Last Class

- Usefulness and usability
- Empirical evaluation, and its use in the design process
- Observing scenarios and prototypes
- User testing with thinking aloud
- Data capture and analysis
- Asking users as well as testing them
- Ethical issues

Outline

- Goals for research in HCI
- McGrath’s taxonomy of research methods
 - Field strategies
 - Experimental strategies
 - Respondent strategies
 - Theroretical strategies
- Demonstrations
- Usability inspection
- Controlled experiments
- Quasi-experiments
- Tradeoffs among empirical methods
- Research methods in the development process

Goals for Research in HCI

- Evaluate or compare existing systems/features/interfaces
- Invent or design new systems/features/interfaces
- Discover and test useful scientific principles
- Establish benchmarks/standards/guidelines

McGrath’s Taxonomy of Research Methods

- Study systems in real use on real tasks in real work environments, i.e., observe under settings with conditions as natural as possible
- Field studies — Study systems in situ, disturbing as little as possible, e.g., with ethnography and interaction analysis (Class 3), contextual inquiry
- Field experiments — Observe impact of changing (ideally) one aspect of a work environment, e.g., in beta testing, studies of technological change and new technology introduction
Quadrant 2 — Experimental Strategies

- Study systems in a lab under controlled conditions, i.e., conditions concocted for research purposes
- Laboratory experiments — Carry out controlled experiments studying impacts of (ideally) one (or two) interface parameter(s) (later this class)
- Experimental simulations — Create in lab for experimental purposes a real system that is used by real users on (usually) artificially simplified tasks, e.g., user testing (last class), usability engineering

Quadrant 3 — Respondent Strategies

- Ask informants to tell us something about themselves and/or their work or about an interface, i.e., where the setting in which questions are asked plays no role
- Judgment studies — Ask respondents about an interface, e.g., in a demonstration (later this class), or with usability inspection (later this class)
- Sample surveys — Ask respondents about themselves and/or their work, i.e., with questionnaires, surveys, interviews (class 3)

Quadrant 4 — Theoretical Strategies

- Ask a theory to tell us something about people’s work and/or about an interface, i.e., no observation of behaviour, experiments, or questions are required
- Formal theory — Use a qualitative theory or some equations, e.g., design theory such as Norman’s 7 stages (classes 6 and 7), or behavioural theory, such as colour vision or Fitts’ Law (next week)
- Computer simulation — Use and run a computer model, e.g., human information processing theory (CSC 428F)

Respondent Strategies

- Judgment studies
 - Demonstrations
 - Usability inspection
 - Heuristic evaluation
 - Cognitive walkthroughs
- “Sample surveys” (Class 3)
 - Questionnaires
 - Surveys
 - Interviews

Demonstrations

- Method
 - Demonstrate system to:
 - Any warm body you can capture
 - Management, potential investors, journalists
 - Potential customers
 - Potential users
 - Potential business partners
 - Take detailed notes
- Role
 - Elicit reactions to user’s model, functionality, interface

Demonstrations

- Advantages
 - Get feedback early in prototype or system construction
 - You’re going to have to give demos anyway — why not learn from them?
- Disadvantages
 - System still rough, which introduces noise into process
- Examples
 - Happens on all projects
Usability Inspection

• Methods
 – Heuristic evaluation — Judgments by a panel of evaluators (e.g., 3 to 5) of the degree to which an interface satisfies a set of usability guidelines, followed by discussion and analysis
 – Cognitive walkthroughs (CSC428)

• Roles
 – Evaluation without users (contrast to usability tests, etc.)
 – Elicit expert opinions re user’s model, functionality, look & feel, etc.

Usability Inspection

• Advantages
 – Structured method of using accumulated wisdom of experts

• Disadvantages
 – Doesn’t take advantage of real insights from real users

• Example — Heuristic evaluation with 10 usability guidelines (Nielsen, BGBG, Fig. 2.7, p. 63)
 – Visibility of system status
 – Match between system and the real world
 – User control and freedom
 – Consistency and standards
 – Error prevention
 – Recognition rather than recall
 – Flexibility and efficiency of use
 – Aesthetic and minimalist design
 – Help users recognize, diagnose, and recover from errors
 – Help and documentation

Questions and Discussion

Controlled Experiments

• Method
 – Manipulate independent variables, system characteristics
 – Control for other variables
 – Measure dependent variables, user behaviour

• Roles
 – Understanding causes of user behaviour
 – Understanding factors influencing interface quality

Controlled Experiments

• Advantages
 – Strong statements about causality
 – Many experimental designs suitable for varying situations

• Disadvantages
 – Requires time, planning, may be expensive
 – Complex designs (more than 3 or 4 independent variables) are often difficult to interpret
 – May legitimize trivial research, and generate results of weak generalization (external validity)
Examples of Real Experiments

