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Abstract

We describe a new approach to rotoscoping — the process of track-
ing contours in a video sequence — that combines computer vi-
sion with user interaction. In order to track contours in video, the
user specifies curves in two or more frames; these curves are used
as keyframes by a computer-vision-based tracking algorithm. The
user may interactively refine the curves and then restart the track-
ing algorithm. Combining computer vision with user interaction al-
lows our system to track any sequence with significantly less effort
than interpolation-based systems — and with better reliability than
“pure” computer vision systems. Our tracking algorithm is cast as a
spacetime optimization problem that solves for time-varying curve
shapes based on an input video sequence and user-specified con-
straints. We demonstrate our system with several rotoscoped ex-
amples. Additionally, we show how these rotoscoped contours can
be used to help create cartoon animation by attaching user-drawn
strokes to the tracked contours.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Tracking

Keywords: rotoscoping, tracking, video editing, user-guided opti-
mization, non-photorealistic rendering

1 Introduction

Rotoscoping, the process of manually tracing shapes through a cap-
tured image sequence, has become a central and critical part of
creating computer-generated imagery (CGI). Nearly every modern
film with special effects involves copious rotoscoping, often con-
suming up to twenty percent of the human time required for a CGI
project [Goldman 2003]. Rotoscoping is used in multiple ways. Fre-
quently, it is used to create mattes to place an actor into a different
scene; conversely, it can be used to replace a real prop with a CGI
element. Rotoscoped mattes can be used to apply image filters se-
lectively over parts of a video frame. Rotoscoping can also be used
to create 2D animation from captured video, as in the recent film,
“Waking Life” [Linklater 2001]; indeed, rotoscoping was originally
invented for just that purpose [Fleischer 1917].

Rotoscoping is still largely a manual process performed one frame
at a time. The state of the art in CGI production uses simple
keyframing: “roto-curves,” or splines that bound the desired shape,
are drawn by the animator at certain key frames in the animated

http://grail.cs.washington.edu/projects/rotoscoping/

sequence, and linear interpolation is used to generate roto-curves
for the frames in between. Whenever the intermediate roto-curves
appear too far from the shapes they are meant to trace, the animator
adjusts certain control points by hand. These “pulled” points be-
come new constraints, and the edit is propagated automatically to
earlier and later frames. Unfortunately, simple linear interpolation
fails to track any kind of interesting, complex motion very well, and
so in practice a great deal of tedious, manual adjustment is required.

In contrast, the computer vision research community has developed
a large body of work for the automated tracking of contours. Ideally,
one would expect that such work would have utility in alleviating
much of the tedium of state-of-the-art rotoscoping. Unfortunately,
very little of this work is directly applicable. One reason for this is
that virtually all previous work in tracking is purely “feed forward”
— that is, a set of points, contours, or other features is initialized
in one frame and automatically tracked forward in time. Such an
approach is problematic in that, when the tracking goes wrong, it
is not clear in which frame exactly the tracked curves went suffi-
ciently astray to require correcting (Figure 1). Furthermore, edits
propagate only forward and never backward, requiring a huge num-
ber of manual interventions. Fundamentally, the problem with ap-
plying traditional tracking techniques for rotoscoping is that they
are not designed to make full use of user intervention. A final prob-
lem is consistency [Stewart 2003]: roto-curves that are created by
stepping forward and editing frame-by-frame tend to “bubble” or
“chatter” around the desired edge, while roto-curves that are inter-
polated from keyframes tend to move much more smoothly.

In this paper, we show how tracking can be reformulated as part
of a user-driven keyframe system. This reformulation recasts track-
ing as a spacetime optimization that computes shape and motion
simultaneously. Our approach combines the best features of user
guidance and automated tracking: the rotoscoper can specify con-
straints by manipulating any roto-curve control point at any frame
in the sequence; a spacetime optimization, computed using a stan-
dard nonlinear optimization technique, then finds the best interpo-
lation of the roto-curves over time. The user can iterate by refin-
ing the results and restarting the optimization. Thus, the user can
guide the automatic tracking in situations that are simply beyond
the capabilities of state-of-the-art tracking, while the optimization
can significantly reduce the amount of human effort involved.

