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Abstract

Swirling-sweepers is a newmethod formodeling shapes

while preserving volume. The artist describes a deforma-

tion by dragging a point along a path. The method is in-

dependent of the geometric representation of the shape.

It preserves volume and avoids self-intersections, both lo-

cal and global. It is capable of unlimited stretching and the

deformation can be constrained to affect only a part of the

model.

We argue that all of these properties are necessary for

interactive modeling if the user is to have the impression

that he or she is shaping a real material. Our method is

the first to implement all five.

1. Introduction

In a virtual modeling context, there is no material: no
wax, clay, wood or marble. A challenge for computer
graphics is to provide a virtual tool that convinces the
artist that there is material. To perfect this illusion, the
shape must behave in accordance with a suitable mod-
eling metaphor.

Volume is one of the most important factors influenc-
ing the manner in which an artist models with real ma-
terials. A virtual tool preserving volume is needed to
help the artist believe he is interacting with material.
Also, modeling by preserving the available amount of
material will produce a shape with style, that other vir-
tual modeling methods can only achieve with more ef-
fort.
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1.1. Previous volume-control models

Volume preservation has been recognized for a long
time in animation, as a desirable property for the ani-
mation of believable animal and human characters [13].
[9] use constrained optimization methods for objects
discretized into lattices. [5] use controllers for main-
taining the implicit surface that coats a set of particles
to a constant volume during deformation. [7] achieve
incompressibility in water simulation by maintaining
a divergence free velocity field, thanks to the Poisson
equation. [12] rely on finite volume methods to sim-
ulate quasi-incompressible materials such as muscular
tissue.

Volume preservation has also been considered as a very
useful constraint for the intuitive modeling of shapes.
[10] propose an optimization method to adjust the con-
trol points of the popular free form deformations (FFD)
[11], but it works only for tensor-solids. [8] also adjust
FFD control points, but their method does not allow
local editing. [3] propose a volume preserving space de-
formation based on a model called DOGME. The defor-
mation does not have a local support, and requires the
computation of the shape’s volume. [4] preserve only a
volume between the surface and a base surface. [6] in-
troduce mass-preserving local and global deformations
for shapes represented by a mass-density field sampled
in a grid.

The limitation of existing methods is either that they
only apply to a specific type of geometric representa-
tion, or they only apply to shapes whose volume can
be computed.

1.2. Overview

This paper presents swirling-sweepers, a new method
dedicated to modeling shapes while preserving the
shape’s volume. Our technique belongs to space de-
formations, and is therefore applicable to a wide range



of geometric representations, including all of the pop-
ular parametric surfaces.

It is the first method that preserves volume, has a lo-
cal support, prevents local and global self-intersection
of the surface and does not require any volume com-
putation. Most importantly, using the method is sim-
ple: the artist only has to provide the trajectory of a
point, for instance with a mouse.

In Section 2 we summarize the principle of the space
deformations called sweepers. Then we present in Sec-
tion 3 our new method for modeling by constant vol-
ume deformation.

2. Principle of Sweepers

We briefly review the elements required for understand-
ing the space deformations called sweepers [2].

Space deformation provides a formalism to specify any
modeling operation by successively deforming the space
in which an initial shape, S(t0), is embedded. A de-
formed shape is given by the modeling equation1:

S(tn) =

{

n−1

Ω
i=0

fti 7→ti+1
(p) | p ∈ S(t0)

}

(1)

where fti 7→ti+1
: R

3 → R
3 are n space deformations, de-

forming a point, p, of shape S(ti) into a point of shape
S(ti+1).

Informally, a sweeper is a geometric tool together with
a motion path. This tool defines an influence function.
The basic idea is that the tool is placed somewhere in
the region of a shape to be deformed and moved along
the path. The motion drags a part of space defined by
the influence function, in a manner that prevents the
shape from self-intersecting.

More formally, the deformation is defined by a scalar
function, φt : R

3 7→ [0, 1], that varies over time, t. This
field is defined by composing the distance to the tool,
dt, with an influence function, µ

φt = µ ◦ dt (2)

Any smooth decreasing function of finite support can
be used for µ. We use a C2 continuous piecewise poly-
nomial, in which λ defines the radius of the influence

µλ(dt)=

{

0 if λ ≤ dt

1 + (dt

λ
)3(dt

λ
(15 − 6dt

λ
) − 10) if λ > dt

(3)

1
n−1
Ω

i=0
fti 7→ti+1

(p) expresses the finite repeated composition of

functions ftn−1 7→tn ◦ · · · ◦ ft0 7→t1 (p)

A deformation is defined by transforming the tool’s po-
sition, size and orientation, given by the matrix Mti

into the next configuration, given by the matrix Mti+1
.

