CSC384: Lecture 3

- Last time
 - DCL: syntax, semantics, proofs
 - bottom-up proof procedure
- Today
 - top-down proof procedure (SLD-resolution)
 - perhaps start on uses of DCL
- Readings:
 - Today: 2.7, 2.8 (details in tutorial), perhaps Ch.3 (except 3.7); we'll discuss only part
 - Next week: wrap Ch.3; start on Ch.4: 4.1-4.4/4.6

Top-Down Proof Procedure

- BUPP is data-driven
 - not influenced by query q, just facts and rules in KB!
 - wasteful: proves things unneeded to prove q
- Top-down proof procedure is query-driven:
 - focussed on deriving a specific query
- We'll describe a TDPP called SLD-resolution
 - Basically, the strategy implemented within Prolog
 - stands for selected linear, definite-clause resolution

SLD-Resolution (No vars)

- Basic intuitions:
 - suppose we have query \(?q_1 \& q_2\)
 - suppose we have rule \(q_1 \leftarrow a \& b \& c\).
 - if we prove subgoal query \(?a \& b \& c \& q_2\) then we know that original query must be true
- SLD a form of backchaining or subgoaling:
 - to prove \(q\), we look for a rule with the head \(q\), and then attempt to prove the body of that rule; if proven, we know \(q\) must be a consequence of KB
 - Progress: when subgoals are facts!
- Defn: An answer clause: \(\text{yes} \leftarrow q_1 \& \ldots \& q_m\)
- Defn: An answer: \(\text{yes} \leftarrow \ldots\)

SLD-Resolution: Algorithm (no vars)

Given query \(?q_1 \& \ldots \& q_m\) and a KB
1. Construct answer clause \(\text{yes} \leftarrow q_1 \& \ldots \& q_m\)
2. Until no KB-clause choosable or AC is an answer
 (a) Select an atom \(a_i\) from the current AC
 \(\text{yes} \leftarrow q_1 \& \ldots \& a_i \& \ldots \& q_m\)
 (b) Choose a clause \(a_i \leftarrow b_1 \& \ldots \& b_l\) from KB whose head matches selected atom
 (c) Replace \(a_i\) in AC with body to obtain new AC
 \(\text{yes} \leftarrow q_1 \& \ldots \& a_i \& \ldots \& b_1 \& \ldots \& b_l \& a_{i+1} \& \ldots \& q_m\)

SLD-Resolution

- If we reach an answer, return YES
 - query is a logical consequence of KB
- If we find no choosable clauses, return NO
 - query not a consequence (but not necessarily false)
- A sequence of answer clauses that culminates in an answer is an SLD-derivation of the query
- Our algorithm attempts to find a derivation:
 - If it chooses incorrectly at Step 2, it may fail
 - see text for distinction between choice and selection
 - we say derivation attempt fails if we get stuck
 - how does Prolog deal with failure?

SLD: Example

Derivation Attempt #1

KB: (1) \(a \leftarrow b \& c\).
 (2) \(b \leftarrow d \& e\).
 (3) \(b \leftarrow c\).
 (4) \(c \leftarrow e\).
 (5) \(d\).
 (6) \(e\).
 (7) \(f \leftarrow a \& g\).
Query: \(?a\)

Select \(a\): choose (1)
Select \(b\): choose (3)
Select \(c\): choose (6)
Select \(g\): FAIL no choosable clause
SLD: Example

KB:
1. \(a \leftarrow b \land c \).
2. \(b \leftarrow d \land e \).
3. \(b \leftarrow g \land e \).
4. \(c \leftarrow e \).
5. \(d \).
6. \(e \).
7. \(f \leftarrow a \land g \).

Query: \(?a\)

Derivation Attempt #2

- \(\text{yes} \leftarrow a \)
- \(\text{yes} \leftarrow b \land c \). Select a, choose (1)
- \(\text{yes} \leftarrow d \land e \). Select b, choose (2)
- \(\text{yes} \leftarrow e \land c \). Select c, choose (4)
- \(\text{yes} \leftarrow c \). Select e, choose (6)
- \(\text{yes} \leftarrow -. \)