In addition to rotoscoping, we show how a variant of the same for-
mulation can be applied to the creation of 2D animation, based
on the roto-curves. In our animation system, the animator begins
with roto-curves that serve as a scaffolding for the animated brush
strokes. The brush strokes, painted by the animator, are automati-
cally associated with the roto-curves. The animator is free to make
an edit to any brush stroke in any frame, and the edits are propa-
gated forward and backward in time.

We demonstrate our approach with a number of rotoscoped exam-
ples, and we show how the resultant roto-curves can be used for a
variety of animated effects.

1.1 Related work

Our work is a synthesis of visual tracking techniques and keyframe
animation. As such, it is related to a wide body of work in computer

1



To appear in the ACM SIGGRAPH ’04 conference proceedings

15 23 23 (detail) 24 24 (detail) 25 25 (detail) 32 36 40

Figure 1 A comparison to forward tracking. Seven frames of a twenty-five frame sequence. First row: forward tracking, in an approach similar to snakes (we
use the same energy function described in Section 2.3 to perform forward tracking across two frames). Slight problems appear at frame 23, grow larger at 24,
and become disastrous by 40. Second row: interactive editing to fix the problem. In a forward-tracking framework it is unclear at which frame to begin editing
the curve; the error is perhaps too small to be concerned with in frame 23, so the user makes a correction at frame 24 and continues to track forward. This fixes
the next few frames, but does not prevent the problem from eventually reappearing. Third row: keyframe-based tracking. The user edits the curve in frame 40,
making it a keyframe, and the system simultaneously optimizes the curve shape in frames 16-39. Even though the same energy functions are used to track the
contours, spacetime optimization outperforms the feed-forward approach.

vision, graphics, and image processing.

While there is a very large literature on tracking in the computer
vision community, most closely related to our work is automated
contour tracking (see Blake and Isard [1998] for an overview). We
are particularly inspired by snakes, in which Kass et al. [1987] de-
fined tracking and contour fitting as an energy-minimization prob-
lem where a manually initialized curve is automatically refined to
fit edges in an image, using a combination of image gradient and
shape regularization terms. The original snakes work incorporated
user hints that help guide a contour to a better solution in a single
frame. However, these hints are not propagated to the rest of the
sequence, other than by providing a better initialization for the next
frame. We also make use of ideas from patch tracking, in particular
the classic work by Lucas and Kanade [1981]. However, in contrast
to previous work on tracking, which is purely “feed forward,” we
optimize over all frames simultaneously to obtain a global solution
that incorporates user constraints at any point in time.

More recently, a few authors have described methods for simulta-
neous motion estimation over an entire sequence, either to compute
optical flow [Irani 2002] or for point-tracking [Torresani and Bre-
gler 2002]. These methods are designed to work automatically, and
make a number of important restrictions on the input. We extend
this approach significantly by incorporating user interaction and ap-
plying it to contours.

While modern tracking techniques are increasingly robust and can
track multiple hypotheses [Blake and Isard 1998], they are still lim-
ited in the range of motions that can be reliably tracked — certainly
no tracking method works all of the time. In contrast, commercial
rotoscoping tools like Pinnacle Commotion allow a user to track
any sequence by intensive manual annotation; each contour is hand-
positioned every few frames. While some video effects tools such as
Apple’s Shake and Adobe After Effects include basic motion track-
ing, they are generally limited to the forward tracking of individual
control points. This is inadequate for rotoscoping, since informa-
tion provided by the shape of the curve is ignored, and because the
benefits of keyframing are lost.

