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Abstract. This paper presents a motion planner that enables a humanoid robot to 

push an object on a flat surface. The robot’s motion is divided into distinct walking, 

reaching, and pushing modes. A discrete change of mode can be achieved with a 

continuous single-mode motion that satisfies mode-specific constraints (e.g. 

dynamics, kinematic limits, avoid obstacles). Existing techniques can plan well in 

single modes, but choosing the right mode transitions is difficult. Search-based 

methods are vastly inefficient due to over-exploration of similar modes. Our new 

method, Random-MMP, randomly samples mode transitions to distribute a sparse 

number of modes across configuration space. Results are presented in simulation 

and on the Honda ASIMO robot. 

1 Introduction  

Pushing is a potentially useful form of manipulation for humanoid robots 

when grasping is impossible. But pushing is not as simple as walking to the 

object and moving the arm; advance planning is crucial. Even simple tasks, 

like reorienting the object in place, may require a large number of pushes. 

Between pushes, the robot may need to switch hands or walk to a new 

location, choosing carefully among alternatives so that each push respects 

kinematic constraints and avoids collision. Furthermore, many tasks cannot 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. To cross a table, an object must be pushed along the table’s edges 
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be solved by greedily pushing the object toward its target. For example, an 

object cannot be pushed directly across a large table (Fig.1). Once the 

object out of reach it cannot be pushed further, and since pushing is 

nonprehensile, the object cannot be recovered.  

The current technology in ASIMO’s control system requires dividing the 

robot’s motion into distinct walk, reach, and push modes. While ASIMO 

walks, the swaying of its body prohibits accurate hand positioning. There-

fore, the robot is required to stand still while reaching for and pushing the 

object. Secondly, to predict the object’s motion when pushed, we restrict 

ourselves to use stable pushes [7]. This imposes additional constraints on 

the hand and object motion during a push. 

Given these constraints, a motion planner must produce a discrete 

sequence of modes, as well a continuous motion through them. This multi-

modal planning problem occurs in several areas of robotics. In 

manipulation planning, motion alternates between transfer and transit 

(object grasped/not grasped) modes [1, 8, 9]. In legged locomotion, each set 

of environment contacts defines a mode [2, 4]. Modes also occur in 

reconfigurable robots [3] and as sets of subassemblies in assembly planning 

[10]. The most general existing multi-modal planning approach first 

appeared in manipulation planning as a “manipulation graph” [1], and can 

be described as mode-before-motion search. It constructs a graph of modes 

by selecting an existing mode, and transitioning to neighboring modes with 

single-mode motions. However, in pushing and other problems, some 

modes have a continuous set of neighbors (e.g. to start pushing, any points 

on the surface of the hand and object can meet). A fixed discretization 

makes search intractable, even for simple push tasks. 

The problem is not that pushing itself is hard, but that search samples 

modes much too densely.  Inspired by probabilistic motion planners, the 

novel Random-MMP approach samples mode transitions at random, 

according to a strategy designed to distribute modes sparsely across 

configuration space. A simple blind strategy samples transitions (roughly) 

uniformly at random. Though this is easy to implement and performs 

reasonably well, it can be improved with prior knowledge of the push task. 

After precomputing tables of push utility – the expected distance the object 

can be pushed – we bias the sampling of contact points to yield high-utility 

pushes. We additionally focus on “bottlenecks” by picking good pushes 

before choosing where to walk. The combined strategy plans for difficult 

problems in minutes on a PC. We demonstrate results in simulation and 

experiments on the real robot.  
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2 Problem Specification 

We plan for ASIMO to push an object across a horizontal table. We move one 

arm at a time for convenience. We assume the object moves quasi-statically 

(slides without toppling and comes to rest immediately), and can be pushed 

without affecting the robot’s balance. The planner is given a per-fect 

geometric model of the robot, the object, and all obstacles. Other physical 

parameters are specified, e.g. the object’s mass and the hand-object friction 

coefficient. Given a desired translation and/or rotation for the object, it 

computes a path for the robot to follow, and an expected path for the object. 

2.1 Configuration Space  

A configuration q combines a robot configuration qrobot and an object con-

figuration qobj. ASIMO’s walking subsystem allows fully controllable motion 

in the plane, so leg joint angles can be ignored. Thus, qrobot consists of a 

planar transformation (xrobot,yrobot,θrobot), five joint angles for each arm, and a 

degree of freedom for each hand ranging from open to closed. Since the 

object slides on the table, qobj is a planar transformation (xobj,yobj,θobj). In all, 

the configuration space C is 18 dimensional. 

