} to i_k, i_k to g
 - what is potential savings (say) for BrFS using this strategy if avg subpath between islands has length m?