- Egan et al. study of searching with print text and electronic text (SuperBook), as a function of whether or not the search term appears in the document heading structure and/or the document text (BGBG, pp. 843-846)
- Myers and Buxton study of impact of using two hands for input on speed of carrying out tasks
- Baecker et al. study of impact of new method of presenting computer program source text on program reading comprehension

Tasks to Design and Run an Experiment

- Design
 - Choose independent variables
 - Choose dependent variables
 - Develop hypothesis
 - Choose design paradigm
 - Choose control procedures
 - Choose a sample size
- Pilot experiment
- Run experiment
- Analyze data
- Interpret results

The Problem: Effectiveness of New Method of Source Code Presentation

- Source code appearance makes inadequate use of capabilities of digital typography
- Potential to make code more readable, more comprehensible
- See book by Baecker and Marcus, Human Factors and Typography for More Readable Programs, Addison-Wesley, 1990
- On following slides, points that refer to an experimental study of our new presentation format indicated by **

Independent Variables

- Definition
 - Factor or treatment
 - The variable manipulated by the experimenter
- Options in experiment design
 - One independent variable: single factor design
 - Two or more independent variables: factorial design
- Characteristics of independent variables
 - Number of levels (2 or more)
 - Quantitative (length of menu) or qualitative (letter vs. number, mouse vs. trackball)
- ** In our example: new typesetting format or traditional presentation format
Dependent Variables

- **Definition**
 - Outcome measure
 - Variable measured by experimenter
 - Variable which should depend on the independent variable
- **Examples**
 - Accuracy
 - Number of subtasks completed in a given time period
- **Criteria for judging**
 - Sensitivity: Responsiveness to changes in independent variable
 - Reliability and consistency: Similar outputs for similar inputs
 - Validity: Measuring what you really want to measure
- **In our example, ability to comprehend program as measured by # of questions answered in given time**

Hypotheses

- Statement of hypothesized relationship between independent and dependent variables
- Statement of how relationship is to be examined or tested
- **Hypothesis in our example: reading comprehension as defined above is improved by new method of source code presentation**
- Typical paradigm for testing the hypothesis
 - Single factor randomized group design with two groups
 - More on next slide

Experimental Design Paradigms

- Between subjects or within subjects manipulation
- **Example: designs with one independent variable**
 - Between subjects (randomized group) design
 - One independent variable with 2 or more levels
 - Subjects randomly assigned to groups
 - Each subject tested under only 1 condition
 - Within subject (repeated measures) design
 - One independent variable with 2 or more levels
 - Each subject tested under all conditions
 - Order of conditions randomized or counterbalanced
- **In our example, within subjects chosen with two conditions, i.e., two sample programs**

Control Procedures

- Goal is to eliminate confound hypothesis, that there are alternative explanation(s), and thereby to increase internal validity
- To do this: Make sure there are no systematic differences between conditions other than the independent variable
- **What to control (next slide)**
- **How to control (slide after next)**
- **In our example, ensure that two sample programs are “identical” in length, complexity, difficulty**

What To Control

- Subject characteristics
 - Gender
 - Ability
 - Experience
- Task variables
 - Instructions
 - Materials used
- Environmental variables
 - Setting
 - Noise, light, etc.
- Order effects
 - Practice
 - Fatigue

How to Control

- Hold constant
 - **Use males only, or students from same class only**
- Randomize
 - **Subjects to groups**
- Balance
 - Same number of novices and experts
- Counterbalance
 - **Half (chosen randomly) get new presentation format first**
- Match
 - Subjects on ability, e.g., programming ability
 - **Materials (programs) on length, difficulty**
- Eliminate
 - **Experience, by using novices only**
Sample Size Selection

- More subjects —> more confidence in results (greater statistical significance)
- But this can be very expensive
- Many methods to reduce the required number of subjects
- Most HCI experiments: 4 to 20 subjects per group
- ** In our example, 44 subjects chosen from a 3rd year programming course

Designing and Running the Experiment and Collecting the Data

- Run pilot studies
 - Check experimental design
 - Test and improve:
 - Task definition
 - Experimental materials (often the most difficult)
 - Instructions
 - Practice tasks
 - Develop experimenter skills
 - Identify and deal with special problems
- Run actual experiment
 - Record data
 - Observe behaviour

** The Presentation Format Experiment

- Within-subjects design, 44 subjects from 3rd year programming course
- Two "similar" short C programs, roughly 200 lines of code, 4 to 5 pages
- 40 minutes to skim first program and attempt to answer 18 questions, half in familiar format and half in new format
- Then each group given other program in other format

Data Analysis and Hypothesis Testing

- Describe data
 - Descriptive statistics (means, medians, standard deviations)
 - Graphs and tables
- Perform statistical analysis of results
 - Are results due to chance? (That is, with what probability)
 - **In our example, mean percentage of correct answers with new format = 44%, with conventional format = 35%
 - **Analysis of variance showed that effect of presentation format in increasing "program readability" was significant, F(1,42)=18.25, p<0.0001.