The robot is not permitted to collide with itself or obstacles, and may 

only touch the object with its hands. It must obey kinematic limits. The 

object may not collide with obstacles or fall off the table. We also require 

that the object be visible from the robot’s cameras while pushing to avoid 

some unnatural motions (e.g. behind-the-back pushes). 

2.2 Modes and submanifolds 

The robot’s motion is divided into five mode classes: walking, reach left, 

reach right, push right, and push left. Each mode has its own motion 

dynamics and constraints, specified as follows. In walk modes, only the 

base of the robot (xrobot,yrobot,θrobot) moves. The arms must be raised to a 

“home configuration” that avoids colliding with the table while walking. In 

 

 

 

 
Fig. 2. (a) Abstract depiction of reach and push modes, with arm motion 

horizontal, object motion vertical. Each object configuration yields a new reach 

mode. (b) Paths from q to q’ pass through a transition configuration in Fm ∩ Fm’ 
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reach modes, only a single arm and its hand may move. In push modes, the 

hand is in contact with the object. The object moves in response to the arm 

motion according to push dynamics, and reciprocally, the dynamics impose 

constraints on arm motions (Sect. 2.4). Additionally, the object must lie in 

the robot’s field of view.  

Each mode constrains motion to a submanifold of lower dimension than 

C. Let Cm denote the submanifold corresponding to mode m, and Fm denote 

the set of configurations in Cm that satisfy all feasibility constraints of m. 

An important semantic note is that a mode m refers to both the mode class 

as well as all other parameters necessary to fully describe the motion con-

straints. For example, there are an infinite number of reach modes, each one 

with a distinct object position (Fig. 2.a). We represent modes (nonuniquely) 

by an integer describing the mode class and a representative configuration. 

2.3 Adjacencies and transitions 

We say modes m and m’ are adjacent if a transition is permitted between 

them. For a path to transition from m to m’, some configuration q along the 

way must satisfy the constraints of both modes. An important consequence 

is that the intersection of Fm and Fm’ must be nonempty (Fig. 2.b). We call 

q∈Fm ∩ Fm’ a transition configuration. 

The following mode transitions are permitted (Fig. 3). Walk-to-reach, 

reach-to-reach, and push-to-reach are allowed from any feasible 

configuration. Either the left or right arm may be chosen. Reach-to-walk is 

allowed if the arms are returned to the home configuration. Reach-to-push 

is allowed when the hand of the moving arm contacts the object.  

2.4 Push Dynamics  

We restrict the planner to use pushes that, under basic assumptions, rotate 

the object predictably. These stable pushes must be applied with at least two 

simultaneous collinear contacts, such as flat areas on the robot’s hand. 

Given known center of friction, surface friction, and contact points, one can 

calculate simple conditions on the stable centers of rotation (CORs) [7]. 

Rotating the hand in the plane about a stable 

COR c will predictably rotate the object about c.  

Pure translations are represented by a COR at 

infinity. 

3 Multi-Modal Planning 

3.1 Single-mode planning  

Single-mode motions can be planned quickly 

with standard techniques. On average, each plan 

takes a small but not negligible amount of time 
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(typically between 10 and 100 ms). Walk modes are 3D, and motions can be 

planned with a variety of methods. Reach modes are 6D, requiring the use 

of probabilistic roadmap (PRM) methods. PRMs build a roadmap of 

randomly sampled, feasible configurations, connecting them with straight-

line paths. They plan quickly when the space has favorable visibility 

properties [5], which are almost always satisfied in reach modes. However, 

PRMs cannot determine that no path exists, so the planner declares failure 

after a specified time limit.  

Push motions are produced as follows. Let phand be a contact on the 

hand touching a point pobj on the object, with normals nhand and nobj. First, 

sample a stable COR c. Rotate the object about c for some distance. 

Maintain hand contact during this rotation using a numerical inverse 

kinematics (IK) solver to position phand at pobj and orient nhand to –nobj. If the 

motion is feasible, repeat the process to push the object further. 

3.2 Existing multi-modal approaches 

Some multi-modal problems can be solved with standard PRMs simply by 

allowing a mode-change action. This action succeeds only at transition 

configurations in regions Fm ∩ Fm’. But most interesting multi-modal 

systems contain transitions Fm ∩ Fm’ with lower dimension than Fm (or Fm’, 

or both). In particular, a reach-to-push transition requires that a flat part of 

the hand touch the object. The set of all such configurations has zero 

measure in the 6D reach submanifold, so a randomly sampled arm 

configuration has zero probability of transitioning to a push. This 

necessitates mode-before-motion approaches, which explicitly consider 

mode transitions as targets for single-mode planning. 