Let us denote Mi = Mti+1
M−1

ti
the transformation ma-

trix from the previous to the new configuration. A naive
deformation of a point p with a single tool would be

fti 7→ti+1
(p) = (φti

(p) � Mi) p (4)

where the matrix operator � is defined as α � M =
exp(α log M). In Section 3.3, we give the closed-form
for computing exp and log. We refer the reader to [1]
for a more detailed overview. Loosely speaking, the op-
eration � is the equivalent of multiplying a matrix by a
scalar. It raises a transformation to a non-rational ex-
ponent. However, Equation 4 does not prevent the sur-
face from self-intersecting. By decomposing the defor-
mation into s sub-functions [2], self-intersections are
avoided

fti 7→ti+1
=

s−1

Ω
j=0

fτj 7→τj+1
(p) (5)

where fτj 7→τj+1
(p) =

(

φτj
(p)

s
� Mi

)

p

For a tool in a bounding volume Vb, the number of
steps is

s = max(1, d−min(δµλ/δd)max
p∈Vb

||log Mip||e) (6)

3. Constant Volume deformation

We introduce here swirling-sweepers as a method
for deforming shapes while preserving their vol-
ume. Swirling-sweepers are a particular case of sweep-
ers that use only point tools.

3.1. A basic deformation

We define a particular case of sweeper, a swirl, by us-
ing a point tool, c, together with a rotation of angle θ
around an axis ~v (see Figure 1). A scalar function, φ,
and a deformation are defined as before (see Equations
2 and 4). Informally, a swirl twists space locally around
axis ~v without compression or dilation. We prove in Ap-
pendix A that a swirl preserves volume.

3.2. Combining for complexity

Many deformations of the above kind can be naively
combined to create a more complex deformation

f(p) =

(

n−1
⊕

i=0

(φi(p) � Mi)

)

p (7)



where ⊕ is a commutative addition of transformations
defined as M ⊕ N = exp(log M + log N) [1]. We pro-
vide a convenient way for the artist to input n rota-
tions, by specification of a single translation ~t. Let us
consider n points, ci, on the circle of center h, and ra-
dius r lying in a plane perpendicular to ~t. To these
points correspond n consistently-oriented unit tangent
vectors ~vi (see Figure 2). Each pair, (ci, ~vi), together
with an angle, θi, define a rotation. Along with radii of
influence λi = 2r, we can define n swirls. The radius of
the circle, r, is left to the user to choose. The follow-
ing value for θi will transform h exactly into h +~t (see
Appendix B).

θi =
2||~t ||

nr
(8)

With this information, the deformation of Equation 7
is now a tool capable of transforming a point into a de-
sired target. We show in Figure 2 the effect of the tool
for different values of n; in practice, we use 8 swirls.

Preserving coherency and volume If the magnitude of
the input vector ~t is too large, the deformation of Equa-
tion 7 will produce a self-intersecting surface, and will
not preserve volume. The reason for self-intersection is
explained with details in [2]. The volume is not pre-
served because the blending operator, ⊕, blends the
transformation matrices, and not the deformations. To
correct this, it is necessary to subdivide ~t into smaller
vectors. The number of steps must be proportional to
the speed and inversely proportional to the size of the
tool. We use

s = max(1, d4||~t ||/re) (9)

As the circle sweeps space, it defines a cylinder. Thus
the swirling-sweeper is made of n · s basic deforma-
tions. Figure 3 illustrates this decomposition applied
to a shape.

3.3. Swirling-sweepers algorithm

We summarize here the swirling-sweepers algorithm:

Input point, h, translation, ~t, and radius, r
Compute the number of required steps, s

Compute the angle of each step, θi = 2||~t||
nrs

for each step j from 0 to s − 1 do

for each point p in the tool’s bounding box do

M = 0
for each swirl i from 0 to n − 1 do

M+= µ2r(||p − cij ||) log Mi,j

end for

p = (exp M)p

end for

end for

The point cij denotes the center of the ith swirl of the

jth ring of swirls. For efficiency, a table of the basic-
swirl centers, cij , and a table of the rotation matri-
ces, log Mi,j , are precomputed. We have a closed-form
for the logarithm of the involved matrix, given in equa-
tions 10 and 11, saving an otherwise expensive numer-
ical approximation.

~n = θi~vi

~m = ci,j × ~n (10)

log Mi,j =









0 −nz ny mx

nz 0 −nx my

−ny nx 0 mz

0 0 0 0









(11)

Note that for the sake of efficiency, we handle these ma-
trices as mere pairs of vectors, (~n, ~m). Once M is com-
puted, we use a closed-form for computing exp M . Since
the matrix M is a weighted sum of matrices log Mi,j ,
the matrix M is of the form of Equation 11, and can
be represented with a pair, (~nM , ~mM ). If ~nM = 0, then
exp M is a translation of vector ~mM . Else, if the dot
product ~mM · ~nM = 0, then exp M is a rotation of cen-
ter ~c, angle θ axis ~v, as given by Equation 12.

~c =



















(1,
ny−mz

nx
,

nz+my

nx
) if |ny| ≤ |nx|

and |nz| ≤ |nx|
(nx+mz

ny
, 1, nz−mx

ny
) if |nz| ≤ |ny|

(
nx−my

nz
,

ny+mx

nz
, 1) otherwise

θ = ||~nM ||
~v = ~nM/θ

(12)

Finally, in the remaining cases, we denote l = ‖~nM‖,
and we use Equation 13. See Appendix C for efficiency.

exp M = I + M + 1−cos l
l2

M2 + l−sin l
l3

M3 (13)

Symmetrical objects can be easily modeled by intro-
ducing a plane of symmetry about which the tool is re-
flected (see Figure 5).

4. Results

We have implemented swirling-sweepers in C++ using
OpenGL r©, on a Pentium r©2400Mhz with 1GB of RAM.
This implementation works in real-time. The compu-
tational time is a function of the magnitude of the in-
put vector, because this determines the number of sub-
steps. Small vectors will produce extremely fast defor-
mations. In order to preserve the sampling of the de-



formed surface, we use the mesh update algorithm pro-
posed in [2], adapted for sweeping space deformations.
Results are shown in Figure 5.

Limitations In our implementation, the tool must be
of significant size compared to the density of the mesh.
In Figure 5, we compare the shapes’ volume with unit
spheres on the right. The shapes volumes are respec-
tively 101.422%, 99.993%, 101.158% and 103.633% of
the initial sphere. This error is the result of accumu-
lating smaller errors from each deformation. For in-
stance 80 swirling-sweepers have been used to model
the alien. The small errors are due to the finite num-
ber of steps, and to our choice of shape representation.

5. Conclusions and future work

We have presented swirling-sweepers, a new volume-
preserving space deformation that uses the sweepers
formulation: a combination of matrices raised to pow-
ers of scalar functions. Combined with the original
sweepers, the volume of a shape can be increased, pre-
served or decreased. We believe there are many more
useful sweeper operations yet to be discovered, for in-
stance more complex volume-preserving tools, topol-
ogy changing tools, surface area preserving tools, or
surface smoothing tools. We also believe our technique
is adaptable to volume preserving animation.
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A. Constant volume basic swirl

Let us prove that a basic swirl preserves the volume.
We will show that the determinant of the Jacobian,
det J , is equal to 1 everywhere. A rotation of angle 2θ
around ~n and its powers in φ can be modeled with a
quaternion:

qφ = (cos(φθ), sin(φθ)~n) (14)

Hence the swirl deformation of a point p = (x, y, z)T is

f(p) = qφpqφ (15)

We can assume without loss of generality that the ro-
tation is centered at the origin. To express the Jaco-
bian, we need the three partial derivatives of f . Let us
denote ~x, ~y and ~z the vectors (1, 0, 0)T , (0, 1, 0)> and
(0, 0, 1)>. The first partial derivative of f is

δf(p)

δx
=

δqφ

δx
pqφ + qφ~xqφ + qφp

δqφ

δx
(16)

The reader can verify the quaternion equality:

δqφ

δx
= −θ

δφ

δx
(sin(φθ),− cos(φθ)~n) (17)

Using 17, the leftmost term of the right side of equa-
tion 16 is a quaternion:

δqφ

δx
pqφ

= θ δφ

δx
(− sin(φθ), cos(φθ)~n) ∗ p ∗ qφ

= θ δφ

δx
(− cos(φθ)~n · p,− sin(φθ)p + cos(φθ)~n × p) ∗ qφ

= θ δφ

δx
(−~n · p, cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n)

The reader can verify similarly that the rightmost term
of equation 16 is also a quaternion:

δqφ

δx
pqφ = θ δφ

δx
(~n · p, cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n)

The partial derivative of f in x is a vector:

δf(p)
δx

= 2θ δφ

δx
(cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n) + qφ~xqφ

Let us introduce ~qx and ~u for the sake of simplicity:

~qx = qφ~xqφ

~u = 2θ(cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n)

The partial derivative in x shortens to:

δf(p)

δx
=

δφ

δx
~u + ~qx (18)

The two other partial derivatives of f are obtained by
substituting x for y or z. Since a rotation preserves
lengths and angles, we can write:

~qx = ~qy × ~qz



Let us develop the determinant of the Jacobian:

det J = δf
δx

· ( δf
δy

× δf
δx

)

= 1 + ~u · ( δf
δx

qx + δf
δy

qy + δf
δz

qz)

We can assume without loss of generality that ~n = ~x.
This provides expressions for the rotated canonic set:

~qx = ~x
~qy = cos(2φθ)~y + sin(2φθ)~z
~qz = cos(2φθ)~z − sin(2φθ)~y

This assumption also provides a simple expression for
the double cross product:

(~n × p) × ~n = y~y + z~z

We will now use the fact that the tool is spherical. We
model the field function φ as a function of the distance
to the origin, d(p). The field can be partially derived:

δφ(d(p))

δx
=

δφ

δd

δd(p)

δx
=

δφ

δd

x

d(p)

With this, the determinant of the Jacobian becomes:

det J

= 1 + δφ

δd
2θ

d(p)

(cos()~x × p − sin()(y~y + z~z))·
(x~x + (y cos() − z sin())~y + (y sin() + z cos())~z)

= 1

Thus det J is equal to 1 everywhere. Therefore the de-
formation stretches space with no expansion nor com-
pression.

B. Swirl angle

The image of a point p in the center of a circle of swirls
is given by Equation 7. Since the point is at the center,
one can substitute φi for 1/2

f(p) =
⊕n−1

i=0 ( 1
2 � Mi)p (19)

The speed of this deformation at p is given by the log-
arithm

~v =
∑n−1

i=0
1
2 log(Mi)p (20)

Since Mi is a rotation matrix, this simplifies (see Equa-
tion 11).

~v = θ
2

∑n−1
i=0 (~vi × (p − ci)) (21)

By taking the norm:

||~v|| = θ
2

∑n−1
i=0 ||p − ci|| (22)

Since the centers are equidistant to p

||~v|| = θ
2nr (23)

Therefore the angle is

θ = 2||~v||
nr

(24)

C. Exponential

Applying the exponential of the matrix to a point does
not require to compute the exponential of the matrix
explicitely. Let us define the matrix M with a pair of
vectors, (~n, ~m).

exp(M)p = p + (~m + ~n × p)b + (~n×~m
l2

− p)a
+ ~n((~n ∗ p)a + (~n ∗ ~m)(1 − b)) 1

l2

where l = ‖~n‖
a = 1 − cos(l)

b = sin(l)
l

(25)
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θ

c c
v v

λ

Figure 1. The effect on a sphere of a swirl cen-

tered at c, with a rotation angle θ around ~v. The

two shapes have the same volume.

hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 2. By arranging n basic swirls in a circle,

a more complex deformation is achieved. In the

rightmost image: with 8 swirls, there are no visi-

ble artifacts due to the discrete number of swirls.

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 3. A volume preserving deformation is ob-

tained by decomposing a translation into circles

of swirls. 3 steps have been used for this illus-

tration. As the artist pulls the surface, the shape

gets thinner. The selected point’s transforma-

tion is precisely controlled.

Figure 4. When pushed or pulled, a sphere will

inflate or deflate elsewhere.

Figure 5. Examples of models “sculpted” with

swirling-sweepers. The mouse, the goblin, the

alien and the tree have respectively 27607,

25509, 40495 and 38420 vertices. These objects

were modeled in less than 30 min by one of the

authors. Eyeballs have been added.