A related problem to rotoscoping is matte extraction, i.e., separating
foreground from background. Insofar as matte extraction yields sil-
houettes, it may be considered a form of rotoscoping. Blue-screen

matting [Smith and Blinn 1996] is a common approach that re-
quires the video to be shot with special backgrounds. Autokey [Mit-
sunaga et al. 1995] offers human-assisted rotoscoping and alpha
matte extraction; however, their interface is designed around for-
ward tracking (they suggest a keyframing approach as future work).
Video matting [Chuang et al. 2002] shows how complex mattes
can be generated, assuming successful motion estimation; they use
a publicly-available optical flow algorithm [Black and Anandan
1996], which frequently fails for moderately difficult motions. One
potential application of our system is generating robust trimaps for
alpha matting of complex scenes.

Agarwala [2002] and Hoch and Litwinowicz [1996] both present
rotoscoping systems that use contour tracking to generate anima-
tion from video; however, both use forward tracking. In contrast,
Hall et al. [1997] describe a keyframed rotoscoping system that
they call “active surfaces”; however, they require the user to se-
lect edge features every third frame, and show limited results on a
single, fifteen-frame sequence. In a similar system, Luo and Eleft-
heriadis [1999] use forward and backward tracking of contours and
then splice the two tracks together.

We take inspiration from systems that exploit vision techniques to
assist interactive image editing; an overview of this area can be
found in Mortenson [1999]. One common application is interac-
tive segmentation of objects from an image, such as “intelligent
scissors” [Mortensen and Barrett 1995]. Our work can be seen as
extending intelligent scissors to video sequences.

Spacetime constraint systems for animation [Witkin and Kass 1988;
Cohen 1992] allow a user to specify constraints and objectives over
the length of an animation, and use optimization to generate motion
paths. Though the domain of our problem is very different, we also
use optimization over space and time to calculate motion according
to user-specified constraints.

Our animation system builds on previous methods for creating an-
imation with strokes. Painterly animation systems create anima-
tion from video sequences or 3D models [Litwinowicz 1997; Meier
1996], but do not allow users direct control over the motion of in-
dividual strokes. Our animation system is most directly inspired by
the WYSIWYG NPR system of Kalnins et al. [2002] in which a
user draws strokes over 3D models, which can then be propagated
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to new frames.

Our application to animation is also related to keyframe animation
tools using curves. Burtnyk and Wein’s classic system [1976] al-
lows an animator to attach drawings to polygonal skeletons with
manual correspondences and warping. Hsu and Lee [1994] extend
this system by automating and improving the polygonalization. Re-
searchers have also addressed the challenging problem of automat-
ically creating in-betweens of hand-drawn keyframes [Kort 2002].

2 Interactive tracking

We now describe our keyframe-based rotoscoping system for track-
ing the motion over time of a set of curves in an image sequence.
Applications of this system are described in Sections 3 and 4. We
first depict the interactive system from a user’s point of view, in
which a user specifies roto-curves to track, and their shapes in two
or more keyframes. We then define an objective function for deter-
mining the motion of the curves over time. This objective function
includes both temporal smoothness terms and image terms; hence,
the problem is a spacetime optimization problem, constrained by
the user-specified keyframes. We then give an optimization proce-
dure that solves for the best curve sequence, optimizing over the
whole image sequence at once. Once the optimization has com-
pleted, the user may refine roto-curves in any frame, and then rerun
the optimization with these new constraints.

2.1 Interaction

A typical interaction with the system to track a set of curves is as
follows:

1. Draw first keyframe. The user begins by selecting a frame ta in
the video sequence, and drawing a set of curves in this frame. These
curves specify the first keyframe. Curves are specified by placing
control points of a piecewise cubic Bézier curve with C0 continuity,
to allow for sharp features.1 The curves usually correspond to im-
age features and contours, although they may be placed anywhere.
These curves can be attached at endpoints to form joints, allowing
the user to specify that certain curves should stay attached to each
other throughout the sequence.

2. Draw second keyframe. The user then selects a later frame tb,
and the system copies the curves from ta to tb. The user adjusts
these curves to place them in their desired positions using a simple
curve editing interface. Our interface supports curve rotation, trans-
lation, and scaling, and allows pulling on individual control points.
The spacing of keyframes depends on the complexity of motion. In
the examples in this paper, we usually placed keyframes every fifty
frames.