The most general mode-before-motion approach is based on classical 

search, and can work well if good mode-based heuristics are developed. 

The method builds a search tree T where nodes are configuration/mode 

pairs. At each step, the method picks an unexpanded node (q,m) from T 

according to a heuristic, and expands it as follows. For each adjacent mode 

m’, plan a single-mode path y in m, starting at q and ending at a transition q’ 

in Fm ∩ Fm’. If successful, add the edge (q,m) → (q’,m’) to T, annotated 

 

Fig. 4. Diagram of search with a 

fixed discretization. Each “fan” is a 

mode’s configuration space. Yellow 

regions are continuous sets of poten-

tial transitions. Feasible transition 

configurations are green, infeasible 

are red. Blue lines are single-mode 

paths 
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with y. Once a goal is reached, the motion follows the single-mode motions 

along the edges of the solution path. 

Search is directly applicable if each mode has a finite number of 

adjacencies [2]. For systems with continuously varying modes, the system 

must be discretized because each mode has an uncountable number of 

adjacencies [1, 4, 8] (Fig. 4). Choosing a discretization requires trading off 

between speed and completeness.  

A notable alternative to discretizing continuous sets of modes is based 

on a roadmap of the set of configurations that transition between any two 

modes [1, 9]. Unfortunately, a controllability condition has restricted this 

method so far to prehensile manipulation. 

3.3 Drawbacks of search 

Using search for push planning requires discretizing walk positions (walk-

to-reach transitions), contacts (reach-to-push transitions), and pushes (push-

to-reach transitions). But even the sparsest discretization makes search 

intractable. Consider pushing a box. One should allow either hand to touch 

each side of the box, so there must be k≥2 hand contacts and m≥4 box 

contacts. One should allow at least a straight push and CW and CCW 

rotations, so there must be n≥3 pushes. Finally adding p walk positions 

(say, p≥4), a search tree of d pushes expands O((kmnp)
d
) modes. In terms of 

pushes, the branching factor is no less than 96. Since each expansion takes 

10-100 ms, even expanding to a depth of two pushes is too costly. 

Furthermore, it appears difficult to develop good heuristics, because they 

must reason about the feasibility of future transitions and single-step paths. 

4 Random-MMP 

If pushing were truly intractable, search might be our only option. But 

search covers the configuration space much more densely than is needed, 

e.g. pushing left with the right hand from position x is similar to pushing 

left with the left hand from position y. In continuous spaces, PRMs use 

randomness to overcome similar discretization issues. Their performance 

depends on the visibility properties of the space [5], and if visibility is good, 

a roadmap of a small number of configurations sampled at random is 

sufficient to capture the connectivity of the space. This inspires the 

development of Random-MMP. We conjecture that pushing and other 

multi-modal systems exhibit good “visibility”, although more work is 

needed to define such a term in the multi-modal case. 

Like mode-before-motion search, Random-MMP maintains a tree T and 

extends it with a single-mode transition. But each extension picks a node 

from T at random with probability Φ, and expands to a single adjacent 

mode sampled at random with probability Ψ. But how to select Φ and Ψ? 
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Some intuition can be gained by examining how tree-growing PRMs try to 

sample in low-density areas. Two early planners have been empirically 

shown to have good performance over a wide range of problems, and have 

inspired dozens of variations existing in the literature. The EST planner 

expands from a node with probability inversely proportional to the number 

of nearby nodes [5]. The RRT planner tries to distribute configurations 

uniformly across the space by picking a random point in space, and 

expanding the closest node toward that point [6]. We use a simple RRT-like 

implementation, expanding the tree as follows: 

Random-MMP 

1. Sample a random configuration qrand. 

2. Pick a node (q,m) that minimizes a distance metric d(q,qrand). We 

define d to be the distance of the object configurations, ignoring the 

robot entirely. Like RRT, step 2 implicitly defines Φ proportional to 

the size of the Voronoi cell of q. 

3. The tree is expanded from (q,m) to new mode(s) using an expansion 

strategy Expand, which implicitly defines Ψ. 

We will compare four variants of the expansion strategy Expand. 

• Blind: Expands to an adjacent mode m’ chosen at random. 

• Reach/Utility-Informed: Same, but samples contacts, for reach-to-push 

transitions, according to expected reachability/utility. 

• Push-centered: Expands a sequence of modes that executes a high-

utility push that moves qobj toward qrand. 

