Recall the Z-buffer algorithm:

for each polygon
 for each pixel indexed by i, j
 P ← point on polygon at this pixel
 if (depth(P) < depth[i][j])
 depth[i][j] ← depth(P)
 color[i][j] ← color(P)
 end if
 end for
end if

Assume right-handed eye space.
The point P projected onto the image plane (i.e. near plane) is
Q = {-(fPx)/Pz, -(fPy)/Pz}
The depth is
depth(P) = sqrt(Px^2, Py^2, Pz^2)

This is an expensive calculation for every fragment (what is a fragment?), so we replace it with an easier calculation, using “pseudodepth” (δ).

What about just using Pz, the distance from the plane perpendicular to the view vector through the eye?
 If we keep a consistent denominator among Qx, Qy, and Qδ (pseudodepth), we can take advantage of homogeneous coordinates to encode perspective projection as a 4x4 matrix.

The goals for pseudodepth:
The denominator should be - Pz
The numerator should be easy to compute, i.e. a linear function of Pz
The pseudodepth should be -1 for points on the near plane. Why?
The pseudodepth should be 1 for points on the far plane. Why?

So pseudodepth(-Pz) = (a Pz + b)/(- Pz) for some a, b
Given goals, 3, 4, solve for a, b:
 a = -(F + f) / (F – f)
 b = -2ff / (F – f)

Note the following:
Pseudodepth is a nonlinear function of Pz.
Points closer to the near plane have the highest pseudodepth resolution.
Points closer to the far plane have the lowest pseudodepth resolution.

Resulting perspective transformation matrix:

\[
Q = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \quad \times \quad P = \begin{bmatrix} fP_x \\ fP_y \\ aP_z + b \\ -P_z \end{bmatrix}
\]

This still needs to take into account remapping \(P_x \) and \(P_y \) to the normalized view volume, but this is sufficient for the remaining discussion.

What is \(Q \) after perspective divide? Denote it \(Q = [Q_x, Q_y, Q_\delta, 1] \)

Using pseudodepth during scan conversion:

When scan converting a polygon, the linear nature of the pseudodepth numerator can be used to avoid calculating the perspective transformation of each fragment.

As a single example, consider the scan conversion code for a horizontal line \((P_0, P_1)\) in eye space and its perspective transformation \((Q_0, Q_1)\):

![Diagram of horizontal line and perspective transformation](image)

The eye space line is parameterized by \(s \), and the perspective transformation is parameterized by \(t \).

Here is scan conversion code that includes an incremental update of the pseudodepth \(\delta \):

\[
\delta \leftarrow Q_0 \delta \\
\text{delta} \delta \leftarrow (Q_1z - Q_0z) / (Q_1x - Q_0x) \\
\text{for } x \leftarrow Q_0x \text{ to } Q_1x \\
\quad \delta += \text{delta} \delta \\
\quad \text{if } (\delta < \text{depth}(x, y)) \\
\quad \quad \text{update depth and color buffers} \\
\quad \text{end if} \\
\text{end for}
\]

This speed-up extends straightforwardly for nonhorizontal lines, and also to polygons as with normal scan conversion.
Why does this work?

Assume \(a = 0, b = 1, f = 1 \)
Consider \(t \) in \([0, 1]\), \(\delta T = 1/(Q1x - Q0x) \)
and \(s \) in \([0, 1]\), along eye space line
and corresponding incremental steps along \(\delta \), as above.

We need to show \(Q\delta(t) \) is a linear function of \(t \). What is \(Q\delta(t) \)?
\[
Q\delta(t) = -1/Pz(s) = 1 / (P0z*(1-s) + P1z*s) = 1 / (P0z + s * (P1z – P0z))
\]

What is \(s \)? For every point \(P(s) \), there is a corresponding projection \(Q(t) \). In other words, for each \(s \) there is a corresponding \(t \). However, the correspondence is complicated—this derivation finds that correspondence.

Consider the mapping of \(Q(t) \) to \(P(s) \):
\[
Qx(t) = - Px(s) / Pz(s); \text{ solve for } s:
\]
\[
Qx(t)*P0z – Qx(t)*P0z*s + Qx(t)*P1z*s
= -P0x + P0x*s – P1x*s
\]
\[
Qx(t)*P0z + P0x = s* [Qx(t) * P0z – Qx(t) * P1z + P0x – P1x]
\]
\[
s = (Qx(t)*P0z + P0x) / (Qx(t)*(P0z – P1z) + P0x – P1x)
\]

Going back to the previous expression for \(Q\delta(t) \):
\[
Q\delta(t) = 1 / \{P0z + [Qx(t)*P0z + P0x] / (Qx(t)*(P0z – P1z) + P0x – P1x)] \}
\]
\[
= [Qx(t)*(P0z – P1z) + P0x – P1x] / [P0z*(Qx(t)*(P0z – P1z) + P0x – P1x) + (Qx(t)*P0z + P0x)*(P1z – P0z)]
\]
\[
= Qx(t) * (P0z – P1z)/(P0x*(P1z – P0z)) + (P0x-P1x) / (P0x*(P1z-P0z))
\]

\(Qx(t) \) is the only term that changes with respect to \(t \), and it is also linear with respect to \(t \), so \(Q\delta(t) \) is linear, hence the pseudodepth is linear in image space.

Why not increment \(Pz \), the eye space depth?

\(Pz \) is not a linear function of image space. From above, the image space point \(\{Qx, Qy\} \) is \(\{-fPx/Pz, -fPy/Pz\} \), a nonlinear relationship between both \(Qx \) and \(Qy \) (the scan-converting domain) and \(Pz \).
Why isn't Z linear in screen-space? Considered a foreshortened view of a building (or a checkerboard), which has windows along the side. The windows close by occupy many pixels, the ones far away are tiny. Stepping along pixels will correspond to small steps in Z for the nearby windows, and large steps in Z for the faraway windows.

For a triangle a great deal of computation can be saved:

- Incrementally update pDepth along two sides as scan-conversion progresses along scan lines. Scan convert each scan line between these two sides: