Design Methodologies and Principles

- Design methodologies
- Examples
 - Rosson and Carroll
 - BGBG
- Design principles and guidelines
- Examples
- One set of design principles

BGBG design methodology

- A user-centred, iterative, design philosophy
 - Not intended as a rigid formula
 - Illustration of a philosophy
 - Examples of how to proceed
- Design —> Prototype —> Evaluate
 —> Redesign —> Implement —> Evaluate
 —> Redesign —> Revise implementation —> Evaluate
 —> etc.

Table: BGBG design process example (MAD)

<table>
<thead>
<tr>
<th></th>
<th>DESIGN</th>
<th>IMPLEMENT</th>
<th>ANALYZE AND EVALUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information collection and requirements analysis</td>
<td>Reflections, studies, classes on filmmaking</td>
<td>No “Problem Scenario” developed (weakness)</td>
<td>Some contact with real filmmakers (should have had more contact)</td>
</tr>
<tr>
<td>Activity, information & interaction design</td>
<td>Initial design concepts</td>
<td>Design sketches, Director prototypes, small C programs</td>
<td>Feedback only from research group (weakness)</td>
</tr>
<tr>
<td>Prototyping and prototype system</td>
<td>System functionality and look & feel</td>
<td>Critical mass C prototype</td>
<td>Demos, first real projects, observations, filmmaker interviews</td>
</tr>
<tr>
<td>Production prototype and its evolution</td>
<td>Complete system, incorporating evaluation insights</td>
<td>Implementation of significantly usable C++ system</td>
<td>More demos, real projects, observations, interviews, multimedia summer camps</td>
</tr>
<tr>
<td>Production system and its evolution</td>
<td>Deliverable system, incorporating evaluation insights</td>
<td>Java implementation</td>
<td>Intensive internal use, beta testing, client use</td>
</tr>
</tbody>
</table>
Design principles (guidelines)

- Even if you follow a methodology, how do you know that you are proceeding uphill rather than downhill?
- Design principles or guidelines: statements which advise a designer on how to proceed
 - Example (Hansen, 1971)
 - Know thy user
 - Minimize memorization
 - Optimize operations
 - Engineer for errors

Macintosh Human Interface Guidelines

- "...describes the way to create products that optimize the interaction between people and Macintosh computers" (Apple Computer, Addison-Wesley, 1992)
 - Ch. 1: Human Interface Principles
 - Ch. 2: General Design Considerations
 - Ch. 3: Human Interface Design and the Development Process
 - Ch. 4: Menus
 - Ch. 5: Windows
 - Ch. 6: Dialog Boxes
 - Ch. 7: Controls
 - Ch. 8: Icons
 - Ch. 9: Colour
 - Ch. 10: Behaviours
 - Ch. 11: Language

My Design Guidelines (Principles)

- Interface examples courtesy of Aaron Marcus and Associates, www.amanda.com

BGBG design process in tabular form

<table>
<thead>
<tr>
<th>Information collection and requirements analysis</th>
<th>DESIGN</th>
<th>IMPLEMENT</th>
<th>ANALYZE AND EVALUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaires, interviews, observation of potential users</td>
<td>Task analyses, artifact analyses, “day in the life” problem scenarios</td>
<td>e.g., interviews with users to get reactions to scenarios</td>
<td></td>
</tr>
<tr>
<td>Activity, information & interaction design</td>
<td>Initial design concepts</td>
<td>Design mockups, prototypes, activity scenarios</td>
<td>e.g., interviews with users to get reactions to prototypes, heuristic evaluations</td>
</tr>
<tr>
<td>Prototyping and prototype system</td>
<td>System functionality and look & feel</td>
<td>Smoke and mirrors prototype, partially working system</td>
<td>e.g. usability tests</td>
</tr>
<tr>
<td>Production prototype and its evolution</td>
<td>Complete system, incorporating evaluation insights</td>
<td>Real working system, implemented and installed</td>
<td>e.g., heuristic evaluation, usability tests, beta tests</td>
</tr>
<tr>
<td>Production system and its evolution</td>
<td>Deliverable system, monitoring and feedback system</td>
<td>Production system, including monitoring and feedback system</td>
<td>e.g., interviews, surveys of real users</td>
</tr>
</tbody>
</table>

Guidelines

- Pros of guidelines
 - Stimulate ideas and insights
 - Good checklists giving helpful advice
 - Use in heuristic evaluation
- Cons of guidelines
 - Occasionally incorrect
 - Usually vague
 - Sometimes contradictory (need for tradeoffs)
 - Very often not at the appropriate level of specificity
 - Often difficult to apply to real design problems
 - Can get out of hand, e.g., Smith and Mosier: 679 (!?)