3. Optimization. The system then solves for the positions and
shapes of these curves in the intermediate frames, as described in
Sections 2.3 and 2.4.

4. Refinement. Because of the difficulty of the tracking problem,
there will often be unsatisfactory aspects of the estimated motion.
The user may edit the resulting sequence to fix any errors produced
by the optimization. To refine the rotoscoping result, the user visits

1Our system also allows curves to be drawn using “intelligent scissors”
[Mortensen and Barrett 1995]. However, we have found the control point in-
terface more useful, since the user is best able to choose a parameterization
that is detailed enough for the purposes of the user, but has as few control
points as possible.

selected in-between frames and pulls on control points. The user
can then rerun the optimization. Every point that the user has ever
pulled during editing becomes a hard constraint for the optimiza-
tion.

Typically, for curves whose shape across time is unsatisfactory, the
user pulls on a single control point whose position is furthest from
the desired position, and then restarts the optimization. This human
guidance is often enough to achieve the desired solution; during
the optimization, the information propagates to neighboring points
in the same frame and other frames. If not, the user may pull on
additional control points, and iterate. As we show in our results, the
user typically has to pull very few points, many fewer than would be
required with current linear-interpolation-based rotoscoping tools.

This approach makes use of the best features of user guidance and
automatic tracking: the user specifies a few constraints that are dif-
ficult to determine automatically, and automatic tracking fills in the
rest, thus automating most of the work.

2.2 Parameterization

Our goal is to optimize a set of roto-curves. Each roto-curve is pa-
rameterized by a set of control points; these are the unknowns in
the optimization. Specifically, we write each curve as ct(s), where
t is an index over frames and s is the spatial parameterization of
the curve in frame t. The user-drawn keyframe roto-curves are in
frames ta and tb; thus the optimization variables are the positions of
the control points for all frames ta < t < tb.

The mapping from control points to variables must be done care-
fully to take any constraints into account, since we use an uncon-
strained nonlinear optimization method. Control points of curves
that are attached at a joint must map to the same variable (although
we define the energy terms in Section 2.3 with respect to a sin-
gle curve, we typically optimize multiple curves, attached at joints,
simultaneously). Also, when the user pulls a control point, it is re-
moved from the set of variables since its location becomes fixed.

The energy terms of the optimization are defined with respect to
points sampled roughly one pixel apart along the keyframe curve
in frame ta. These sample positions are denoted in the paramet-
ric domain as (s1,s2, ...sN). Because of the way that the keyframe
curves are created, we assume that they are in one-to-one param-
eteric correspondence, and use the same sample points in the re-
maining frames.

2.3 Energy function

We now define the objective function that is used to guide the track-
ing problem. The objective function consists of two types of energy
terms, image terms and shape terms. The image terms prefer curves
that closely follow the motion of image features or contours. The
shape terms penalize quickly moving and deforming curves. These
different objective functions are complementary — the image terms
can “lock onto” deforming regions where pure shape interpolation
would fail, and the shape terms can produce reasonable interpola-
tions for slowly moving objects where image terms alone would fail
(e.g. due to occlusions or clutter).

Our objective function is a linear combination of five weighted en-
ergy terms:

E = wV EV +wLEL +wCEC +wIEI +wGEG (1)
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Figure 2 A thin ribbon around a curve ct(s) forms the window of image
data that we track. This window is parameterized by coordinates s,k where
discrete samples si run along the curve and k marches off the curve in the
direction of the unit normal n̂t(si).

The relative weights wV = 0.1, wL = 500, wC = 40,000, wI = 1,
wG = 1,000 have been determined experimentally, and remain fixed
within the system; they do not need to be adjusted by the user, since,
in our experience, the same set of weights works well for all of the
sequences we have tried. The individual energy terms are described
in the next two sections.