QUERY IS TRUE: obtained answer

SLD Notes

- **Does atom selected to resolve away matter?**
 - No: all must be "proven" eventually
- **Does KB clause chosen to resolve with matter?**
 - Yes: wrong choice can lead to failure
 - We'll talk later about backtracking/search for a proof
- **Soundness:** should be fairly obvious
 - Exercise: prove that if any body in any answer clause is a consequence of KB, then so is query (soundness follows: if we derive an answer, query holds)
- **Completeness:** if KB \(\models q \) there is a derivation
 - can we find it? Yes, if we make correct choices
 - How? Might have to try all options (watch for cycles)

Aside: Resolution

\[
\begin{align*}
 a \lor b, \ & \neg b \lor c \\
 \hline
 a \lor c
\end{align*}
\]

Resolution Proof Rule

Query

\(\text{yes} \leftarrow g \land h \) equivalent to \(\neg g \lor h \lor \text{yes} \)

Rule

\(h \leftarrow a \land b \land c \) equivalent to \(\neg h \lor a \lor b \lor c \)

\[\neg g \lor h \lor \text{yes} \]

- \(\neg g \lor h \lor \text{yes} \)
- \(h \leftarrow a \land b \land c \)
 - equivalent to \(\text{yes} \leftarrow g \land a \land b \land c \)

Resolvent

\(-g \lor -a \lor b \lor c \lor \text{yes} \)

equivalent to

\(\text{yes} \leftarrow g \land a \land b \land c \)

Variables in SLD (no functions)

- **Recall query** \(q(X) \) is interpreted existentially:
 - is there some \(X \) s.t. \(q(X) \) is a consequence?
 - return a ground instance/term \(t \) (or all if \(t \) is empty):
 - with no functions, terms are just constants

Example:

- (1) \(\text{rich(joan)}. \)
- (2) \(\text{mother(linda,joan)}. \)
- (3) \(\text{mother(mary,linda)}. \)
- (4) \(\text{rich}(X) \leftarrow \text{mother}(X, Y) \land \text{rich}(Y). \)

Query:

\(\text{? rich(linda)}. \)

SLD: Queries with no vars

- **Query:** \(\text{?rich(linda)} \)
 - set up answer clause: \(\text{yes} \leftarrow \text{rich(linda)} \)
 - but body matches no heads in KB: How to start??

- **Intuitively**, \(\text{rich(linda)} \) **does** match the head of the rule \(\text{rich}(X) \leftarrow \text{mother}(X, Y) \land \text{rich}(Y). \)
 - just need to substitute constant \(\text{linda} \) for \(X \)
 - result: \(\text{yes} \leftarrow \text{mother(linda,Y)} \land \text{rich}(Y). \)

- **Applying constant substitution** \(X/\text{linda} \) to rule (4) gives us an **instance** of rule (4):
 - \(\text{rich(linda)} \leftarrow \text{mother(linda,Y)} \land \text{rich}(Y). \)
 - Note: this instance is clearly entailed by KB

Example: SLD with vars in KB

KB:

- (1) \(\text{rich(joan)}. \)
- (2) \(\text{mother(linda,joan)}. \)
- (3) \(\text{mother(mary,linda)}. \)
- (4) \(\text{rich}(X) \leftarrow \text{mother}(X, Y) \land \text{rich}(Y). \)

Query:

\(\text{? rich(linda)}. \)

Derivation:

- \(\text{yes} \leftarrow \text{rich(linda)}. \)
- \(\text{yes} \leftarrow \text{mother(linda,Y)} \land \text{rich}(Y). \)

How Select rich(linda); resolve with (4) using (X/linda)

- \(\text{yes} \leftarrow \text{rich(joan)}. \)
 - How Select \(\text{mother(linda,Y)} \); resolve with (2) using (Y/joan)
 - \(\text{yes} \leftarrow \text{rich(joan)}. \)
 - How Select \(\text{rich(joan)} \); resolve with (1) using {}
Example: SLD with vars in query

- **KB:**
 1. `rich(joan)`.
 2. `mother(linda, joan)`.
 3. `mother(mary, linda)`.
 4. `rich(X) ← mother(X, Y) & rich(Y)`.

- **Query:**
 1. `? rich(Z)`.

A Different Derivation:

1. `yes(Z) ← rich(Z)`.
2. `yes(joan) ← -`.
 - Select `rich(Z)`; resolve with (1) using (Z/joan)

Example Derivation #1

KB
- `busy(Z) ← teaches(Z, X) & teaches(Z, Y) & distinct(X, Y)`.
- `busy(Z) ← teaches(Z, 148)`.
- `teaches(craig, 2334)`.
- `teaches(kyros, 384)`.
- `teaches(suzanne, 148)`.
- `distinct(2334, 384)`.
- `distinct(2001, 384)`.