Tog On Interface

- Bruce "Tog" Togazzini (Addison-Wesley, 1992) answers specific questions about user interface design for the Macintosh, and presents 200 guidelines dealing with, e.g.:
 - The Design Process
 - Positively Determining System Behaviour
 - Positively Influencing User Perceptions and User Behaviour
 - Promoting Consistency
 - Making the Interface "Visible"
 - Reducing or Eliminating Navigation
 - Conceptual Models and the System Image
 - Human-Computer Conversation, Vocabulary
 - Screen Objects, Menus, Icons, Fonts, Error Messages
 - User Testing
 - Minimizing Impact of New Releases on Old Users
Computational media design principles

• The design and the design process
• The user
• The technology and the interaction
• User support
• The computational medium

Design principles: The designer and the design process

• 1. Be humble, and iterate often
 – You won’t get it right the first time …
 – Or the second time either :-(
• 2. Follow a user-centred design process
 – Study work practice
 – Observe, “test” users as they use a system
 – Ask users with surveys, questionnaires, interviews
 – Also ask external experts in a systematic way

The iterative design process

Design principles: The designer and the design process

• 3. Use multidisciplinary design teams
 – Software
 – User interface design
 – Social/behavioural science
 – Visual/graphic design
 – Domain expertise

• 4. Really know the subject matter
 – Deep domain expertise required

Design principles: The user

• 7. Really know “the user”
 – Who is a typical user? Who are all the users?
 – Observe, ask, have users participate on design team

• 8. Employ the user’s knowledge
 – Communicate with appropriate metaphors (next hour)
 • Example: Virtual museum
 • Example: Electronic book
 – Speak the user’s language
 • The user’s jargon, not computer jargon
 • Example: Points, picas, em dashes for typographers

Design principles: The technology and the interaction

• 11. Exploit new hardware paradigms
 – Example: mobile devices linked at high-bandwidth
 – Example: speech I/O, non-speech audio

• 12. Communicate visually and articulately
 – Focus the user’s attention
 • Key information at the tracking symbol
 • Graceful methods to grab the user’s attention
 – Structure the user’s interface
 • A frame of reference, a mental map
 • The role of design grids

Prototypes: Samsung Advanced Mobile Device Concepts
Prototypes: Message Manager For a Wrist-top Device

Application Example: Sabre Travel Booking Development

Sabre: Information-Visualization and User-Interface Design

Website: J. Paul Getty Trust Portal and Museum Website Development

Website: ACM.org Portal Career Resource Centre Development
Design principles: The technology and the interaction

• 13. Respond articulately to the user’s actions
 – Speed and predictability of response
 – Complete, terse, comprehensible feedback
 – Hidden system state (modes) kept to a minimum
 – Example: My TV Zapper
• 14. Orient the user in the world
 – Where am I? Where have I been? Where can I go?
• 15. Enable articulate expression by users
 – Example: Widgets for controlling rectangular areas

Design principles: User support

• 16. Anticipate that users will have “problems”
 – Huge varieties of users, tasks, contexts
 – Need to anticipate and if possible prevent “errors”
 – Need for online help, error handling, training, support
• 17. Minimize user frustration
 – Consistency whenever possible
 – Error message language to reduce defensiveness

Design principles: User support

• 18. Support collaborative and individual use
 – Example: Technical support via knowledge base and links to experts
• 19. Make your product reliable
 – If it doesn’t work well, the interface won’t save it!
• 20. Make your design simple
 – Elegance and simplicity aid everyone involved — the designer, the implementer, and the user

Summary

• Methodologies: Systematic design processes
• Principles or guidelines: “Rules” of design advice

Questions and Discussion
Activity Design

• “Problem scenario” shows issues in current practice
• Designer has a concept for a solution to problems
• Activity design develops functionality for the solution
• Goal is to make activities
 – Effective
 – Comprehensible
 – Satisfying
• Activity scenarios
• Claims about features of these scenarios

Activity Design: Effectiveness

• How do we know we are solving the right problem?
• Careful analysis of results of requirements analysis
• Collaborative (participatory) design
 • User-centred → user-involved → user-directed
 • Origins in Scandinavia
 • Developers and users: equal partners on design team
 • Mutual knowledge
 • See Reading #8, Situated Design, Greenbaum & Kyng
Class Exercise: Task Analysis for Electronic Classroom

- Let's do this together!

Activity Design: Comprehensibility

- User needs, task analysis, and user work practices — How users think about their work — their “conceptual models”
- Example of a familiar users' conceptual model
 - The Xerox Star — The origins of the electronic desktop and the GUI — Predecessor to Lisa, Macintosh, and Windows
 - A “simulated desktop” with electronic equivalents of paper, filefolder, file cabinets, mailboxes
 - Key cognitive issues
 - Users' conceptual (mental) model
 - Building parallels to office concepts, objects, and operations
 - A computer system is an electronic office (a metaphor)

Metaphors

- What are these mental models? What are they like? How can they be conceptualized?
- Very often they relate presumed structure and function of a system to that of another, “simpler”, familiar system
- The goal is to exploit the specific prior knowledge that users have of this other domain
- We use metaphor (an X is a Y) meaning X is like Y in certain (many) respects
- See Erickson, Working with Interface Metaphors, Reading #9