2.3.1 Shape terms

Our first two shape terms are based on the shape interpolation terms
proposed by Sederberg et al. [1993]. The edge length term EL pe-
nalizes the change over time of the length of the vector between
adjacent samples of a curve:

EL = ∑
i,t

(
‖ct(si+1)− ct(si)‖2 −‖ct+1(si+1)− ct+1(si)‖2

)2
(2)

The second shape term EC measures the change in the second
derivative of the curve over time, as an approximation to measuring
the change in curvature:

EC = ∑
i,t
‖(ct(si)−2ct(si+1)+ ct(si+2))−

(ct+1(si)−2ct+1(si+1)+ ct+1(si+2))‖2 (3)

These two terms alone constrain the shape of the curve but not its
position or velocity. The following term is added to penalize fast
motion:

EV = ∑
i,t
‖ct(si)− ct+1(si)‖2 (4)

2.3.2 Image terms

Most tracking algorithms assume that appearance changes slowly
over time, and in particular that a small window of image data
around a feature being tracked remains roughly constant in con-
secutive frames. We thus compare image data along corresponding
curves in consecutive frames. Our tracking term EI is an extension
of Lucas-Kanade [1981] tracking; they compare square windows
of image data between two frames, and optimize over the location
of the window in the second frame to minimize the difference in
the image data. We are interested in image data within a thin rib-
bon around each curve we are tracking (Figure 2). If a curve being
tracked separates a foreground character from a background, the
image constancy assumption only applies to the foreground; to ac-
count for this, we allow the user to indicate that only one side of a
curve should be tracked.

The image term samples points along directions normal to the curve
in frame t, and compares them with corresponding points in the
next frame t + 1, for all frames. Specifically, let n̂t(si) be a unit
normal to the curve at point si at time t, that is created by rotating

the tangent vector dct (si)
dsi

(computed analytically) by 90 degrees and
then normalizing by its length. Then, the image term is:

EI = ∑
i,k,t

‖It(ct(si)+ kn̂t(si))− It+1(ct+1(si)+ kn̂t+1(si))‖2 (5)

where It(p) is the RGB color vector of image It at point p, and k
varies over a user-specified window (for the results presented in this
paper, k varies from −5 to 5 for two-sided tracking, and 0 to ±5 for
one-sided tracking).

Many roto-curves lie on image edges; in this case, edges can be
used as additional information to guide the curves. In addition,
when curves separate foreground and background, the user gen-
erally selects only the foreground side of the curve to apply the
image constancy term to. However, this makes it very easy for such
a curve to drift toward the interior of the foreground shape. In this
case, edge cues can rescue the track.

Our edge term EG measures the magnitude of the image gradient at
points along the curve. We write the gradient magnitude (the sum
of the magnitudes of the image gradients in the three color chan-
nels) as G(p) for an image point p. Since we are minimizing en-
ergy terms, we subtract the gradient from the maximum possible
gradient, K, and minimize this quantity G′(p) = K −G(p). Also,
it is preferable to consider a curve sample’s edge strength relative
to how strong an edge that sample lies on in the keyframes; i.e.,
if the sample does not lie on strong edges in the keyframes, EG at
that sample should be weighted lightly. Thus, EG is normalized at
point si by the minimum, denoted Mi, of the gradients at the two
keyframes:

EG = ∑
i,t

(
G′(ct(si))

Mi

)2
. (6)

where Mi = min(G′(cta(si)),G′(ctb(si))).

2.4 Optimization Method

We now give the method used to minimize the energy function
E (Equation 1). Our goal is to solve for the control points that
minimize E over all time frames, subject to the user-specified
constraints. Notice that E has the general form of a nonlinear
least squares (NLLS) problem, i.e., it can be written as E =
∑k wk‖fk(x)‖2, where x is the vector of unknowns.

NLLS optimization is well-studied, and Levenberg-Marquardt
(LM) [Nocedal and Wright 1999] is a popular solution. The LM
algorithm requires that we can compute the Jacobian of each fk(x).
To obtain this Jacobian, we first define the Jacobian of each en-
ergy term with respect to all point samples ct(si) in all time frames:
(Jk) j = ∂ fk(x)

∂c j
, where j indexes over all samples. We then use a

change-of-basis matrix B to convert from curve samples to spline
control points; the Jacobian of fk(x) is thus given by: JkB.