5. Expansion Strategies 

Blind sampling is important to consider, because it can be used for most 

multi-modal problems simply by implementing a transition sampler. 

Reach/utility-informed sampling improves contact selection by assigning 

probability proportional to reachability/utility, much like importance 

sampling. These weights are precomputed on grids in the workspaces of 

contacts on the hand. Push-centered expansion makes a further imp-

rovement by selecting body positions that execute high-utility pushes. 

5.1 Blind Expansion 

Given a configuration q at mode m, blind expansion samples a transition 

configuration q’ at an adjacent mode m’, and if q’ is feasible, plans a single-

mode path y to connect q and q’ as usual. We first choose an adjacent mode 

class, then sample q’ to achieve that type of transition (together defining m’ 

as remarked in Sect. 2.2).  We sample q’ as follows: 
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• Walk-to-reach: Sample a body position between a minimum and 

maximum distance from the object and a body orientation such that the 

object lies within the robot’s field of view. 

• Reach-to-walk: Move the arm to the home configuration. 

• Reach-to-reach: Use any configuration. 

• Reach-to-push: Let Shand and Sobj be the surfaces of the hand and the 

object. We predefine a number of contact points Ccand ⊆ Shand that are 

candidates for stable pushes. Sample a point phand from Ccand and a point 

pobj from Sobj, with normals nhand and nobj. Starting from a random arm 

configuration, use numerical IK to simultaneously position phand at pobj 

and orient nhand to –nobj. 

• Push-to-reach: Rather than sample and plan separately, we plan the 

single-mode path y as in Sect. 3.1, and let q’ be the endpoint of y. 

5.2 Reach/Utility-Informed Sampling 

In reach-to-push sampling, only a small portion of Sobj is reachable from a 

given point on the hand. For each p in Ccand, we precompute information 

that helps identify the reachable region R on Sobj, and furthermore measures 

the expected utility of points in R. 

When pushing, the normal n at p must be horizontal in world space. We 

fix a height of pushing h, constraining the vertical coordinate of p. This 

define a 3D workspace W of points (x,y,θ), where (x,y) are the horizontal 

coordinates of p and θ is the orientation of n, relative to the robot’s frame 

(Fig. 5.a). We precompute two tables over W as follows. 

Reachable stores 1 if the contact is reachable and 0 otherwise (Fig. 5.c). 

We initialize Reachable to 0, and then sample the 5D space of the arm 

joints in a grid. Starting at each sampled configuration q, we run IK to bring 

the height of p to h and reorient n to be horizontal. If successful, we check 

if the arm avoids collision with the body and the point p is in the robot’s 

field of view. If so, we mark Reachable[(x,y,θ)] with 1, where (x,y,θ) are 

the workspace coordinates of p and [⋅] denotes grid indexing. 

Utility stores the expected distance the contact can be pushed in the 

absence of obstacles, calculated by Monte Carlo integration through 

  

 

 
Fig. 5. (a) Workspace coordinates of the right fingers. (b) Reference frame F, 

with vertical axis indicating rotation angle. (c) Reach/utility table in frame F. 

Reachable cells are drawn with utility increasing from blue to red 
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Reachable (Fig. 5.c). In W, a push traces out a helix that rotates around 

some COR. We assume a prior probability Π over stable CORs for a 

reasonable range of physical parameters of the object. Starting from 

w0=(x,y,θ) we generate a path w0, w1,…, wK. For all k, wk+1 is computed by 

rotating wk a short distance along some COR sampled from Π. The 

sequence terminates when Reachable[wK+1] becomes 0. After generating N 

paths, we record the average length in Utility[(x,y,θ)]. 

Given robot and object positions, contacts along Sobj at height h form a 

set of curves B in W. Intersecting B with the marked cells of Reachable 

gives the set of reachable object edges R. Reach-informed sampling 

samples contacts uniformly from R. Furthermore, utility-informed sampling 

samples from R with probability proportional to Utility. 

5.4 Push-centered expansion 

During reach-to-push transitions, the maximum push utility depends greatly 

on the placement of the robot body. A randomly chosen placement may 

have a hard time reaching the object or pushing it as desired. Push-centered 

expansion explicitly chooses a good body position to execute a high-utility 

push. Given a node (q,m), this strategy 1) chooses a robot’s body and arm 

configuration and a high-utility push for a reach-to-push transition qpush, 2) 

plans a whole sequence of modes backwards from the reach mode at qpush to 

(q,m), requiring no search, and 3) plans a push path forward from qpush.  