Examples of Metaphors

- Football is (like) war
- War is (like) football
- Text editor is (like) a typewriter
- Memory is (like) a set of pigeonholes
- Screen is (like) a television
- Screen is (like) a desktop in an office
- LOGO procedures are (like) cooperating “little people”

Metaphors are not Identities

- An X is a Y
- But X ? Y, else we would have identity, not metaphor
- Interesting aspects are areas of mismatch, breakdown
- Divide into metaphor (works, doesn’t work, doesn’t apply)
- Example: Text editor is a typewriter
 - Works: Input of text, form of text, appending text
 - Doesn't work: Rather than type over, we have insert or change
 - Doesn’t apply: Block move (e.g., cutting/pasting pieces of paper)
Recommendations regarding metaphors

- Find appropriate metaphors for teaching system to novice user
- Given choice between two metaphors, favour one based on:
 - Congruence to system (Isomorphism between entities and relationships in system and in metaphor)
 - Coverage of system’s objects, features, operations
- Use related metaphors where appropriate, ideally from similar real-world domains (e.g., filing cabinet, storage boxes)
- Choose the emotional tone of the metaphor appropriately (e.g., war vs. peace, work vs. play, science vs., art, writing vs. drawing)

Recommendations regarding metaphors

- Choose metaphors that have distinctive visual and auditory representations (icons, auditory icons as a goal)
- Think through probable consequences of metaphor to users
 - Worry about apparently small details, e.g., objects using book metaphor should have page numbers, tables of contents, indices
- Point out limitations of metaphors
- Look for sequences of metaphors or models — replace one by the next when the first begins to break down
 - e.g., IBM Speech Filing System – Audio Distribution System
 - Telephone Answering Machine
 - Telephone Answering Machine w. Remote Control Playback

Mental models

- Metaphors and mental models
 - “Metaphors function as natural models, allowing us to take our knowledge of familiar, concrete objects and experiences and use it to give structure to more abstract concepts.”
 - [Erickson, L., p. 66]
- Definition of mental models (Carroll, 1984):
 - “…structures and processes imputed to a person’s mind in order to account for that person’s behaviour and experience.”
- More generally (Carroll & Olson, 1988):
 - “…all of what a user knows about using a particular piece of software, including how to use it, and how it works.”

Role of mental model

- To answer questions like:
 - What is X?
 - What happens when you do Y?
 - Why do Z?
- Example: Mental model of simple line drawing system
 - Objects: Page, line, point
 - Relations
 - Page contains 0 or more lines
 - Line connects 2 points
 - Actions on objects
 - Clear a Page
 - Create, delete, move points and lines
 - Attributes of objects
 - Color, style, weight of lines
 - Type of point
 - Actions on attributes: Change these attributes

Examples: Prototyping tools (later in term)

- HyperCard
 - Card, stack of cards
- Director, Flash
 - Animation, sequencing images through time
- Visual Basic
 - Set of active elements on a page with associated code
- Dreamweaver
 - Web site, collection of web pages

Kinds of models

- Designer=====> System <======> User
- Need to distinguish among the system and
 - Designers’ Conceptual Model of the System
 - Users’ Image of the System – System Image
 - Users’ Mental Model of the System
 - Scientist’s Conceptualization of that Mental Model (will ignore for now)
Kinds of models

- System built by designer
- Designers’ conceptual model
 - Coherent structure behind the design
 - Goal is logic, unity, consistency
- System Image – view of system seen by user
 - Objects, commands, options, states, etc.
 - Not necessarily coherent, logic may not be apparent
 - For learners, a view through a peephole, system emerges little by little through training, use, exploration
- Users’ mental model
 - Eventually, if structure is there, user may discover it, induce a coherent model of the system
 - If design is appropriate, if learning environment works, users’ mental model will reflect designers’ conceptual model

Remarks re (users’) mental models
(Norman, BB, pp. 241-244)

- Incomplete
- Unstable, decays through forgetting
- Can’t be “run” perfectly
- Similar devices have overlapping mental models
- “Unscientific” – Coloured by superstitious beliefs
- Parsimony – People build the simplest possible mental models

Scientific study of models

- Researchers attempt to build more and more complete, formal, and precise models of:
 - Cognitive processes of user
 - Their mental models
 - Methods such as metaphor that assist in the development of mental models
- More about this in advanced courses in HCI

Metaphors, models, and learning

- Carroll and Mack (Reading #19) description of how users learn a computer system
- Learning by doing
 - Desire to try things out
 - Tendency to jump the gun
 - Difficult in following written sequences of instructions
- Learning by thinking
 - Attempting to construct reasonable interpretations, proper mental models (sense-making)
 - Purposeful problem solving activity
- Learning by knowing
 - Making use of prior knowledge, from metaphors and work experience

Summary

- Designing activities so that they are
 - Effective
 - Comprehensible
 - Satisfying
- Metaphors
- Mental models

Questions and Discussion