Query
- `busy(P)`.

Answer Clause:
- `yes(P) ← busy(P)`.

Derivation:
- `yes(P) ← busy(P)`.
- `yes(P) ← teaches(P, 148)`.
- Select `busy(P)`; resolve with (2) using (P/148)
- `yes(P) ← teaches(P, 148)`.
- Select `busy(P)`; resolve with (2) using (P/148)
- `yes(suzanne) ← -`.
- Select `distinct(2334, 384)`; resolve with (2) using (Z/2334)
- `yes(suzanne) ← -`.

Example: SLD-Resolution: Algorithm (w/ vars)

Given query
- `¬ X₁ ∧ ... ∧ ¬ Xₙ`
 with variables `X₁, ..., Xₙ`

1. Construct answer clause
- `yes(X₁, ..., Xₙ) ← c₁ Æ ... Æ cₙ`.

2. Until no KB-clause choosable or AC is an answer

(a) Select an atom `a₁` from the current AC

(b) Choose a clause `hᵢ ← b₁ Æ ... Æ bₙ` from KB

and a substitution `σ` that unifies the head `hᵢ` of the KB clause with the selected atom `aᵢ` (i.e., that when applied to `hᵢ` and `aᵢ` makes them the same)

(c) apply `σ` to AC and KB clause to obtain `ACσ`, `KBσ`

(d) Replace `aᵢ` in `ACσ` with body of `KBσ` to obtain new AC

SLD: Queries with vars

- **Query:** `rich(Z)`
 - set up answer clause: `yes(Z) ← rich(Z)`
 - once derivation reaches an answer, this allows us to extract an "individual" for which query holds
 - can’t just say yes: must say "for who"
- Intuitively, `rich(Z)` does match the head of the rule `rich(X) ← mother(X, Y) & rich(Y)`
 - just need to substitute var `Z` for var `X`
 - result: `yes(Z) ← mother(Z, Y) & rich(Z)`.
- Applying substitution `X[Z]` to rule (4) gives:
 - `rich(Z) ← mother(Z, Y) & rich(Y)`.

Example:

Example: SLD with vars in query

- **KB:**
 1. `rich(joan)`.
 2. `mother(linda, joan)`.
 3. `mother(mary, linda)`.
 4. `rich(X) ← mother(X, Y) & rich(Y)`.

- **Query:**
 1. `? rich(Z)`.

Derivation:
- `yes(Z) ← rich(Z)`.
- `yes(Z) ← mother(Z, Y) & rich(Y)`.
 - Select `rich(Z)`; resolve with (1) using (Y/joan)
 - Select `mother(Z, joan)`; resolve with (2) using (Z/linda)
Example Derivation #2

KB
1. busy(Z) ← teach(Z, X) \& \& teach(Z, Y) \& \& distinct(X, Y).
2. busy(Z) ← teach(Z, X) \& \& teach(Z, Y).
3. teach(craig, 384).
4. teach(carrie, 384).
5. teach(kyros, 2534).
6. teach(kyros, 234).
7. teach(Sodore, 148).
8. distinct(2534, 384).
9. distinct(234, 384).
10. \& \& 48384, d(234, 2534), d(2534, 48). 2530/146.

Problem lies in KB. We didn’t axiomatize domain correctly
Add distinct(234, 384), etc.

Example Derivation #3

Assume KB fixed with rule: 12 distinct(C, D) ← distinct(D, C).

Derivation
yes(P) ← busy(P).
yes(P) ← P(X, Y) & P(Y, X) & d(X, y).
busy(P): \& \& (Z, P)
yes(craig) ← \& \& (craig, P) & d(384, Y)
t(P, X) (3) P(craig, X, 384)
yes(craig) ← \& \& d(384, 2534).
t(c, Y) \& \& (4) \& \& (X, 2534).

