CSC418 Computer Graphics

- Display Technology
- Drawing lines

Display Technology

Raster Displays (CRT)
- Common display device today
- Evacuated glass bottle
- Electrons attracted to anode
- Deflection plates
- Beam strikes phosphor on tube
Raster Displays I

Raster Scan Pattern of Interlaced Display

Electron beam Intensity

Raster Displays II

Gamma correction

Sample Input to Monitor

Output from Monitor

Graph of Input

Graph of Output \(I = V^{2.5} \)
Raster Displays II

Gamma correction

Sample Input
Graph of Input

Gamma Corrected Input
Graph of Correction $L' = L ^ { \gamma / \gamma}$

Monitor Output
Graph of Output
Display Architecture

Frame Buffer

CPU \xrightarrow{\text{frame buffer}} \xrightarrow{\text{gamma correction}} \xrightarrow{\text{DAC}} \xrightarrow{\text{beam intensity}} \text{Display Buffer} \xrightarrow{\text{Frame Buffer}} \xrightarrow{\text{Memory}} \text{CPU}

Display Architecture

Double Buffer

CPU \xrightarrow{\text{frame buffer}} \xrightarrow{\text{gamma correction}} \xrightarrow{\text{DAC}} \xrightarrow{\text{beam intensity}} \text{Display Buffer} \xrightarrow{\text{Frame Buffer}} \xrightarrow{\text{Memory}} \text{CPU}
Display Architecture II

True Color Frame Buffer: 8 bits per pixel RGB

Display Architecture II

Indexed Color Frame Buffer: 8 bit index to color map
What is the best line line we can draw?

An "ideal" line

A discrete approximation
Line Drawing

What is the best line we can draw?

The best we can do is a discrete approximation of an ideal line.

Important line qualities:
- Continuous appearance
- Uniform thickness and brightness
- Accuracy (Turn on the pixels nearest the ideal line)
- Speed (How fast is the line generated)

Equation of a Line

Explicit: \(y = mx + b \)

Parametric:

\[
\begin{align*}
 x(t) &= x_0 + (x_1 - x_0)t \\
 y(t) &= y_0 + (y_1 - y_0)t
\end{align*}
\]

\[
P = P_0 + (P_1-P_0)t
\]

\[
P = P_0^*(1-t) + P_1^*t \text{ (weighted sum)}
\]

Implicit:

\[
(x-x_0)dy - (y-y_0)dx = 0
\]
Algorithm I

Explicit form:
\[y = \frac{dy}{dx} \times (x-x_0) + y_0 \]

float y;
int x;
for (x=x0; x<=x1; x++)
{
 y = y0 + (x-x0)*(y1-y0)/(x1-x0);
 setpixel (x, round(y));
}

Algorithm I

Explicit form:
\[y = \frac{dy}{dx} \times (x-x_0) + y_0 \]

float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y = y1 + 0.5;
for (x=x0; x<=x1; x++)
{
 setpixel (x, floor(y));
 y = y + m;
}
Algorithm I

DDA (Digital Differential Analyzer)

```c
float y;
int x;
dx = x1-x0; dy = y1 - y0;
m = dy/dx;
y = y1 + 0.5;
for ( x=x0; x<=x1; x++)
{
    setpixel ( x, floor(y));
    y = y + m;
}
```

Algorithm II

Bresenham Algorithm

- Assume line slope <1 (first quadrant)
- Slope is rational (ratio of two integers). \(m = (y1 - y0) / (x1 - x0) \)
- The incremental part of the algorithm never generates a new \(y \) that is more than one unit away from the old one
 (because the slope is always less than one) \(y_{i+1} = y_i + m \)
- If we maintained only the fractional part of \(y \), we could modify
 the DDA and draw a line by noting when this fraction exceeded
 one. If we initialize fraction with 0.5, then rounding off is
 handled. \(\text{fraction } += m; \text{if (fraction } >= 1) \{ \text{y } = \text{y } + 1; \text{fraction } -= 1; \} \)
Bresenham Algorithm Geometric Interpretation

\[\text{fraction} = \frac{m}{2} - \frac{1}{2} \]

if \(m \leq 0 \) then \(\text{fraction} \geq 1 \)

\[
\begin{cases}
\text{Plot}(1,1) \\
\text{fraction} += m - 1;
\end{cases}
\]

else

\[
\begin{cases}
\text{Plot}(1,0) \\
\text{fraction} += m;
\end{cases}
\]

Bresenham Algorithm Implicit View

\[F(x,y) = (x-x_0)dy - (y-y_0)dx \]
\[F(x+1,y+0.5) = F(x,y) + dy - 0.5dx \]
\[2F(x+1,y+0.5) = d = 2F(x,y) + 2dy - dx \]
\[F(x+1,y) = F(x,y) + dy \quad d' = d + 2dy \]
\[F(x+1,y+1) = F(x,y) + dy - dx \quad d' = d + 2dy - 2dx \]
CSC418 Computer Graphics

Next Lecture....

- Simple Camera model
- Display techniques
 - Z Buffer
 - Ray Tracing
- Scan conversion