We elaborate on step 1. Let qobj be the object configuration in the 

randomly sampled configuration qrand. Choose a point pobj on Sobj (at height 

h and normal nobj) and a stable push such that the object will be pushed 

toward qobj. Next, sample a contact phand from Ccand and a workspace co-

ordinate (xhand,yhand,θhand) with probability proportional to Utility. Then, 

compute the body coordinates that transform (xhand,yhand) to pobj and rotate 

θhand to θobj, where θobj is the orientation of –nobj. Repeat until the body 

position is collision free. Fixing the body, sample the arm configuration of 

qpush, using IK to pos-ition phand to pobj and orient nhand to –nobj. 

Table 6. Expansion strategy experiments. Bold indicates best in column 

 Nodes 

/ push 

Time / 

push (s) 

Average 

push (cm) 

Push rate 

(m/s) 

Tgt. seek 

rate (m/s) 

Blind 10.0 0.956 6.7 0.070 0.0302 

Reach-informed 6.99 0.353 6.5 0.185 0.0658 

Utility-informed 5.99 0.325 8.2 0.254 0.111 

Push-centered 5.08 0.404 13.3 0.329 0.257 
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5.5 Experimental Comparison 

We measure the performance of an 

expansion strategy as the distance 

the object is pushed per unit of 

planning time. We ran Random-

MMP on the setup of Fig. 7 using 

the blind, reach-informed, utility-

informed, and push-centered 

strategies. The search is initialized 

with a walk mode, and terminates at a single push (requiring three 

transitions, from walk to reach to push). The final column measures the 

distance the object was pushed toward the object position in qrand (if 

positive). The results, averaged over 1,000 runs, are summarized in Table 6. 

Though blind expansion is improved with reach- and utility-informed 

sampling, push-centered expansion is clearly superior. 

6 Simulations and Experiments 

Figs. 1 and 7 show a generated motion plan in simulation. The goal is to 

push the object to the opposite table corner. The planner found a trajectory 

in about one minute on a 2GHz PC. Planning times increase if obstacles 

introduce difficult bottlenecks, e.g. in Fig. 8. A moved obstacle invalidates 

the initial path during execution, forcing the robot to a more difficult 

alternative. The planner produced a new path in three minutes. 

We performed tests on the physical robot (Fig. 9) executing the motion 

without visual or tactile feedback. The object and table have known 

geometry and are marked with calibration patterns. Only at the start, the 

object and table are sensed using stereo vision, and the planner is given 

their transformations relative to the robot. The robot performs several 

pushes (typically 3 to 5) almost exactly as planned. After a while, drift in 

the robot position (estimated with dead reckoning) causes pushes to fail. 

Current hardware can only localize the object and table periodically by 

walking to a location where all calibration patterns are in view. Future work 

could modify cameras to provide continuous feedback, introducing the 

possibility of planning and executing unstable (point) pushes. 

 
Fig. 8. Replanning in a changing environment 

 
Fig. 7. Search tree for the plan of Fig.1 
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8 Conclusion 

We presented a manipulation planner for a humanoid robot using a novel 

yet simple multi-modal planning algorithm, Random-MMP. Random-MMP 

tries to distribute modes sparsely across the configuration space, much like 

sample-based motion planners. We accelerate planning by biasing transition 

sampling toward high-utility pushes. Experiments show that even without 

visual feedback, the motions can be executed reasonably well. Further work 

might improve planning speed using alternate search strategies, or improve 

motion quality. 

This work also brings up the possibility of unifying multi-modal 

planning research across application domains. Future work should advance 

the understanding of the entire spectrum of multi-modal problems, and 

compare existing approaches across problems. This may enable building 

efficient, general-purpose multi-modal planners. 

Acknowledgements. Jean-Claude Latombe provided helpful comments on the 

paper. This work was partially supported by NSF grant IIS-0412884. 

References 

1. Alami R, Laumond JP, Simeon T (1995) Two Manipulation Planning 

Algorithms. In: Algorithmic Foundations of Robotics, K. Goldberg et al. 

(eds.). A K Peters, Wellesley (MA), pp 109-125 

2. Bretl T (2006) Motion Planning of Multi-limbed Robots Subject to 

Equilibrium Constraints: The Free-climbing Robot Problem. In: Intl J of 

Robotics Research, 25(4):317-342 

3. Casal A (2001) Reconfiguration Planning for Modular Self-Reconfigurable 

Robots. PhD Thesis, Aero & Astro Dept, Stanford University, Stanford, CA 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Asimo pushing a block. Block is highlighted in red for clarity. More 

videos are available at http://draco.honda-ri.com:8080/Videos/Videos 
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