Interpretation of Results

- Consider plausible causes of differences (internal validity)
 - The independent variable or confounding variables
- Describe limits to generalization (external validity)
 - Variables held constant
 - **200 line programs
 - Task limitations
 - **Skimming programs, answering simple questions
 - Subject characteristics
 - **3rd year computer science students

Quasi-experiments

- Experiments that lack statistical significance (i.e., not enough subjects or individual variability too great for statistical significance) or that lack controls, lacks internal validity
- Typical method
 - Measure change of subjects' behaviour as system changes
 - E.g., study system as it evolves over time, measure performance of group of subjects both before and after experimental treatment such as modification of interface, icons, input devices
Quasi-experiments

• But this is not a controlled experiment
 – Same people used: learning is a confound
 – Subjects know system’s been refined: expectation is a confound
 – Multiple factors changed from v. n to n + 1: these are confounds

• Roles
 – Understanding effects of system change on user behaviour
 – Evaluation at far lower cost than controlled experiments

Examples of Quasi-experiments

• Bewley et al. tests on Star “graphics” (line drawing) functionality (B&B, pp. 662-667)
• Baecker, Small, Mander tests on “animated icons” (BGBG, pp. 444-449) — Confound is learning from test of static icons to test of animated icons
• Perkins et al. iterative design of Freestyle user interface plus tutorial (BGBG, pp. 881-885) — Confound is changing the interface plus the tutorial

Animated Icons (Baecker Small Mander 1991)

• Icons
 – Strengths
 • Compact
 • Quickly recognizable
 • “Universal” because language “not needed”
 – Weaknesses
 • Non-obvious
 • Hard to scale to deal with large numbers
 • Typically, now, both word and image

• Animated icons: a way to improve the comprehensibility of static icons
 – Dynamic visual representations of functions

User Comprehension of Static & Animated Icons
Evaluation of Animated Icons

- 8 subjects with varying degrees of familiarity with paint tools
- Asked to explain static icons, then asked again after viewing animations
- Animations helpful in explaining Selection, Lasso, Paint, Curve, both Polygon tools (where users had trouble with static icons)
- Sound compelling, but not tested

Internal Validity

- Degree of confidence that we’ve found “the” explanation for our results, that is, we know of no other confounding explanations
- Achieve by increasing precision and direct control over the experiment

External Validity

- Degree to which our research applies to other phenomena than just the “experiment”
- Achieve this by increasing range, scope, of phenomena studied

Tradeoffs among Empirical Methods

- Tradeoff between internal validity (soundness) and external validity (generalizability, relevance, realism)
 - Controlled experiments for internal validity
 - Breadth of naturalistic observation for external validity
- “Credible empirical knowledge requires consistency or convergence of evidence across studies based on different methods.” (McGrath, in BGBG, p. 155)
- Different strategies and methods have different advantages and disadvantages — cannot simultaneously maximize:
 - Generalizability of evidence over populations of actors (A)
 - Precision of measurement of the behaviours (B)
 - Realism of the situation or context (C)

McGrath’s Taxonomy of Research Methods

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>IMPLEMENT</th>
<th>ANALYZE AND EVALUATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information collection and requirements analysis</td>
<td>Questionnaires, interviews, observation of potential users</td>
<td>Task analyses, artifact analyses, “day in the life” problem scenarios</td>
</tr>
<tr>
<td>Activity, information & interaction design</td>
<td>Initial design concepts</td>
<td>Design mockups, prototypes, activity scenarios</td>
</tr>
<tr>
<td>Prototyping and prototype system</td>
<td>System functionality and look & feel</td>
<td>"Smoke and mirrors" prototype, partially working system</td>
</tr>
<tr>
<td>Production prototype and its evolution</td>
<td>Complete system, incorporating evaluation insights</td>
<td>Real working system, implemented and installed</td>
</tr>
<tr>
<td>Production system and its evolution</td>
<td>Deliverable system, including monitoring and feedback system</td>
<td>Production system, including monitoring and feedback system</td>
</tr>
</tbody>
</table>
Research and Evaluation Methods in the Design and Development Process

- Information collection
 - Interviews and questionnaires
 - Contextual inquiry
 - Ethnography and interaction analysis
- Concept design
 - Interviews
 - Heuristic evaluation
 - Usability testing
 - Controlled experiments
- Functionality (activity) and interface (information & interaction) design
 - Heuristic evaluation
 - Usability testing
 - Theory-based evaluations
 - Human information processing simulations

Questions and Discussion