CSC418 Computer Graphics

- Cameras and Projections

Follow lecture notes on 3D Projection and Clipping:
www.dgp.toronto.edu/~karan/courses/csc418/fall_2002/notes/lectures.html

Camera model
Viewing Transform

\[k = \frac{(P_{\text{eye}} - P_{\text{ref}})}{||P_{\text{eye}} - P_{\text{ref}}||} \]
Viewing Transform

\[i = (V_{up} \times k) / \| V_{up} \times k \| \]

Viewing Transform

\[j = k \times i \]
Change-of-basis Matrix

![Diagram of change-of-basis matrix with vectors and coordinates.]

Camera model

![Diagram of camera model with a perspective view.]
Camera model

What is the difference between these images?

Orthographic

Perspective

Perspective projection
Perspective projection

Simple Perspective
Simple Perspective

\[y' = \frac{yd}{z} \]
\[x' = \frac{xd}{z} \]
\[z' = d \]

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1/d & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

\[w' = \frac{z}{d} \]
Viewing volumes

Projected image

Viewing volumes

Projected image
CSC418 Computer Graphics

Next Lecture

- Canonical space
- 3D Clipping
- Visibility culling