Example Derivation #4

Substitutions

- **Defn:** A substitution \(\sigma \) is any assignment of terms to variables:
 - we write it like as \(\sigma = \{ X \mapsto 1, Y \mapsto 2, \ldots \} \)
 - constant substitution is a special case; terms can be any terms (nonground included)
 - without functions, only terms are constants, vars
 - e.g. \(\sigma = \{ X/craig, Y/\text{father}(craig), Z/P, W/\text{father}(X) \} \)
- A substitution is applied to an expression by **uniformly and simultaneously** substituting each term for the corresponding variable
 - e.g. using subst. above on related(mother(X), W)
 gives related(mother(craig), father(X))

Example

Substitutions

- **Defn:** A substitution **unifies** two expressions \(e_1 \) and \(e_2 \) if \(e_1 \sigma \) is identical to \(e_2 \sigma \)
 - E.g., \(p(X, f(a)) \) and \(p(Y, f(Z)) \) are unified by:
 - \(\{ X/b, Y/b, Z/a \} \) gives \(p(b, f(a)) \) for both expressions
 - \(\{ X, Y/a \} \) gives \(p(y, f(a)) \) for both expressions
 - \(\{ X, Y/ Z, Z/a \} \) gives \(p(Z, f(a)) \) for both expressions
- **Unifier** \(\sigma \) is a **most general unifier** (MGU) of \(e_1 \) and \(e_2 \) if \(e_1\sigma \) is an instance of (unifies with) \(e_1\sigma \) for any other unifier \(\sigma' \)
 - An MGU gives the most general instance of an expression; any other unifier gives a result that would unify with that given by the MGU

Example

MGUs: Examples

- Let \(e_1 = \text{busy}(X) \), \(e_2 = \text{busy}(Y) \)
- **Unifier** \(\sigma_1 = \{ X/\text{kyros}, Y/\text{kyros} \} \)
 - result: \(e_1\sigma_1 = e_2\sigma_1 = \text{busy}(kyros) \)
- **Unifier** \(\sigma_2 = \{ X/\text{craig}, Y/\text{kyros} \} \)
 - result: \(e_1\sigma_2 = e_2\sigma_1 = \text{busy}(craig) \)
- **Unifier** \(\sigma_3 = \{ Y/X \} \)
 - result: \(e_1\sigma_3 = e_2\sigma_3 = \text{busy}(X) \)
- **Unifier** \(\sigma_4 \) an MGU of expressions; \(\sigma_4 = \{ X/\text{kyros} \} \)
 - \(e_1\sigma_1 = e_2\sigma_1 = \text{busy}(kyros) \)
 - \(e_1\sigma_2 = e_2\sigma_2 = \text{busy}(craig) \)

Notes on General SLD Resolution

- Generically, if you only use MGUs in SLD resolution to match a body atom with a KB head
 - ensures we don’t make too specific a choice and force us to failure unnecessarily
- To obtain all answers:
 - once we derive an answer, we pretend the derivation failed and backtrack to find other derivations
 - we only reconsider KB-clause choices, not atom selections, or unifier choice
Notes on General SLD Resolution

- Prolog (see Appendix B, Ch3.2, Ch3.3)
 - based on SLD-resolution
 - searches for derivations using a specific strategy: (a) always selects atoms from answer clause in left-to-right order; (b) always chooses KB clauses in top-to-bottom order (using first unifiable rule/fact)
 - records choices and tries alternatives if failure (essentially does depth-first search: why?)
 - provides a single answer for nonground queries; but you can force it to search for others (semicolon op)

Renaming of Variables: Example

KB:
1. rich(joan).
2. mother(linda, joan).
3. mother(mary, linda).
4. rich(X) ← mother(X,Y) & rich(Y).

Derivation:
- yes ← rich(mary).
- yes ← mother(mary,Y) & rich(Y).
- yes ← mother(mary,X) & mother(X,Y) & rich(X).
- rich(Y) : (4) using(Y/X)

Must fail: Nobody (in our KB) is their own mother!

Renaming of Variables

- When we add body of KB clause to answer clause, we may have accidental name conflicts
 - in example, Y in answer clause is not "same person" as Y in KB clause (yet both replaced by X)
- To prevent problems, we always rename vars in KB clause (uniformly) to prevent clashes
 - changing var names in KB clause cannot change meaning
- System: (a) each clause has diff. vars; (b) index KB vars, increase with each use of the clause
 - use rich(X) ← mother(X,Y) & rich(Y). i-th time you use this clause in a derivation

DCL: How can we use it?