The number of variables in our optimization can be quite large —
two times the number of curve control points in a frame times the
number of in-between frames (e.g., Figure 4). Fortunately, the Ja-
cobian matrix is very sparse, and thus we use a trust-region variant
of LM developed by Steihaug [1983] for large, sparse NLLS prob-
lems; see Nocedal & Wright [1999] for details.

Determining the Jacobian for most of the energy terms is straight-
forward. For image terms that involve It(p), the derivative of the
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Figure 3 Creating a rotoscoped animation. The animator begins with a
set of roto-curves (a), which serve as a scaffolding for the animated brush
strokes. The animator then draws one or more brush strokes on an arbitrary
frame of the sequence (b, leftmost image). The brush strokes are automat-
ically associated with roto-curves, but the animator need not be aware of
these associations. By following the roto-curves, these associations allow
new strokes to be generated for all other frames in the sequence automat-
ically, which the animator can view (b). The animator is free to make an
edit to any brush stroke in any frame (c, rightmost image). These edits are
propagated backward (c). Strokes of in-between frames are defined as lin-
early blended versions of the two propagated strokes (b,c) according to the
distance from the drawn frames (d).

image is computed by convolution with a derivative-of-Gaussian
filter, similar to the Lucas-Kanade method [1981]. The derivative of
G(p) is also computed this way. In order to compute the derivative
of the unit curve normal n̂t(si), we need to take the normalization
by its length (which makes it a unit vector) into account. We ap-
proximate this derivative by assuming that this normalization factor
is constant; this approximation behaves reasonably well, since the
edge length term EL causes length to vary slowly from frame-to-
frame. Thus, the derivative of the unit normal is approximated as
the derivative of the unnormalized normal, nt(si), which is simply
a linear combination of four control points.

In addition, we apply the optimization in a coarse-to-fine fash-
ion [Bergen et al. 1992] using four levels of a Gaussian pyramid, in
order to avoid local minima. We use the hierarchical basis precon-
ditioner of Szeliski [1990] to avoid problems from ill-conditioning.

3 Rotoscoped animation

One application of rotoscoping is to create cartoon-style animation
from video. In this section, we describe the key aspects of our ani-
mation system, which makes use of the roto-curves.

Though it is possible to directly use the roto-curves themselves as
animation primitives [Agarwala 2002], it is often preferable to mod-

ify them for animation, since good animation departs from realism
in numerous ways.

In the rest of this section, we will refer to the animation curves as
strokes to differentiate them from the roto-curves upon which they
are based.

3.1 Interaction overview

We begin by describing a typical interaction to draw an animated
character. Prior to drawing the animation, the animator creates a set
of roto-curves in the scene that will serve both as visual reference
and as a scaffolding for the animated brush strokes. Once the scene
is rotoscoped, the video image itself becomes optional and can be
kept as visual reference, or faded to show just the roto-curves. The
animator can then begin to draw; strokes are propagated to other
frames as described in Figure 3.

3.2 Technical approach

There are two key steps required to propagate drawn strokes to other
frames so that they follow the motion of the roto-curves. First, we
calculate a correspondence between each stroke and the roto-curves
in a single frame. Then, we copy strokes to other frames and deform
them so as to follow the motion of the corresponding roto-curves.

Calculating correspondences between curves is a classic problem
that is typically solved using dynamic programming [Sederberg and
Greenwood 1992; Geiger et al. 1995]; we extend this approach in
Section 3.2.1.

One approach to deforming strokes would be to interpolate the de-
formation of the roto-curves over image space using a scattered data
interpolation technique such as Beier-Neely interpolation [Beier
and Neely 1992] or thin-plate splines [Litwinowicz and Williams
1994]. However, this may give undesirable results, as a drawn
stroke would be influenced by unrelated parts of roto-curves, rather
than just the parts it is attached to. We thus explore an alternate
approach using offset curves in Section 3.2.2.