- Query-answering system:
 - given KB representing a specific domain, use DCL (and suitable proof procedure) to answer questions
- A Deductive Database System
 - much like the above
- A Programming Language
 - Prolog (we’ve seen) is a dressed up DCL using SLD
 - Important to realize that as a programming language, we are still making logical assertions and proving logical consequences of these assertions

Prolog List Operations

- A distinguishing feature of Prolog is its built-in facilities for list manipulation
 - not hacks, but genuine logical assertions/derivations
- Consider the function cons, constant el:
 - cons accepts two args, returns pair containing them
 - e.g. cons(a,b), cons(a,cons(b,c))
 - el is a constant denoting the empty list
- A proper list is either el or a pair whose second element is a proper list
 - cons(a,cons(b,cons(c,el))) = [a,b,c]
Prolog List Operations

- Prolog uses a more suggestive notation:
 - [] is a constant symbol (empty list)
 - [[]] is a binary function symbol: infix notation (cons)
 - [a,b,c] shorthand for [a | b | c | []]
- But these are just terms in DCL
- Standard list manipulation operations correspond to logical assertions
 - e.g., the usual definition of append(X,Y,Z) simply defines what it means for Z to be the appending of X and Y

Defining Append

(A2) append([E1 | R1], Y, [E1 | Rest]) <-
 append(R1, Y, Rest).

Proving the Append Relation #1

Query: append([a,b], [c,d], [a,b,c,d]).

(A2) append([E1 | R1], Y, [E1 | Rest]) <-
 append(R1, Y, Rest).

Derivation:
yes <- append([a,b], [c,d], [a,b,c,d]).
yes <- append([b, c, d], [a, b, c, d]).
 Resolve with (A2) using { [E1 | b, R1 | [b, c, d]], Y/[c, d], Rest/[c, d] }
 Resolve with (A2) using { [E1 | b, R1 | [b, c, d]], Y/[c, d], Rest/[c, d] }
 Resolve with (A2) using { [E1 | b, R1 | [b, c, d]], Y/[c, d], Rest/[c, d] }
 Resolve with (A1) using { Z/[c, d] }
Answer: yes

Proving the Append Relation #2

Query: append([a,b], [c,d],[g,b,c,d]).

(A2) append([E1 | R1], Y, [E1 | Rest]) <-
 append(R1, Y, Rest).

Derivation:
yes <- append([a,b], [c,d],[g,b,c,d]).
 No append rule can unify with this atom
 (convince yourself: look at E1)
Answer: no

Proving the Append Relation #3

Query: append([L,M], [a,b,c,d]).

(A2) append([E1 | R1], Y, [E1 | Rest]) <-
 append(R1, Y, Rest).

Derivation:
yes(L,M) <- append([L,M],[a,b,c,d]).
yes([a|R], M) <- append([R], M, [b,c,d]).
 Resolve with (A2) using { [U|[a|R], Y/M, R1/[b,c,d] }
 Resolve with (A2) using { [U|[a|R], Y/M, R1/[b,c,d] }
 Resolve with (A2) using { [U|[a|R], Y/M, R1/[b,c,d] }
 Resolve with (A1) using { Z/[b,c,d] }
Answer: L = [a], M = [b,c,d]

Proving the Append Relation

- Exercise: Give derivations for at least two other answers for the previous query:
 - Query: append(L, M, [a,b,c,d]).
 * L = [], M = [a,b,c,d]
 * L = [a], M = [b,c,d]
 * L = [a,b], M = [c,d]
 * L = [a,b,c], M = [d]
 * L = [a,b,c,d], M = []
DCL and Knowledge Representation

- DCL has obvious uses as a question answering system for complex knowledge
 - A key issue: how does one effectively represent knowledge of a specific domain for this purpose?
 - Unfortunately, there are generally many ways to represent a KB: some more useful (compact, natural, efficient) than others
 - Let’s go through a detailed example to see where choices need to be made, what the difficulties are, etc.

The Herbalist Domain

- Suppose we want to build a KB that answers queries about what sorts of homeopathic remedies we need to treat different symptoms
 - This “expert system” will underly a Web site where users can ask for advice on herbal remedies
 - We need to build a KB that represents info we have about different clients, their symptoms, treatments, etc.

What Functionality is Needed?

- Before designing KB, we need to know what types of queries we’ll ask; do we want:
 a) \(?treatment(john, T)\).
 b) \(?treatment(symptom, T)\).
 c) \(?treatment(combination-of-symptoms, T)\).
 d) \(?safe(combination-of-treatments)\).
 e) \(?medical_records(john, R)\).
 f) \(?paid_bills(john)\).

- and so on

What Individuals Do We Need?