3.2.1 Stroke–roto-curve correspondence

The first step of our animation system is the automatic correspon-
dence of strokes to roto-curves. The problem is complicated by the
fact that there is not necessarily even a one-to-one correspondence
between strokes and roto-curves: a short stroke may cover just a
small portion of a roto-curve, or a long one might travel the length
of several roto-curves. Also, the direction of travel may be opposite
to the parameterization of the roto-curve.

To handle all of these cases, we extend the dynamic programming
algorithm of Geiger et al. [1995], which matches a pair of contours.
In our extended version of the algorithm, a single brush stroke b is
matched against all possible roto-curves c1, . . . ,ck, as follows.

We represent drawn strokes as polylines, and also sample each
spline-based roto-curve into a polyline (correspondence algorithms
are simpler for polylines, and there is no reason to convert drawn
strokes to splines). We then begin by creating a 2D table with the
pixel-spaced samples of b on the x-axis and the pixel-spaced sam-
ples of all curves c1, . . . ,ck stacked up, one above the other, on the
y-axis. Using dynamic programming, each (x,y) cell is filled with
the score of the best possible overall mapping that maps point x to
point y. This score is computed by finding the lowest-cost path back
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to any row of the leftmost column of the table. To make the algo-
rithm faster (at the expense of necessarily finding the globally best
solution), when filling in each cell (x,y), we only consider candi-
date pairs whose sample points lie within 10 pixels of each other.
When the table is full, the best correspondence is found by finding
the best score in any row of the rightmost column of the table. The
result is a mapping from the samples of b to the samples of one or
a series of curves in c1, . . . ,ck.

We use the same function to evaluate the quality of the mapping as
Geiger et al. [1995], with one additional term. Since strokes are
typically drawn near the objects they should follow, we also mini-
mize the Euclidean distance from each stroke sample to its corre-
sponding roto-curve sample.

3.2.2 Generating strokes as offsets from roto-curves

Once we know which portion of a roto-curve or roto-curves a given
stroke b corresponds to, we must propagate deformations of that
stroke to frames forward and backward in time, according to defor-
mations of the corresponding roto-curve(s). For ease of explanation,
let b correspond to exactly one roto-curve c. For each sample b(ri)
along b and its corresponding sample c(s j) along c we calculate a
local coordinate system for c(s j). This coordinate system is defined
by the unit tangent and normal to c at c(s j). The coordinates u,v of
b(ri) within this coordinate system are calculated.

Finally, to generate the deformed stroke b′ at some different frame,
we iterate over each sample b(ri) of b. We find the corresponding
point c(s j) and its corresponding point c′(s j) along c′ in the other
frame. The local coordinate system of c′(s j) is calculated, and we
use the same coordinates (u,v) in this new local coordinate frame
to generate sample b′(ri) of b′.

3.2.3 Improving generated strokes with optimization

Generating strokes as offsets from roto-curves does not always pro-
duce desirable results; the strokes can occasionally lack temporal
coherency. We would like to enforce a similar condition to the one
we enforce in rotoscoping — namely, that our strokes should be a
reasonable shape interpolation, and change shape slowly over time.

Thus, we use a similar optimization process to improve generated
strokes as we do to improve roto-curves, with a few significant
changes. For one, since strokes are represented as polylines, no
change of basis is required. Also, the image constancy and edge
terms are not relevant; instead, we add a new term EO that encour-
ages the new, optimized deformed stroke b′′ to be similar to the
deformed stroke b′ generated through offsets:

EO = ∑
i,t

∥∥b′′
t (ri)−b′

t(ri)
∥∥2 (7)

We would like to incorporate the smooth shape interpolation terms
as well, namely terms EL, EC, and EV (equations 2, 3,and 4). How-
ever, since the new term EO and shape terms EV and EC are linear,
we instead use a modified version of EL that is also linear, since
this allows the solution to be computed exactly and quickly in one
solution of a linear system. This modified EL, which we denote
E ′

L, compares tangent vectors over time directly rather than their
squared length. When rotoscoping, comparing edge lengths is use-
ful to avoid shortening [Sederberg et al. 1993]. This phenomenon
is prevented by the term in equation 7 since the deformed stroke
b′ is typically of the correct length, so comparing tangents directly
yields good results. The final energy function that is optimized to

Sequence user-edited points total points ratio
Figure 5 483 4230 11.4%
Figure 6 338 5204 6.5%
Figure 7 494 8606 5.7%

Figure 4 User-interaction required. We measure the effort of the user to
rotoscope each sequence by comparing the number of user-edited control
points to the total number of points across the image sequence. User-edited
points are either drawn at keyframes, or pulled by the user during interactive
refinement. The final column is the ratio of the two numbers, i.e., the per-
centage of total control points that were user-edited. Control points attached
at a joint are counted as a single control point.

determine the shape of drawn strokes over time is thus a weighted
sum of EO, E ′

L, EC, and EV .

3.2.4 Interpolating edited strokes

If a propagated stroke is later edited by the user in a different frame,
the edited stroke becomes a new keyframe. Strokes in between two
keyframes are treated a little differently than those propagated from
one keyframe. Instead of being propagated in one direction only,
they are propagated both forward and backward from their sur-
rounding keyframes. The two propagated strokes are then linearly
blended according to their relative distance from each keyframe
(Figure 3).

4 Results

We demonstrate our results by rotoscoping three sequences (Fig-
ures 5, 6, and 7). Our results are best seen in video form, though we
show several frames of the roto-curves here.

It is difficult to objectively measure the success of our rotoscoping
system, and the amount of user-interaction required. One possible
approach, shown in Figure 4, is to count the number of user-edited
control points, compared to the total number of control points. No-
tice that this ratio slowly increases with the difficulty of the se-
quence; the waving hand in Figure 5 moves and deforms rapidly,
and thus requires more user-interaction.

We also demonstrate that our system can be used for both special
effects and animation. For the former, we create simple mattes by
grouping roto-curves into regions and filling them. Then, we apply
filters selectively to different regions of the video to create a variety
of effects, i.e., applying makeup, changing the color of a shirt, or
applying a stylistic filter. We used our system to quickly create the
mattes, and then used Adobe After Effects to apply effects.

Finally, we demonstrate several animations created using our sys-
tem and the same roto-curves as the previous examples. Each
source, animation, and processed video clip can be seen in the ac-
companying video.

5 Conclusion

In this paper, we showed how tracking can be reformulated as part
of a user-driven keyframe system. There are many opportunities
to improve our system. One current limitation is how we handle
curve samples that leave the boundaries of the image; we simply
drop the image terms for these samples. This approach works fairly
well, but can introduce discontinuities that quadratic optimization
techniques are not well-suited to handle; thus, control points that lie
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Figure 5 First row: four frames of a three-second sequence. Second row: the roto-curves. Third row: using regions bounded by these curves, we change the
color of the shirt, simulate white makeup on the face, and desaturate the arms. Fourth row: an animation that follows the curves. To demonstrate the stroke
propagation algorithm, the artist drew all strokes in the first frame; the later frames were generated automatically without any user editing.

Figure 6 One frame of a six-second sequence. After rotoscoping to separate foreground and background layers, we apply a non-photorealistic filter to the
background to place the character in a dream-like world. We also desaturate the foreground to increase contrast between the layers.

on or beyond the image boundaries typically need a little more user
effort.

Our system employs spacetime optimization with energy terms that
are based on well-known and classic approaches to motion estima-
tion and shape interpolation. However, numerous alternatives for-
mulations exist; exploring some of these alternatives could further
reduce user effort.

Finally, there are many problems in computer vision and graphics
in which fully-automated techniques produce imperfect results, but
could benefit greatly from a small amount of user input. We believe
that developing efficient ways to couple user-guidance with numer-
ical optimization techniques is a fertile ground for future research.
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