- Diseases: do we need diseases?
 - why? why not? (our treatment philosophy will be to apply treatments to symptoms: simplicity!)
- Combinations of symptoms? treatments?
- We’ll consider combinations:
 - symptomList is a list of symptoms:
 - e.g. function: symptomList(symptom, SList)
 - or using Prolog notation: [aches, fever, chills]
 - treatmentList similar:
 - \([tmt(mudwort,tincture), tmt(echinacea,capsule)]\)

What Relations?

- Relations depend on functionality desired
- If we ask \(?treatment(john, T)\), we need information about john in KB (e.g., symptoms)
 - e.g.: symptoms(john,fever), symptom(john,chills).
 - or: symptoms(john,[fever,chills]).
 - or maybe symptoms are relations themselves and not individuals: fever(john), chills(john).
- Maybe we don’t even discuss individual clients:
 - e.g., we only ask: \(?treatment(SList,TList)\).
- Different choices influence how you express your knowledge: some make life easy, or difficult!
Facts and Rules

- Once we’ve decided on suitable relations we need to populate our KB with suitable facts and rules
 - facts/rules should be correct
 - facts/rules should cover all relevant cases (which depends on the task at hand)
 - try to keep facts/rule concise (only relevant facts)
- For example: we can often express a zillion facts using one or two simple rules

Some Example Facts/Rules

- Facts about individual patients

 Specific Visit Facts (enter into KB during exam):
 - musclepain(mary,shoulders)
 - slow_digetion(john)
 - fever(john)

 Semi-permanent Facts (persist in KB):
 - arthritis(ming)
 - hypertension(john)
 - relaxed_disposition(mary)

- Rules relating treatments to symptoms

 We can relate treatments to symptoms directly:
 - remedy(X,chinacea) :- fever(X) & cough(X) & sniffles(X)
 - remedy(X,chinacea) :- chills(X) & cough(X) & sniffles(X)

 Or relate treatments to diseases, and diseases to symptoms:
 - remedy(X,chinacea) :- has_cold(X)
 - has_cold(X) :- fever(X) & cough(X) & sniffles(X)
 - has_cold(X) :- chills(X) & cough(X) & sniffles(X)

- Design choice for relations, individuals can have impact on ability to prove certain things (easily)
- Suppose we want to find a treatment list for john:
 - list should cover each symptom john exhibits (in KB)
 - but how do we “collect” all the facts from the KB of the form fever(john), slow_digetion(john), etc.
 - (actually Prolog has some hacks, but SLD doesn’t)
- Thus we make our lives easier by thinking of symptoms as individuals, and relating patients to a list of all symptoms
 - symptoms(john, [fever, aches, slow_digetion]).

Some Example Facts/Rules

- We might even have more general rules
 - Appropriate level of generality can make KB expression more concise

 We might have general problems:
 - general_digetion(X) :- slow_digetion(X)
 - general_digetion(X) :- heartburn(X) & relaxed_disposition(X)
 - general_digetion(X) :- gastritis(X)

 and relate treatments to such classes of problems:
 - remedy(X,clove) :- general_digetion(X)
 - remedy(X,meadowsweet) :- gastritis(X)

Example Facts/Rules

- Let’s attempt to define treatment(S,T): treatment list T is satisfactory for symptom list S
 - Note: it suggests new relations to specify/define
 - Is this definition correct? complete? efficient? for what types of queries will it work?

 treatment([],[S],T) :-
 - safe([T],[S])

 treatment([S],[],T) :-
 - treatment(T,S)

 treatment([S],[],T) :-
 - safe([T],[S])
Example Facts/Rules

treatment([], []).
treatment([S1 | Rest S], [T1 | Rest T]) :-
treats(T1, T2),
treatment(Rest S, Rest T),
safe([T1 | Rest T]).

• ?treatment([aches, fever], T): is this defn OK?
• ?treatment([aches, fever], [ech, mudwort]): OK?
 • what if ech treats fever and mudwort treats aches?
 • must rewrite to make order-independent

• Final Tlist is safe if no nasty interactions:
 • why is this definition inefficient?
 • why prove for each sublist? how would you rewrite it?
 • could proving it each time make sense (for Prolog)?
 • Exercise: define a version of the safe predicate

KB Design: The Moral

• There are many design choices
• The queries you plan to ask influence the way you break the world into individuals and relations
• Even with fixed functionality, there are often several ways to approach the problem
• Different approaches lead to more or less natural, efficient, and compact KBs